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Automated Pain Assessment in Children Using
Electrodermal Activity and Video Data Fusion
via Machine Learning

Busra T. Susam
Hooman Nezamfar
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Abstract— Objective: Pain assessment in children con-
tinues to challenge clinicians and researchers, as subjec-
tive experiences of pain require inference through observ-
able behaviors, both involuntary and deliberate. The pre-
sented approach supplements the subjective self-report-
based method by fusing electrodermal activity (EDA)
recordings with video facial expressions to develop an
objective pain assessment metric. Such an approach is
specifically important for assessing pain in children who
are not capable of providing accurate self-pain reports,
requiring nonverbal pain assessment. We demonstrate
the performance of our approach using data recorded
from children in post-operative recovery following laparo-
scopic appendectomy. We examined separately and com-
bined the usefulness of EDA and video facial expression
data as predictors of children’s self-reports of pain fol-
lowing surgery through recovery. Findings indicate that
EDA and facial expression data independently provide
above chance sensitivities and specificities, but their fu-
sion for classifying clinically significant pain vs. clini-
cally nonsignificant pain achieved substantial improve-
ment, yielding 90.91% accuracy, with 100% sensitivity and
81.82% specificity. The multimodal measures capitalize
upon different features of the complex pain response.
Thus, this paper presents both evidence for the utility
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of a weighted maximum likelihood algorithm as a novel
feature selection method for EDA and video facial ex-
pression data and an accurate and objective automated
classification algorithm capable of discriminating clini-
cally significant pain from clinically nonsignificant pain in
children.

Index Terms—Electrodermal activity (EDA), galvanic skin
response (GSR), computer vision, facial expression, pain
assessment.

[. INTRODUCTION

ONSIDERABLE investments are being made to advance
C pain measurement for clinical and research purposes.!
Current definitions of pain primarily focus on subjective experi-
ence, necessitating inference through observable manifestations,
either biomarkers or behavioral expression [1]. Pain is complex,
comprised of sensory-discriminative, cognitive-evaluative and
emotional-motivational components [2], with physiological and
behavioral correlates associated with voluntary (e.g., self-report)
and involuntary responses (e.g., reflexive withdrawal, autonomic
activity, and facial expression) that have functional adaptive
importance [3], [4].

Pain evaluation can be achieved through self-report, nonverbal
behavior, or physiological responses [5], with knowledge about
sources of pain in tissue damage [6], [7] also important [6], [8].
Self-report can be sufficiently nuanced to tap multiple dimen-
sions of pain in adults and in children [9]. Children as young as
5 years of age can discriminate sensory and emotional features
of the pain experience [10]. However, self-report requires sub-
stantial cognitive, linguistic, and social competencies not always
available in children <8 years of age and other populations (e.g.,
infants, people with developmental delays, brain damage or de-
mentia) [11]. Efforts to generate more objective pain assessment
techniques using brain imaging [12] or biomarkers [13] require
patients to be transported to another site for measurement or
bedside sampling and laboratory analysis — both of which do
not provide immediate results for timely clinical intervention.
Instead, a time-sensitive technique to objectively assess pain at
the bedside is needed. Such an assessment might be possible
using nonverbal and physiological responses that provide un-
derstanding of emotional, sensory, and cognitive modulation of
pain experiences.
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Nonverbal pain responses include facial expressions, body
movements, and vocalizations that closely associate with emo-
tional distress [14]-[16]. Physiological responses such as elec-
trodermal activity (EDA), electrocardiography (ECG), and elec-
tromyography (EMG) have been shown to provide substantial
information about pain given interactions between neural struc-
tures and autonomic control in pain sensation [17], [18]. In
the current work, we demonstrate a machine-learning method
for objectively differentiating clinically relevant pain from clin-
ically nonsignificant pain using weighted Bayesian fusion of
EDA and facial video recordings.

Machine learning is a data-driven approach able to gen-
erate algorithms for automatically detecting pain phenotypes
using physiological and behavioral data [19]. Developments in
computer vision and wearable peripheral physiological sensing
devices provide technology that can be implemented in research
in clinical settings. The data they produce also enable computa-
tional science strategies for automating pain assessments.

Prior studies using behavioral expression (facial and bodily
activity) have explored machine learning algorithms to rec-
ognize pain in newborn infants [20], [21] and children [22],
differentiating affective and painful vocal and facial expressions
[23]. High pain detection accuracy (85%) using similar measures
has also been reported in studies involving adults [24]-[30].
Studies using peripheral physiological measures have identified
patterns in ECG, EMG, and EDA that associate with pain [31],
[32], including differentiating pain from emotional states of
surprise and boredom [33].

An increasing number of studies suggests that EDA accessed
through ambulatory sensors can provide an objective means of
measuring emotional distress associated with pain [31], [34]-
[37]. In previous studies, different physiological modalities have
been analyzed and salient features for pain assessment have been
extracted from such modalities [38], [39]. Findings demonstrate
that EDA signals mostly outperform other physiological signals
including EMG and ECG in terms of accurate pain assessment.
However, tonic fluctuations and phasic response delays in EDA
can present challenges in making accurate inferences [22]. To
overcome these difficulties, we developed a framework using
timescale decomposition (TSD) for statistical feature extraction
from EDA signals and a linear support vector machine (SVM)
based classifier to distinguish clinically significant pain from
clinically nonsignificant pain conditions. This approach decom-
poses EDA signals into shifting windows of time to enable
identification of short (phasic) and long-term (tonic) changes
over the signal, with subsequent feature discovery leading to the
creation of a pain detection algorithm [40].

The current study uses extended sets of both EDA and facial
expression video data and includes a novel fusion and pain
inference algorithm to test the hypothesis that EDA and video
combined will better predict self-reported pain in children re-
covering from surgery.

[I. RELATED WORK

Existing studies in the literature on pain assessment have
combined different measurement modalities with various data
fusion approaches [41], [42]; specifically, early fusion [43]-[46]

and late fusion [38], [39], [47]. Early fusion is the training
of a single classifier using a high dimensional data set, which
involves concatenation of features extracted from each modal-
ity [39]. Late fusion combines the output of these modalities,
including output of classifiers trained in each modality in order
to compute a final decision architecture using majority vote or
averaged classification scores of base classifiers [48]. While the
early fusion approach is simple, it suffers from the limitation of
high dimension, and it cannot deal with missing data [49]. It also
combines non-comparable dimensions from different modalities
which is problematic as changing the units or scale function for
one modality will change its relative weighting. (This problem
cannot be fixed by normalizing (e.g., by z-scoring) individual
dimensions as previously comparable dimensions (e.g., neigh-
boring pixels) lose their useful structure [50]) .Late fusion
does not suffer from these problems, but it can be complex
and computationally intensive. Therefore, in the present study
we introduce a novel fusion approach that utilizes a weighted
Bayesian fusion over a clinically significant/nonsignificant pain
conditional probability distribution of linear support vector ma-
chine (Linear SVM) classifier scores obtained for EDA and
video data separately.

Most automated pain recognition studies involve healthy
adults and experimental pain stimulation (See Table I). Heat
stimulation is the most commonly used due to its precise control
of stimulus intensity and timing [51]. Lopez et al. [46], Werner
et al. [45], and Kachele et al. [52] applied different early fusion
architectures on the Bio Vid heat data set which includes both
video and physiological signals (i.e., EMG, EDA, ECG) to
classify pain. Findings across these studies demonstrate that
pain induced by heat differ from a nonsignificant pain condition
with an accuracy rate of 82.7% in [46], 80.6% in [45], and
78.9% in [52]. Kessler et al. [53] evaluated the benefit of fusing
photoplethysmography (rPPG) and respiratory data (RSP) with
video signals in the SenseEmotion Database. The results of their
fusion algorithm yielded an accuracy rate of 71.85%. Using
SenseEmotion Database with a late fusion approach. Thiam et al.
[39] achieved an accuracy of 82% differentiating the highest
pain elicitation temperature from the lowest pain elicitation
temperature.

While existing multi-modality automated pain assessment
studies utilize well-controlled stimuli in highly controlled lab-
oratory environments, few examine clinical populations, even
fewer focus on children, and no other groups target assess-
ments made at the clinical bedside that we are aware of.
There are compelling reasons to study pain in children and
adolescents at the bedside, strongest among them being: (1)
there are substantial correlations between pain syndromes in
children and pain syndromes in adulthood; and (2) intervention
in children/adolescents offers a chance for prevention of future
pathology [54]. Hence, in the current study we focus on children
recovering from surgical appendectomy to assess automated
pain recognition. To the best of our knowledge, there is currently
no other published work on pediatric pain evaluation using
multimodal data fusion besides our own. In our previous work
[55], we obtained promising results through late fusion detecting
pediatric pain in children. In [55], we first applied Linear SVM
on extracted EDA and video data to obtain Linear SVM scores.
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TABLE |
STUDIES USING FUSION OF MULTI MODALITIES IN ACUTE PAIN STIMULI
Author Studied Modalities Fusion
Population architecture
Kachele | Heathy Fusion of Video, | Best: 0 vs 4 pain
et al. subjects EMG, EDA, threshold
[38] (N=86; age | ECG -Random Forest
range 18- -LOPO*
35) -Late fusion
ACC™: 83.1%
Thiam Healthy Fusion of Video, | Best: 0 vs 3 pain
et al. subjects audio, EMG, threshold
[39] (N=40; age | ECG, RSP, EDA | -Random forest
range > -LOPO
18) -Late Fusion
+Mean fixed
mapping
ACC: 82%
Wermer | Heathy Fusion of Video, | Best BSLN vs 4
et al. subjects EDA, ECG pain
[45] (N=87; age -Random forest
range: 18- -LOPO
35) -Early fusion
ACC:80.6 %
Lopez Healthy Fusion of ECG Best: 0 vs 4 pain
et al. subjects and EDA threshold
[46] (N=87; age -Multitask neural
range: 18- network
35) - 10-fold cross
validation
-Early fusion
ACC: 82.75%
Kachele | Healthy Fusion of Video, | Best: 0 vs 4 pain
et al. subjects EMG, EDA, threshold
[52] (N=87; age | ECG -Early Fusion
range: 18- -Random Forest
35) -LOPO + SFFS
ACC:78.90%
Kessler | Healthy Fusion of Video, | Two class
et al. subjects RSP, ECG, classification
[53] (N=40; age | rPPG -Random Forest
range > -LOPO
18) -Score Fusion
-Pseudo Inverse
Hierarchical
ACC: 71.85%
Xuetal. | Pediatric Fusion of EDA Pain vs No-pain
[55] research and Video -Late Fusion
participant -Linear SVM
(N=42; age scores
range >10) -LOPO
-LDA
ACC=75%

*Leave-one-participant-out.

**Accuracy

Then, the Linear SVM scores of EDA and video data were
fused using Linear Discriminant analysis (LDA), followed by
leave-one-participant-out (LOPO) cross validation. The results
of late fusion yielded an accuracy rate of 75%.

In the present study, different than our previous preliminary
approach [55], we develop a novel fusion method consisting of
weighted Bayesian fusion of EDA and video class conditional
distributions for maximum likelihood classification to identify
unique contributions of each modality to clinically significant
pain assessment. More specifically, in addition to extending

our previous approach through Bayesian fusion, the method
presented here enables us to optimize the contribution of EDA
and video components in the fusion process for each participant.
Thus, we hypothesize that EDA and video data will indepen-
dently contribute to pain detection, and that combining these
modalities will significantly improve discrimination between
significant pain and nonsignificant pain in children in the clinical
arena. We compare our novel weighted Bayesian fusion algo-
rithm against our previous approach.

[ll. METHODS
A. Participants and Experimental Setup

Define abbreviations Fifty-eight participants (41 male (71%):
17 female (29%); 95% Caucasian; 79% Hispanic; and median
age 13 years (5-17 years range)) recovering from laparoscopic
appendectomy participated in a study examining automated
assessment of children’s post-operative pain using wearable
biosensors and videotaped facial expressions. Ninety-seven in-
terpretable EDA and video data collection sessions were ac-
quired. EDA recordings were collected from the non-dominant
hand of study participants. EDA signals were automatically
screened for data quality using previously developed software
from our group [56] and confirmatory expert visual inspection.
From this initial data processing, 83 sessions from 45 partici-
pants (31 male (69%); 14 female (31%); 98% Caucasian; 80%
Hispanic; and median age 12 years (5-17 years range)) remained.
Demographic data did not differ between participants whose
data were included in this study as compared to participants
whose data were excluded (p > 0.05).

Participants were assessed for pain across three study visits.
Visit 1 (V1) occurred within 24 hours following surgery (in-
patient setting), Visit 2 (V2) occurred one day later (inpatient
setting), and Visit 3 (V3) occurred up to 42 days later (outpatient
setting). At each study visit, physiological (EDA) and behavioral
reactions (video) were recorded during manual abdominal pres-
sure applied adjacent to the surgical incision site for a 10-second
interval, whereupon youth scored their experienced pain during
the pressure stimulus from 0 (no-pain) to 10 (worst pain ever).
Acceptability of this protocol has been previously demonstrated
[57]. A pain score threshold of 4 is a commonly used pain
score criterion in clinical settings to categorize between clin-
ically significant pain and clinically non-significant pain [58].
In the present paper, we report on our analysis of 83 EDA
and video datasets: V1 Data (N = 25) and V2 Data (N = 11)
from participants whose pain score of >4 were considered a
clinically significant pain sample, and V3 Data (N = 36) and
V2 Data (N = 11) from participants with pain score of <4 were
considered as a clinically non-significant pain sample. Using
pain ratings used by clinicians [59], [60], we denoted EDA
and video with pain ratings of 0-3 as clinically nonsignificant
pain, and EDA and video with pain ratings of 4-10 as clinically
significant pain.

B. Feature Extraction

Our aim in this investigation was to evaluate the accuracy
of automatically differentiating clinically significant pain from
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Fig. 1. Time scale decomposition framework.

clinically nonsignificant pain (two-class classification) through
multimodal fusion of EDA and video data. A pain score cut-off
of 4 on a 0-to-10 Numerical Rating Scale was used to segment
EDA and video data into clinically significant pain and clinically
nonsignificant pain classes, as was done in our previous work
classifying pain with unimodal EDA [40] and Video [61] data.
A pain score criterion threshold of 4 is an agreed upon standard
traditionally used to differentiate mild pain from moderate pain
in clinical settings [58]. The segmented data were then processed
as described below to extract EDA and video features.

C. EDA Feature Extraction

EDA was collected via the Affectiva Q sensor, which was
worn on the non-dominant wrist and modified for finger-tip
data collection. Gelled adhesive electrodes were used for signal
collection. The sensor wirelessly records EDA, skin surface
temperature, and 3D motion at 16Hz [62], [63]. All EDA signals
were evaluated with automated quality assessment software
[56]. Resulting high quality EDA sig-nals corresponding with
the time of noxious stimuli (com-prising 10 seconds before, 10
seconds during, and 10 sec-onds after the pressure stimulus)
were selected and then low pass filtered using a 0.35 Hz FIR.
After filtering, data were down sampled to 1 Hz to reduce
analysis time. Next, data were normalized to overcome baseline
differences in EDA levels using z-score transformation. Finally,
EDA signals were trimmed to a fixed length of 30 seconds
sur-rounding the time of noxious stimuli.

In order to extract EDA features associated with pain dis-tress,
we applied time scale decomposition (TSD) [64], exploiting
temporal characteristic of EDA at different time scales as we did
in [40]. The TSD procedure is a simple extension of the sliding
window approach, which decom-poses EDA signals into consec-
utive, overlapping windows, and calculates a given metric. TSD
iterates this procedure, calculating a given metric at all window
lengths at all starting points, and systematically organizes results
into a single matrix. The TSD method is summarized in Fig. 1.

Assuming a window length of 2 seconds, in the resulting TSD
triangular matrix, consecutive rows differ by a window length of
1 second, with progressively increasing window lengths. Similar
to our previous work [40], we computed the standard deviation
of EDA in each window in order to capture fluctuations in tonic
response and delays in phasic responses. We then computed
the mean, standard deviation, and entropy of each row of the
TSD output matrix for use in machine learning classification
and entered them into a single feature matrix (See Fig. 2).

Standard
Deviation

My 01 Hy
) H 02 H,
—— ] 03 Hy

R1 Mean Entropy

Oy H,
05 Hq
05 H,
o, H,

T
ﬂ_«xmzwa

Jtj = mean of row i
g; = standard deviation of row i

H; = entropy of row i

Fig. 2. Feature extraction of TSD output matrix.

D. Automated Facial Action Unit Detection From Video

For each 10-second video sample recorded during the press,
filmed at 60 frames per second, we extracted facial action unit
(AU) codes per frame to obtain a sequence of AUs. Facial
actions are anatomically-based differentiable movements of the
facial musculature that can be objectively coded manually [65],
as well with computer vision and pattern recognition [24].
Here, this was done automatically using iMotions software
(www.imotions.com). Twenty of the 44 discrete AUs in the
Facial Action Coding System[65] (AU 1, 2, 4, 5, 6,7, 9, 10,
12, 14, 15, 17, 18, 20, 23, 24, 25, 26, 28, 43) and three head
pose indicators (yaw, pitch, and roll) were extracted from each
frame. These AUs and head pose indicators have previously been
associated with pain [15], [66]. The values of these codes are
the estimated log probabilities of AUs, ranging from —4 to 4.

We then extracted features from the sequence of AUs, ap-
plying 11 statistics (mean, max, min, standard deviation, 95th,
85th, 75th, 50th, 25th percentiles, half-rectified mean, and max-
min) to each AU over all frames to obtain 11x23 features for
each sample. The range of each feature was rescaled to 01 to
normalize features over the training data.

In [61], the problem of domain adaptation [67] was discussed
with automatically detected AU features. Since our data were
collected across two different environmental domains, inpatient
(V1 & V2) and outpatient (V3), and since iMotions is sensitive
to environmental factors such as lighting and facial pose (which
differs between inpatient and outpatient settings), inherent dif-
ferences exist between samples in V1 & V2 and V3. Therefore,
when we train a pain recognition machine learning model using
clinically significant pain data from V1 & V2 and clinically
nonsignificant pain data from V3, we end up with a model
classifying inpatient versus outpatient environments more than
clinically significant pain versus clinically nonsignificant pain.
Such a model would fail on test data with both classes from V1
& V2.

In [61], we had a human expert AU coder manually annotate
videos along with iMotions, and discovered that the human was
not as sensitive to environmental changes as iMotions (as shown
by comparing classifiers trained using pathway (2) compared to
(1) in Fig. 3) and then used the data to learn a mapping from
iMotions features to human features (following (5-4) in Fig. 3).

E. Further Processing of Video and EDA Features

Video features attained via iMotions software (AUs) and EDA
features obtained through TSD were further z-score normalized
separately to overcome participant-specific baseline differences.
This normalization is performed using the entire data set of EDA
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and video separately. Then, principal component analysis (PCA)
was applied to the EDA and video data to reduce feature dimen-
sionality separately. In order to prevent over-fitting, we separated
data into training and testing components through leave- LOPO
(details of training and testing components are provided below),
wherein PCA was applied to the training set and the subsequent
testing feature vector was projected onto principal components
to generate reduced feature vectors. LOPO is applied specifically
on V2 data, and V1 and V3 were always used for training. In
this step, PCA was set to capture between 90% and 99% of
the variance in the V1 and V3 data, removing all other data.
For further analyses, the PCA threshold providing maximum
performance on the training data (V1 and V3 data) was selected
for application to V2 data. The PCA process is presented in
Fig. 4 as the initial step before dimensionality reduction, data
fusion, and classification steps. Please see below for details on
all steps that lead to classification of pain.

IV. DATA FUSION FOR CLASSIFICATION

An overview of our data fusion classification scheme is
presented in Fig. 4. The scheme includes three main parts:
(i) obtaining linear SVM scores; (ii) kernel density estimation
(KDE) using SVM scores; and (iii) weighted Bayesian fusion of
class conditional distributions for maximum likelihood classifi-
cation. Using this scheme, we first considered EDA and video
features separately to extract SVM scores assuming clinically
significant pain and clinically nonsignificant pain conditions

are two distinct classes. We then performed KDE with radial
basis function kernel and optimized kernel bandwidth (based on
Silverman’s rule of thumb [68]) to learn the class conditional
distribution of EDA and video SVM scores separately. Then,
assuming conditional independence between observed EDA and
video score distributions conditioned on the given class, we
performed Bayesian fusion, which resulted in maximum like-
lihood classification. Our approach deviates from conventional
Bayesian fusion in that we take the convex combination of the
class conditional log-likelihoods to obtain optimal contribution
from each modality (EDA and video) for pain classification.
We refer to this approach as “weighted maximum likelihood
classification.”

Since V1 and V2 data were collected in the inpatient arena,
and V3 data in the outpatient arena, we used V1 and V3 data for
training and V2 data for testing to avoid confounds of dominant
but irrelevant (to pain) environmental differences that may affect
classification outcomes. For training, V1 data were selected
to be in the clinically significant pain class and V3 data were
selected for the clinically nonsignificant pain class. Finally, V2
data were separated into clinically significant pain and clinically
nonsignificant pain classes for testing based on the same pain
score threshold of 4.

In the following, for class ¢ (c = 1, 2: significant pain, non-
significant pain) and visiti (i = 1, 2, or 3), we denote €S and vS
as EDA and video scores used for training. In order to distinguish
our training and test data, we denote ef,i and vf,i as EDA and
video scores respectively, with t indicating those used for testing.
The classification scheme is provided next and summarized in
Fig. 4. (For details of the weighted Bayesian fusion algorithm,
see Supplementary figure S1.)

In the first step of our proposed data fusion and classification
scheme, linear SVM was employed for dimensionality reduc-
tion. More specifically, V1 and V3 training data ¢S’ and v$ , for
i=13 and C = 12 were used through LOPO to learn SVM scores
for V1 and V3 training data (as shown by 1 in Fig. 4). Then, all
V1 and V3 data were used to train a final linear SVM that was
applied to V2 testing data to learn the testing SVM scores (as
shown by 2 in Fig. 4). In the second step, we used all SVM
scores from the training sets (V1 and V3) and a subset of SVM
scores from V2 (this subset is selected through nested LOPO to
avoid overfitting) to learn class conditional distributions of EDA
and video scores through kernel density estimation. That is, we
learn:

P (e510), and P (vS|C) fori = 1,2,3andC' = 1,2. (1)

Using these conditional distributions, we then find the scores
under the learned densities for the nested left out subject denot-
ing these scores as e, and v}, for EDA and video SVM scores.
For a given alpha, class C corresponding to each EDA and video
score pair is then given the following proposed weighted-score
maximum likelihood classification scheme:

C = argmax(a x In (P(el,10) + (1 —a)
C

x In (P (v} |C)) (2)

For each left out participant 7, one optimum « value which
we denote as o was learned using sensitivity maximization
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TABLE Il
THE WEIGHTED MAXIMUM LIKELIHOOD ALGORITHM RESULTS
Modalities | Accuracy | Sensitivity | Specificity
EDA-Only 68.18% 54.55% 81.82%
Video-Only | 77.27% 90.91% 63.64%
EDA-Video | 90.91% 100% 81.82%
Fusion

(pain detection accuracy) obtained by solving Equation 2 and
calculating sensitivity through all participants in V2 excluding
participant ¢. The optimum «*. was then used in Equation 2
together with participant ¢ data to obtain classification results
for participant ¢. During optimization, we searched for « values
in the range 0 to 1 with increments of 0.1.

V. RESULTS

As described above, the proposed framework summarized in
Fig. 4 was used to classify V2 data into clinically significant
pain or clinically nonsignificant pain conditions. V1 and V3 data
were used for training. The datain V1, V2, and V3 were catego-
rized into clinically significant pain or clinically nonsignificant
pain conditions based on patient-provided pain scores. Through
nested cross-validation, the contribution/weights « of each
modality were optimized. Results of the weighted maximum
likelihood classification algorithm are summarized in Table II.
In this Table, EDA-video Fusion corresponds to Equation 2,
which considers optimum contributions from both modalities
based on the training data.

Overall, after fusion, we observe that clinically significant
pain vs. clinically nonsignificant pain classification achieves
90.91% accuracy, with 100% sensitivity (accuracy of significant
pain detection), and 81.82% specificity (accuracy of nonsignifi-
cant pain detection). In the same table, we also report clinically
significant pain vs. clinically nonsignificant pain classification
results when only a single modality is used. EDA-Only means to
set « = 1 and Video-Only corresponds to set & = 0 in Equation
2. We observe that for EDA-Only, overall accuracy is 68.18%,
sensitivity is 54.55%, and specificity is 81.82%. For Video-Only,
we observe overall accuracy is 77.27%, sensitivity is 90.91%,
and specificity is 63.64%.

To provide further insight into the weighted maximum like-
lihood algorithm, we illustrate the optimum « values identified
during classification for each participant in Fig. 5, which graphi-
cally displays each modality’s contribution to sensitivity for pain
classification.

In this figure, the y-axis represents the optimum « (note
that 1 — o corresponds to that of the EDA features while «
corresponds to the optimum contribution of the video features)
and the x-axis represents each participant. From this figure,
we observe that EDA and video features contribute equally to
improving sensitivity of clinically significant pain vs clinically
nonsignificant pain classification in half of the cases. For the
other half, video features contribute more to clinically significant
pain vs clinically nonsignificant pain classification.

These observations are consistent with our fusion results pre-
sented in Table II. In contrast, the specificity of the fusion model

Fig. 5.
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TABLE IlI

Video vs. EDA modality contribution to the fusion model’s
clinically significant/nonsignificant pain classification.

THE PERFORMANCE MEASUREMENTS OF THE LATE FUSION ALGORITHM
PROPOSED BY THIAM WITH RESPECT TO 150 AND 80 TREES

Num=150 | Accuracy | Sensitivity | Specificity
EDA-Only 45.45% 0.09% 81.82%
Video-Only | 59.09% 63.64% 54.55%
EDA-Video | 68.18% 63.64% 72.73%
Fusion

Num=80 Accuracy | Sensitivity | Specificity
EDA-Only 50% 18% 81.82%
Video-Only | 63.64% 72.73% 54.555
EDA-Video | 63.64% 63.64% 63.64%
Fusion

Sensitivity: Correct identification of clinically significant pain
Specificity: Correct identification of clinically nonsignificant pain

remains equal to EDA-Only specificity (i.e., entirety of detec-
tion contribution from EDA). We also compared our proposed
algorithm with late fusion and early fusion algorithms proposed
by Thiam [39] and Werner [45] and our previous work [55].
We used these algorithms for comparison because they achieve
a high pain detection rate with reasonable complexity and run
time. Our proposed weighted Bayesian algorithm shows clear
advantage over the late and early fusion algorithms proposed
by Thiam et al. [39] Werner et al.. [45], and Xu ef al. [55] at
automatically discriminating pediatric pain in children.

The late fusion algorithm proposed by Thiam [39] was im-
plemented and applied on the above-mentioned EDA and video
features in Section II-B. First, a Random Forest (RF) classifier
was used to obtain RF scores of EDA and video features from
V1, V2, and V3 in the fusion classification. Then, Linear Dis-
criminant Analysis (LDA) was used to fuse the RF scores of
EDA and video, followed by LOPO cross validation. Second,
we performed EDA-Only and Video-Only classification using
RF scores of EDA and video data separately as input to an LDA
classifier. Of note, we sought the maximum performance of the
proposed algorithm. Therefore, we overfit the model using the
rest of the RF scores of EDA and video from V2 in the training
set. In addition, we specified the range of the number of trees
from 10 to 150 with an increment of 10 and provided the best
two performance measurements in the range of the number of
trees. Results of the LDA classifier are demonstrated in Table I1I
with respect to the corresponding number of trees.
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TABLE IV
THE PERFORMANCE MEASUREMENTS OF THE EARLY FUSION ALGORITHM
PROPOSED BY WERNER

TABLE VI
THE PERFORMANCE MEASUREMENTS OF WEIGHTED BAYESIAN ALGORITHM
USING THE MORPHOLOGICAL EDA FEATURES OBTAINED BY BIO-SP ToOL

Modality Accuracy | Sensitivity Specificity
EDA-Only 48.18% 41.82% 54.55%
Video-Only | 87.27% 83.64% 90.91%
EDA-Video 76.36% 78.18% 74.55%
Fusion

Sensitivity: Correct identification of clinically significant pain
Specificity: Correct identification of clinically nonsignificant pain

TABLE V
THE PERFORMANCE MEASUREMENTS OF OUR PREVIOUS LATE
FusioN METHOD

Modality Accuracy | Sensitivity | Specificity
EDA-Only 55.5% 70% 41%
Video-Only | 80% 70% 90%
EDA-Video | 80% 80% 80%
Fusion

Sensitivity: Correct identification of clinically significant pain
Specificity: Correct identification of clinically nonsignificant pain

As aresult, EDA is found to be more informative in detecting
clinically nonsignificant pain while video is more sensitive
with clinically significant pain detection. These findings provide
incipient validity of our results obtained through a weighted
Bayesian fusion algorithm. However, details of this algorithm
(e.g., number of trees used in the random forest) necessary to
replicate it were not provided.

In the implementation of the early fusion technique proposed
by Werner [45], we first concatenated EDA and video features.
Then the RF classifier was applied on these features followed by
LOPO cross validation. To select the optimal values for the RF,
we applied 5-fold cross validation on our training set including
the EDA and video data from V1, V2, and V3. After a parameter
search, we set the number of trees to 100, the maximum depth
to 11, and minimum sample counts for node splitting to 5. To
maintain comparability, we conducted EDA-Only and Video-
Only classification. The RF classifier with selected parameters
was directly applied to EDA features followed by LOPO cross
validation. We applied the same strategy to our video features.
Our results suggest that video is superior at detecting clinically
nonsignificant pain, whereas fusion of EDA and video data did
not improve performance measurements in clinically significant
pain classification (See Table IV).

We also applied our previous late fusion technique on this data
set [55]. We first obtained Linear SVM scores of EDA and video
data as explained in [55]. Then, the LDA classifier was used
in fusion of Linear SVM scores of EDA and video data using
LOPO cross validation. To obtain the maximum performance of
the classifier, we trained the model using the rest of the EDA
and video data from V2. In addition, we conducted EDA-Only
and Video-Only classification. Finally, LOPO cross validation
was applied on each modality. Results of the LDA classifier are
illustrated in Table V. Overall, our proposed weighted Bayesian
algorithm demonstrated superior performance over our previous
work.

Modality Accuracy | Sensitivity | Specificity
EDA-Only 45.45% 45.45% 45.45%
Video-Only | 77.27% 90.91% 63.64%
EDA-Video | 36.36% 45.45% 27.27%
Fusion

Sensitivity: Correct identification of clinically significant pain
Specificity: Correct identification of clinically nonsignificant pain

Additionally, we extracted morphological features of EDA
signals using the Biosignal-Specific Processing Tool (Bio-SP
Tool) [69] and compared them with the TSD-based features.
Specifically, these features are used separately in our fusion
algorithm and the classification results are compared. Bio-SP
toolbox allowed us to detect SCRs and extract the following
features: (1) SCR duration mean; (2) mean SCR amplitude;
(3) mean SCR rise-time (where rise-time of an SCR is defined
as the time between the initial rise and the peak of an SCR);
(4) mean of signal; and (5) number of detected SCRs. After
extracting the features, a Linear SVM classifier was applied to
obtain SVM scores of V1, V2, and V3 EDA data as described
above. Note that we did not use PCA in this step, since higher
dimensionality is no longer a problem using these five features.
Finally, the weighted Bayesian fusion algorithm was applied on
Linear SVM scores of EDA related features, obtained through
the Bio-SP Tool, and Linear SVM scores of video features as
described in Section II-C. The performance measurements of
weighted Bayesian algorithm using morphological features of
EDA are illustrated in Table VI.

The weighted Bayesian algorithm using the morphological
features indicated poor performance compared to the perfor-
mance measurements of the classification using TSD features,
see Table VI and Table II.

VI. DISCUSSION

This study demonstrates that EDA and video data indepen-
dently make substantial contributions to pain detection but com-
bining these modalities significantly improves discrimination of
clinically significant pain from clinically nonsignificant pain
in post-operative children. The primary contributions of this
paper are twofold. First, we illustrate the utility of a weighted
maximum likelihood algorithm as a novel feature selection
method for EDA and video signals for classifying clinically
significant pain vs clinically nonsignificant pain. Second, we
present evidence for an accurate classification algorithm capa-
ble of automatically discriminating clinically significant pain
and clinically nonsignificant pain using EDA and video fea-
ture fusion. These classification findings discriminating clini-
cally moderate-to-severe pain and nonsignificant pain conditions
are promising. More specifically, the novelty of our proposed
weighted Bayesian fusion approach is to identify the unique and
shared contribution of EDA and video to automatically detect
pain levels in children. Compared to the early fusion algorithm
[45] and late fusion algorithm [39], our proposed weighted
Bayesian fusion algorithm indicated superior performance such
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that EDA is more sensitive to nonsignificant pain conditions
while video is more sensitive to significant pain conditions.
Additionally, the utility of TSD in the weighted Bayesian fu-
sion algorithm demonstrated a clear advantage over traditional
physiological morphological features. We believe this indicates
that EDA might carry information about pain beyond previously
established morphological features. Another possibility is that
automated SCR detection and identification of morphological
SCR related features includes errors. Overall, these comparisons
have further strengthened our confidence that our proposed
framework demonstrates an accurate and objective automated
classification algorithm capable of distinguishing clinically sig-
nificant pain and clinically nonsignificant pain by fusing EDA
and video signals in children.

Both EDA and video input provided useful signals for catego-
rizing pain. As presented in Table II, using the method described
in this paper, it was shown that EDA was superior to video
in terms of identifying clinically nonsignificant pain, whereas
video was more informative for detecting clinically significant
pain. The weighted maximum likelihood fusion algorithm used
optimized information from both modalities to differentiate
clinically significant pain vs. clinically nonsignificant pain, capi-
talizing on the unique strengths of each modality. In other words,
using both data modalities, we demonstrate higher accuracies
both for clinically significant pain and clinically nonsignificant
pain identification. For example, EDA sensitivity alone only
modestly exceeded chance, suggesting high false negative error
rates, whereas facial activity (video data) provided a high level
of sensitivity. In combination, they proved fully sensitive; no
event defined as painful escaped detection.

The reactions captured by EDA and video appear to reflect
different features of the complex pain response. EDA is perhaps
best conceptualized as a measure of indiscriminate emotional
reactivity to the extent that it indexes generalized peripheral
sympathetic nervous system activation. Facial expressions can
be conceptualized as reflecting emotional arousal, the typical
conception, but also cognitive states, including meaningful in-
terpretation, expectation, and attention [70]. Here, we show that
differences between EDA and video data can be used in a com-
plementary manner to distinguish painful and non-painful levels.
While there are no benchmarks in the clinical arena to determine
the magnitude of sensitivity and specificity of global judgments
of pain in others, these are commonly described as error prone
and vulnerable to observer bias [6]. Our automated maximum
likelihood approach using fused EDA and facial activity data
substantially improves on this.

We used self-reported pain, the gold standard for clinical
pain assessment, as the criterion index for the presence or
absence of clinically significant pain. As youth participating
in the presented work were otherwise healthy and without sig-
nificant prior pain history, medication-seeking behaviors were
not felt to contribute to potential intentional or self-interest bias
in reported pain. Nevertheless, variation in stoicism across the
population could have contributed to report bias. Furthermore,
the automated approach described here has the potential to
avoid observer biases that bedevil judgments of pain. Observers
often use salient but irrelevant patient characteristics (e.g., sex
and gender, age, socioeconomic status, ethnicity or race) in

formulating judgments rather than explicit and objective mani-
festations of pain in the behavioral and physiological domains
[71].

The research reported here also has substantial ecological va-
lidity. Children experiencing post-operative pain were recorded
shortly following surgery in the setting where pain assessment
is crucial to delivery of care. The algorithms were trained using
dynamic data in the clinical context, under conditions in which
the algorithm is intended to operate. It is noteworthy that the
video assessment of facial activity focuses upon nonverbal be-
havioral expression manifestly available to clinicians and other
observers. While this information can contribute to accurate
pain judgments, particularly when the context confirms the
expression is associated with pain, as would be the case in the
post-operative setting, availability of physiological data, in this
case EDA, substantially improves accuracy in detecting pain.

Biosensing technologies have long been used in clinical
medicine (e.g., glucometers [72]) and include recent expan-
sion in video technologies [73] and other wearable sensors
[74], [75], wherein video improves provider-patient communi-
cation through telemedicine transactions [76], documents clini-
cal events and conditions (e.g., seizures [77]), and demonstrates
value in education, performance assessment, quality improve-
ment, and clinical care [73]. EDA, assessed via wearable sensors
on easily accessible body parts including wrists or ankles, has
demonstrated promise in monitoring clinical status and events
(e.g., sleep [74], seizures [75]). Therefore, it would appear
worthwhile to consider both measurement strategies for auto-
matic assessment of pain level in clinical settings, with post-
operative pain a good candidate. Use of computer vision and
ambulatory peripheral physiological signals minimizes cumber-
some demands on patients yet permits a continuous record of
objective signals that can be readily subjected to computational
analysis and automated generation of pain information. There
is also potential for continual updating of such algorithms us-
ing further data to enhance generalized and person-dependent
performance.

VII. LIMITATIONS

The generalizability of this work to other clinical and patient
populations may be limited by the population represented in
this study: otherwise, healthy children in acute post-surgical
pain. However, while the exact findings may be specific to
participants in this context, underlying pain physiology and
resulting behaviors have been well described across both acute
and chronic pain populations [ 78], [79] and speak to the potential
utility and application of the methods described herein to other
clinical pain scenarios

We do recognize that prior work has evaluated EDA to be
nonspecific in its ability to differentiate between clinically sig-
nificant pain and clinically nonsignificant pain levels. However,
utilizing rigorous data quality control checks and a novel method
of evaluation (Time Scale Decomposition), we were able to
extract new features that allow increased specificity, which, in
conjunction with video data, were able to improve its accuracy
for specificity in clinically significant pain vs clinically non-
significant pain level detection.
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Discrepancies between computer vision-enabled facial cod-
ing and manual coding of facial expressions have been identified
as a consequence of the differing technologies and method-
ologies involved in their study [24], [80]. Consequently, au-
tomated computer vision coding does not fully correlate with
manual, time-intensive coding. We have previously shown [61]
that computer vision pixel methods may be uniquely sensitive
to environmental external factors, including rotation, scaling,
and illumination [61]. Given our data sampling was across two
different environments, our current work is also subject to this
limitation. However, we addressed this issue through utilizing
transfer learning [61], which enabled us to take advantage of
the best aspects of both (i.e., automation of computer vision
and validity of manual facial action coding). In parallel, we are
studying the properties of human-labeled action units [81] as
well as developing better automated methods for facial action
unit coding for pain detection [82].

With respect to EDA, there are currently no published studies
on the psychological significance of bilateral asymmetry in
recordings as a biological marker of the pain experience that
we are aware of. However, future work could explore whether
bilateral asymmetry in EDA recordings are a useful biomarker
of the pain experience.

VIIl. CONCLUSION

In summary, we present results demonstrating the feasibility,
validity, and utility of combining EDA and video data for mea-
suring and discriminating pain-related behaviors. Our approach
may increase automation and accuracy of pain assessment in the
clinical arena in an at-risk population (youth following surgery).
The portability, accessibility, and increasing use of wireless
biosensors and video capture devices in the general population
enable scalability in the healthcare setting. Furthermore, the
portability and utility of these sensors/devices outside of the
healthcare setting and in the home further enhance the poten-
tial usage and applicability of this approach where healthcare
resources are scarce or distantly located, and/or social isolation
is required (as evidenced in the recent Covid pandemic). As
our healthcare settings become increasingly more instrumented
with such monitoring technology, there is a growing opportunity
and need for theoretically driven and empirically demonstrated
data-rich methods such as those presented here to improve our
ability to detect and thus better manage patients in pain.
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