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The transition from algorithmic to memory-based performance is a core component of cognitive skill
learning. There has been debate about the temporal dynamics of strategy execution, with some models
assuming a race (i.e., independent, capacity unconstrained parallel processing) between algorithm and
retrieval, and others assuming a choice mechanism. The authors investigated this issue using a new
approach that allows the latency of each algorithm step to be measured, in turn providing new insight into
(a) whether there is slowing of 1 or more algorithm steps on trials immediately preceding the 1st retrieval
trial for an item, as might be expected if there is a competitive strategy execution process of some type
other than a race, and (b) whether there is partial algorithm completion on retrieval trials, as would be
expected if the 2 strategies are executed in parallel. Results are uniquely consistent with a strategy choice
mechanism involving a competition between the retrieval strategy and the 1st step of the algorithm.
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An important component of cognitive skill learning—indeed,
arguably the signature learning event for many tasks—is the shift
from initial use of a slow, multistep algorithm to a faster and
subjectively less effortful memory look-up of the answer (direct
retrieval). The classic example is arithmetic learning. In doing
single-digit multiplication, children may initially perform a re-
peated addition algorithm, but with sufficient practice they will
transition to direct retrieval (e.g., Siegler, 1988). Multiple labora-
tory studies have confirmed the ubiquity of this shift for arithmetic
and arithmetic-like tasks (Delaney, Reder, Staszewski, & Ritter,
1998; Jenkins & Hoyer, 2000; Logan, 1988, 1992; Onyper, Hoyer, &
Cerella, 2006; Palmeri, 1997; Reder & Ritter, 1992; Rickard, 1997,
1999, 2004; Rogers, Hertzog, & Fisk, 2000; Schunn, Reder,
Nhouyvanisvong, Richards, & Stroffolino, 1997; Touron, Hoyer,
& Cerella, 2001, 2004).

Similar shifts from algorithmic (defined broadly) to retrieval-
based performance are believed to occur in a wide variety of
nonarithmetic domains, including recall from episodic memory
(Rickard & Bajic, 2006), the shift from mnemonically mediated to
unmediated memory retrieval (Kole & Healy, 2007; Rickard &
Bajic, 2003), lexical decision (Logan, 1988), word reading (e.g.,
Tao & Healy, 2002), and text comprehension (Rawson, 2004).
Similar shifts may occur under item repetition conditions for
visuospatial tasks such as mental rotation (Kail, 1986). A reason-
able argument can be made, in fact, that any efficiently executed
cued recall is a consequence of this shift.

Recent efforts to characterize the mechanism underlying this
shift make diametrically opposing claims about the dynamics of

strategy execution on each trial. One class of models, exemplified
by the instance theory of automaticity (Logan, 1988) and its
theoretically allied successor, the exemplar-based random walk
(EBRW) model (Nosofsky & Palmeri, 1997; Palmeri, 1997), as-
sumes a straightforward race between the two strategies: Both
strategies are attempted on each trial, and the finishing time for
each strategy is unaffected by competition with the other strategy.
The direct retrieval process that is initiated at the start of the trial
is assumed to continue throughout algorithm execution even for
complex algorithms involving multiple steps.

In this class of models, instance representations are assumed to
support direct retrieval. With each repetition of a given item, a new
memory instance is encoded. These instances (each with its own
distribution of finishing times) race with one another and with the
algorithm during each trial. As more instances accrue with prac-
tice, there is an increased probability that retrieval of at least one
of the instances will beat the algorithm. The EBRW model elab-
orates on the instance theory by assuming that the instance re-
trieval feeds into a random walk retrieval process that races with
the algorithm.

A second class of models assumes that only one strategy can be
executed at any given moment (Rickard, 1997, 2004; Schunn et al.,
1997; Siegler, 1988; for a more general theoretical framework that
is consistent with this assumption, see Byrne & Anderson, 2001).
Siegler’s (1988) distribution of associations model assumes that
retrieval is always attempted first, with the algorithm serving as a
back-up strategy. The Schunn et al. (1997) source activation con-
fusion (SAC) model, which builds upon Reder’s (1987, 1988)
work on question answering, focuses on the feeling of knowing
phenomenon as a mechanism of strategy choice and on factors that
affect feeling of knowing. Rickard’s (1997) component power
laws (CMPL) model provides perhaps the most natural framework,
for the current purposes, within which to draw predictive compar-
isons between choice and race models, and it is thus the focus of
the following development. We consider the other choice models
further in the Discussion section.
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The CMPL model treats the algorithm (e.g., the repeated addi-
tion algorithm for multiplication) as a sequence of memory re-
trieval steps (henceforth referred to as algorithm steps) that tap the
same memory retrieval system that is used to execute the direct
retrieval strategy—a memory system that is in turn assumed to be
the same as that used in explicit cued recall. The model assumes a
memory retrieval bottleneck such that only one retrieval can be
completed at a time (for supporting evidence in the case of cued
recall, see Nino & Rickard, 2003). Thus, for any algorithm that
involves one or more retrievals from long-term memory, the two
strategies cannot be executed in parallel.

Strategy choice in the model is based on a brief parallel com-
petition between two interpretations of the stimulus at the begin-
ning of each trial (i.e., between the “problem-level” nodes in the
Rickard, 1997, simulation model). In one interpretation, the stim-
ulus is treated as a cue for executing the algorithm first step. In the
other, it is treated as a cue for executing the direct retrieval
strategy. The stimulus interpretation that first reaches an activation
threshold is selected and the memory retrieval(s) for the corre-
sponding strategy are executed. The other strategy is aborted and
undergoes no further processing on that trial. The retrieval strategy
becomes gradually more competitive over trials (through a
strengthening process rather than instance accrual) until it eventu-
ally wins the competition with the algorithm.

To a close approximation, the CMPL model instantiates a race
to determine which stimulus interpretation will be selected for
further processing.1 That is, choice processing adds no latency
component to the total time to finish the trials, regardless of the
strategy that is selected. An alternative and perhaps more viable
version of the model would incorporate a time-consuming choice
process, such that the competing but unsuccessful strategy slows
the selection time of the winning strategy in proportion to its
competitiveness (i.e., its “strength” relative to the winning strat-
egy). These two hypothetical cases constitute what are referred to
as zero latency and positive latency choice processes, respectively.

Two additional strategy execution dynamics that have not been
considered formally in simulation models to date also merit con-
sideration. The first of these is a modified version of the EBRW or
instance models in which there is capacity-limited parallel strategy
execution rather than a race (for related work see Navon & Miller,
2002; Tombu & Jolicoeur, 2003). As noted earlier for the race
models, the retrieval process that is initiated at the start of the trial
would be assumed to continue throughout algorithm execution.
This model would predict that processing of one or both strategies
will be slowed when the two strategies are in competition.

The second possibility, consistent with both parallel and choice
models, is that subjects might execute the algorithm as a check on
retrieval accuracy on one or more trials before gaining sufficient
confidence to rely exclusively on retrieval for that item. In the case
of choice models, strategy execution on such trials would be
sequential—retrieval followed by the algorithm.

An Overview of the Empirical Evidence Bearing on the
Models

As developed to date, race models assume that the retrieval
strategy comes to dominate the algorithm gradually over multiple
trials as the most quickly retrieved instance becomes probabilisti-
cally more likely to beat the algorithm. These models were orig-

inally designed to account for (among other things) smooth, power
function response time (RT) speedup while making the novel
predictions of power function reduction in the standard deviation
(SD) and matched learning rate parameters for the RT and SD
functions.

Rickard (1997, 1999, 2004) showed that, at least for some tasks,
those predictions do not hold. Instead, patterns are consistent with
what were novel predictions of the CMPL model: First, speedup in
mean RT does not follow a power function; rather, there are separate
power functions with different parameter values that govern speedup
for the algorithm and retrieval trials.2 Second, SD does not decrease as
a power function; instead, separate power functions with different
parameter values govern reductions in SD for the algorithm and
retrieval trials. Third, due to the strategy mixture effect over items that
is implied by the CMPL model, overall SD can, under some circum-
stances, reach its maximum value at roughly the point during training
wherein about 50% of the trials involve memory retrieval; and fourth,
RT speedup curves for individual items for each subject can exhibit an
abrupt (step-function) RT reduction at the point of the strategy shift
(Rickard, 2004; for related work see Haider & Frensch, 2002). The
CMPL model predicts this step-function RT reduction provided that
retrieval is executed more quickly than the algorithm at the point
during training wherein the strategy shift occurs. (As a simplifying
assumption, it has been assumed in CMPL model fits to date that once
the shift to retrieval occurs for an item, the retrieval strategy is used
for every subsequent trial. This assumption is not critical to the CMPL
model, and it is not a requirement of choice models generally.)
Step-function RT reduction is not expected in the averaged data
because the strategy shift is not expected to occur on the same trial for
every item.

The first three results outlined above might be explainable by
the race models through modification of assumptions about how
parameters differ over items (Palmeri, 1999). Rickard (2004),
however, argued that the fourth result above is not consistent with
any race model that assumes a gradual and probabilistic replace-
ment of algorithm by retrieval over many trials, because gradual
strategy replacement predicts a smooth, continuous speedup in
expected RT value even at the item level.

Race models are nevertheless still viable, for two reasons. First,
step-function RT drops have to date been demonstrated for only one
task (alphabet arithmetic; Rickard, 2004). Second, even the step-
function RT drops can be explained by a race model if the gradual
strategy replacement assumption in those models is dropped. Suppose
that for the first n � 1 trials for a given item, the algorithm is

1 In the Rickard (1997) simulation, selection of the algorithm stimulus
interpretation is slowed by an inhibitory connection from the retrieval path
as the retrieval strategy becomes more competitive. Due to the properties
of the activation functions in that model, however, completion time for the
algorithm first step is unaffected by the competition from the retrieval
strategy and vice versa, constituting a race dynamic.

2 The CMPL model also predicts power law speedup for each strategy at
the item level. Race models make the same prediction for retrieval
speedup. Heathcote, Brown, and Mewhort (2000) showed that the expo-
nential function fits slightly better than the power function to item-level
data, calling these predictions into question. However, the CMPL predic-
tion of item-level power function speedup is not central to either the CMPL
architecture or to choice models generally, and this issue is not pertinent to
the focus of this article.
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executed, and that no memory instance (or only a very weak memory
instance) is encoded. On trial n, the algorithm is again executed and
a strong memory instance that can support fast direct retrieval on
subsequent trials is finally encoded. From trial n � 1 onward, direct
retrieval will win the race with the slower algorithm, potentially
resulting in a step-function RT drop at the strategy shift point.

Indexing the Latency of Each Algorithm Step

In the current experiment, we attempted to gain more theoretical
leverage by using a task that allows indexing of not only the RT for
each trial (defined as the latency between stimulus onset and vocal
response execution) but also the latency for completion of each
step of the algorithm. On each trial of the experiment, subjects saw
a two-digit number and were instructed to count forward from that
number, pressing the space bar in synchrony with each count, until
the computer informed them to stop and to speak the number to
which they had counted. For each stimulus number (e.g., 21) the
same number of counts was always required (say, 11), and the
same response was always to be spoken (e.g., 32). Each stimulus
was presented multiple times over training blocks. If subjects
remembered the answer at any point during a trial, they could end
the trial prior to completing the algorithm by speaking that answer.
Each keypress recorded the approximate latency of each counting
step, and a microphone voice key recorded the RT.

This task design allows us to explore two previously unad-
dressed questions about the temporal dynamics of strategy execu-
tion: First, on the last few algorithm trials preceding the first
correct retrieval trial for an item, is there evidence of progressively
slower execution times for one or more algorithm steps, as might
be expected if the retrieval strategy becomes more competitive
over trials and if there is a latency-consuming strategy competition
(i.e., limited capacity parallel processing or positive latency
choice)? And second, on retrieval trials (i.e., trials on which the
answer is spoken prior to completion of the algorithm), is there
evidence that some fraction of the algorithm steps are completed,
as would be expected if the two strategies race?

Method

Subjects

Forty-one University of California at San Diego undergraduate
students participated for course credit.

Materials, Apparatus, and Procedures

Subjects were tested individually on IBM-compatible personal
computers, with each subject seated approximately 50 cm from
the computer screen and approximately 3 cm from a microphone. The
computer keyboard was positioned directly behind the microphone,
such that the subject could comfortably place one hand over the space
bar; the experimenter was seated to the right of the subject, with
access to the keyboard’s number pad. The experiment was created
with E-Prime software (Psychology Software Tools, Pittsburgh, PA)
and the accompanying voice-key apparatus (Model 200A).

The experiment consisted of a warm-up phase and a training
phase. Prior to each phase, instructions were presented on the
screen and were also read aloud by the experimenter. Within each
trial of each phase, a stimulus would be presented visually, an

algorithmic solution (if used) would consist of silent counting
accompanied by concurrent keypresses, and the final response
provided by the subject would be generated vocally. The Appendix
lists all visual stimulus and vocal response items used in the
training phase. The warm-up phase utilized the same values, each
raised by 10 (e.g., 30 and 44 in the warm-up phase vs. 20 and 34
in the training phase, etc.). In the description below, a block is
defined as one randomly ordered presentation for each of the 10
possible stimulus-response items, with each item therefore having
a mean repetition lag of 10 trials across blocks.

The warm-up phase consisted of a single block. At the start of each
trial, the screen went blank for 500 ms, a fixation field (consisting of
three plusses) was presented at the center of the screen for 500 ms, the
screen again went blank for 500 ms, and then a two-digit number—
the trial stimulus—was presented at the center of the screen. Subjects
were instructed to count silently upward from the presented number,
pressing the space bar once with each count, until the word STOP was
presented on the screen. At that point, the subject was to speak his or
her answer—the number that he or she had counted up to—into the
microphone. The stimulus remained on the screen during the key-
presses and was replaced by the word STOP after the number of
keypresses for that trial was equal to the value of the correct response
minus the numerical stimulus, thus ranging from a minimum of 9
keypresses to a maximum of 15.

After the subject provided a vocal response, the experimenter
entered the subject’s response and recorded whether the voice key
tripped properly. If the subject was in error (as might occur if a
rapidly counting subject overshot the final answer), the correct
response was presented for 5 s. Otherwise, the word Correct! was
presented for 800 ms. Immediately following feedback, the next
trial began.

The training phase of the study was identical to the warm-up
phase, with the following exceptions. Multiple blocks were pre-
sented, and subjects were informed that the same set of starting
numbers (stimuli) would be presented repeatedly throughout the
phase, with each starting number always having the same final
number. Subjects were informed that they therefore had two meth-
ods that could be used to find the correct answer for each trial:
(a) counting upward from the starting number, tapping the space
bar once with each count until the word STOP appeared on the
screen, and (b) remembering the answer associated with the start-
ing number for that trial and speaking the answer into the micro-
phone without doing all of the keypresses. To promote parallel
strategy execution, if such parallelism is possible, the instructions
stated (falsely) that “Many subjects report good results when they
attempt to use both strategies at the same time.” Subjects were told
that they could speak the answer into the microphone at any time
during each trial. They were instructed that they should try to
finish this part of the experiment as quickly as possible while still
being accurate.

In this phase, each trial stimulus was removed from the screen
either when the subject spoke an answer or when the subject had
entered a sufficient number of keypresses to bring the word STOP
onto the screen—whichever came first. Subjects were permitted a
brief pause between each block and continued to receive new
blocks until 45 min from the start of this phase, after which the
experiment concluded and the subject was debriefed.
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Results

Prior to analysis, data from 3 subjects were discarded due to
unusually low accuracy (�80%) and data from 1 subject were
discarded due to unusually frequent voice-key errors. All analyses
reported below are for the training phase data of the remaining 37
subjects.

Voice-key errors, which occurred in 6% of trials, were removed
prior to analysis. Mean accuracy on the first training block was
90.5%, increasing to 95.6% by the 23rd block, the furthest block
that all 37 subjects completed.

The mean of the subject-level mean correct RTs (latency from
stimulus presentation to vocal response) is plotted as a function of
training block in Figure 1A, and the mean of the subject-level SDs
is plotted in Figure 1B. Best fitting three-parameter power func-
tions are also included in the figures for reference. The observed
pattern of deviation from power function improvement in both
cases is consistent with that observed in prior studies of tasks that
exhibit the shift from algorithm to retrieval (Rickard, 1997, 1999).
Of particular note, the pattern of increasing SDs over the first few
blocks has been observed previously for both numerosity judgment
(Rickard, 1999) and alphabet arithmetic (Wagenmakers & Brown,
2007), the two tasks most studied to date.

The proportion of trials in which subjects retrieved the answer
(defined as those trials in which the subject spoke the answer before
completing all algorithm steps) is shown as a function of training

block in Figure 2. The strategy shift was about 80% complete by the
23rd block, roughly in accord with findings of studies in which
strategy probes were used (e.g., Rickard, 1997). Both Figure 2 and the
peak of the SD curve in Figure 1B indicate that the shift to retrieval
had occurred for 50% of the items by about Block 9.

There were 57 items over 9 subjects (15% of items) that exhib-
ited no shift to retrieval. Mean latencies for these items decreased
from about 8,000 ms on the first block to about 5,000 ms on the
23rd block. This speedup was well fit by a power function—a
result that is consistent with the CMPL model, according to which
separate power functions govern speedup for each strategy. Further
analysis showed stepwise speedup of about 200 ms for Algorithm
Steps 2 and onward over the course of the first 13 training blocks,
with no further speedup thereafter. In contrast, over the course of
training there was several hundred milliseconds of slowing in
latency to execute the algorithm first step. These results presage
the results for shift items discussed below and are consistent with
a positive latency choice competition between retrieval and the
algorithm first step. For these no-shift items, it appears that the
retrieval strategy did not become sufficiently competitive to win
against the algorithm strategy before the end of training.

We also evaluated item-level RT plots, following the visual and
statistical categorization scheme used by Rickard (2004). The
results are shown in Table 1, along with results from the alphabet
arithmetic task (Rickard, 2004) for comparison. About 6% of items
exhibited no speedup, defined as a p value greater than .20 for the
slope in a linear regression. Another 2.7% exhibited a step-
function RT improvement (i.e., a visually prominent, abrupt, and
sustained drop in RT) between the first and second block, indicat-
ing an immediate shift to retrieval (see 1st block items in Table 1),
41.9% exhibited step-function RT drops after Training Block 2
(Type 1 cluster items), 33.2% exhibited step-function RT drops
after Block 2 with occasional slow outlier RTs late in training
(Type 2 cluster items), and 16.2% exhibited smooth speedup (i.e.,
no pronounced step-function RT decrease).

Among the 22 items exhibiting no speedup, 15 never exhibited a
shift to retrieval (i.e., for those items the algorithm was run to
completion on every trial). The remaining 7 items showed various
unusual patterns that masked speedup in the linear regression, most
often a reversion back to use of the algorithm toward the end of
training, yielding a U-shaped learning curve. Among the 60 items
exhibiting smooth speedup, 40 never exhibited a shift to retrieval. The
remaining 20 smooth speedup items (5.4% overall) are candidate
cases of parallel strategy execution in which retrieval gradually be-
comes more competitive with the algorithm over multiple trials. It
should be noted, however, following Rickard (2004), that obvious and
usually dramatic deviations from smooth speedup were necessary
before an item was classified as a Type 1 or Type 2 cluster item. For
most smooth speedup items, there were hints of discontinuities similar
to those for items classified as Type 1 or Type 2 cluster items.

Although the Type 1 and Type 2 cluster items rule out parallel
strategy execution in which there is a gradual shift from algorithm
to retrieval over trials for most items, they do not rule out the
special case of parallel processing involving the abrupt increase in
retrieval competitiveness that was described earlier. The finer
grained analyses that are afforded by the current task design and
that are discussed below provide a strong test of that version of the
parallel model versus the choice model.
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Figure 1. Mean response time (A) and mean standard deviation (B) as
functions of training block for the first 23 blocks (to which all subjects
contributed) along with the best fitting three-parameter power functions.
RT � response time.
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Algorithm Step Latencies on Trials Preceding the First
Correct Retrieval

Prior to conducting this analysis, we reset the training block
variable for each item for each subject such that zero corresponded
to the first correct retrieval block for that item, with blocks
preceding the first correct retrieval taking negative values. For
each subject, the mean latency (over items) for each algorithm step
(correct trials only) was then computed for block values of �5
through �1 (i.e., for the last five algorithm blocks preceding each
item’s first correct retrieval block). These block means were then
averaged over subjects and plotted in Figure 3A. Shown are results
for the Algorithm Steps 1, 2, 3, and 4, along with the mean of Steps
5–9, among which there were no differences. Most items required
more than nine algorithm steps, but data from those steps showed
patterns like those for Steps 5–9 and so are not plotted.

The algorithm first step is substantially slower than subsequent
steps, presumably reflecting subjects’ need to orient to the pre-
sented stimulus and to initiate the counting algorithm. Also, for the
algorithm first step, there was a pronounced (and not previously
noted in the literature) 839 ms increase in latency from Block �5
through Block �1, confirmed by a within-subjects analysis of
variance (ANOVA), F(4, 130) � 10.51, p � .0001. This algorithm

first step slowing (which we term the pause effect) was not
observed for Algorithm Steps 2–9, which are shown on a zoomed
scale in Figure 3B. Instead, ANOVAs (identical to that described
above) that were performed separately for each step indicated
significant speedup over training blocks for Steps 3, 4, and the mean
of Steps 5–9 ( p � .003 in all cases). The U-shaped pattern for Step
2 did not reach significance ( p � .05). In post hoc analyses, with the
removal of the slower 2% of the data as outliers, the right section of
the U-shaped curve for Step 2 was eliminated, yielding speedup
analogous to that in Steps 3–9. The same outlier removal did not
affect the shape of the functions in Figure 3 for any of the other
algorithm steps. The speedup for Steps 2–9 appears to reflect algo-
rithm learning over the course of the training blocks and is consistent
with the algorithm speedup that was observed for the no-shift items.
It is also possible that the speedup for Steps 2–9 on blocks approach-
ing the first correct retrieval reflects attempts by subjects to make up
for the time lost due to the Step 1 pause effect.

To explore whether the pattern described above extended be-
yond 5 blocks, we performed a supplementary analysis in which
we included the first 15 blocks preceding the first correct retrieval
block. Because many subjects completed the shift to retrieval in
fewer than 15 blocks for many or all items, the number of items
qualifying for this analysis was reduced by 75% relative to the 5-block
case. Results are shown in Figures 4A and 4B. The general pattern is
similar to that in Figure 3, with the slowing again being significant for
Step 1, F(14, 207) � 6.31, p � .0001; and the speedup being
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was selected, as a function of training block.

Table 1
Visual and Statistical Categorization of the Item-Level Data

Learning
curve

category Frequency Percentagea
Percentage in

Rickard (2004)

Items
exhibiting

shift to
retrievalb

n %

No speedup 22 5.95 9 7 32
1st block 10 2.70 2.4 10 100
Type 1 155 41.89 48.3 154 99
Type 2 123 33.24 20.8 122 99
Smooth 60 16.22 29.1 20 33

a Out of all items. b Out of all items in each category.
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Figure 3. A: Mean algorithm step latencies on the five blocks prior to the
first correct retrieval block for Algorithm Steps 1, 2, 3, and 4 and the mean
of 5–9. B: Zoom of mean algorithm step latencies on the five blocks prior
to the first correct retrieval block for Algorithm Steps 2, 3, and 4 and the
mean of 5–9. Error bars represent standard errors of the mean.
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significant for Steps 2, 4, and the mean of Steps 5–9 ( p � .05 in all
cases). In these averaged data, the algorithm first step slowing began
about nine blocks prior to the first correct retrieval trial.

RTs (latency between stimulus onset and the vocal response) for
items in the analyses described above (not shown in the figures)
exhibited slowing from Block �5 to Block �1 that was analogous
to, though of smaller magnitude than, that observed for Step 1 of
the algorithm. That slowing was not statistically significant, how-
ever, because the Step 1 slowing was partially compensated for by
the speedup that occurred over practice blocks for subsequent
steps. Given this result, researchers should exercise caution when
interpreting nonsignificant changes in overall algorithm RT over the
course of training (e.g., Rickard, 2004). Note that algorithm first step
slowing may not have been detected to date for other tasks because
the first step latency has not been measured independently before, and
because block numbers have not previously been synchronized to the
first correct retrieval before averaging the data.

Accuracy on blocks approaching the first correct retrieval block
is shown for the last 5 blocks in Figure 5A and for the last 15
blocks in Figure 5B. In both cases linear regression indicated
significant negative slopes ( p � .05 for the 5-block case and p �
.0001 for the 15-block case). Further analyses showed that algo-
rithm accuracy was constant in both cases at around .92. The
increasing error rates were therefore entirely driven by increases in
the rate of incorrect retrieval attempts.

It is worth noting that for 40% of the shift items, the shift occurred
after the 13th training block, beyond which no algorithm speedup was
observed for the no-shift items. Thus, we can reasonably infer that
about 40% of the strategy shifts were occurring under conditions of
constant, roughly asymptotic algorithm execution. Shift patterns for
these 40% of items were qualitatively the same as for the other shift
items. It appears, then, that the algorithm speedup with training for
Steps 2 and onward was not a factor in the observed shift dynamics.
Note also that none of these results depended on the number of
algorithm steps, which varied from 9 to 15 over items.

Partial Algorithm Step Completion on Retrieval Trials

A bar graph of the frequency with which 0, 1, 2, 3, and so forth
algorithm steps were completed during Blocks 0 to 4 (as defined in
the preceding section, where zero corresponds to the first correct
retrieval block for each item) is shown in Figure 6, along with the
expected frequencies according to a race model. (Error trials and trials
on which subjects reverted back to use of the complete algorithm were
excluded.) These trials were used because they tended to have the
slowest retrieval latencies, and hence they would be expected to
exhibit the most algorithm step completion according to a parallel
model. Results did not depend critically on this choice.

We derived the expected number of algorithm steps according to
a race model in the following way. First, latencies for each algo-
rithm step during the first block of the training phase were aver-
aged over items for each subject (correct trials only). Prior anal-
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Figure 5. Accuracy on the last 5 (A) and last 15 (B) blocks prior to the
first correct retrieval block.

-15 -13 -11 -9 -7 -5 -3 -1

la
te

nc
y 

(m
s)

0

500

1000

1500

2000

blocks prior to first correct retrieval
-15 -13 -11 -9 -7 -5 -3 -1

la
te

nc
y 

(m
s)

350

400

450

500 step 2
step 3
step 4
steps 5-9

first step

steps 2, 3, 4, and 5-9

A.

B.

Figure 4. A: Mean algorithm step latencies on the 15 blocks prior to the
first correct retrieval block for Algorithm Steps 1, 2, 3, and 4 and the mean
of 5–9. B: Zoom of mean algorithm step latencies on the 15 blocks prior
to the first correct retrieval block for Algorithm Steps 2, 3, and 4 and the
mean of 5–9. Error bars represent standard errors of the mean.
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yses indicated no significant effect of items on these latencies,
motivating the averaging. The first training block was used be-
cause no algorithm step slowing due to retrieval competition
would be present. Next, for each retrieval trial under consideration,
we estimated the expected number of completed algorithm steps
under a race assumption by determining the number of first train-
ing block algorithm steps that the subjects would have been
expected to complete on that trial—that is, by adding step latencies
and recording the largest step number with a cumulative latency
less than the retrieval latency for that trial. Note that because the
algorithm exhibited speedup with practice, use of the latencies on
the first training block in this calculation will tend to yield fewer
predicted algorithm steps than would actually be expected by a
race at the point of the strategy shift. Given the outcome described
below, that bias does not complicate interpretation.

Figure 6 shows that partial algorithm step completion was far
less frequent than expected by a race, �2(14) � 5,360, p � .0001.
Indeed, on 89.6% of those retrieval trials no algorithm steps at all
were completed, a result that is in agreement with a strategy choice
involving a competition between the retrieval strategy and the first
step of the algorithm. For the remaining 121 trials, one or more
algorithm steps were completed prior to answer retrieval (we refer
to these as partial algorithm trials). These trials are candidates for
parallel strategy execution.

A race model predicts that the speed of algorithm step execution
on the partial algorithm trials will not be influenced by the race

with retrieval. That prediction can be tested through analysis of
algorithm step latencies on the partial algorithm trials shown in
Figure 6 relative to the step latencies on the first training block, on
which retrieval was not possible. For each subject, the means of
the first, second, third, and fourth algorithm step latencies for the
first training block were subtracted from the mean of these step
latencies on partial algorithm trials. These difference scores were
then subjected to matched t tests. (There were substantially fewer
trials available for analysis of the later steps due to attrition. The
trends, however, matched those of Steps 2–4.) Contrary to the race
prediction, for Step 1 there was a highly significant 703.3 ms
slowing on partial algorithm trials, t(15) � 5.45, p � .0001. For
Steps 2–4, however, there were nonsignificantly faster completion
times for the partial algorithm trials (difference scores of �93.8,
�79.8, and �50.6, respectively; p � .05 in all cases).

Discussion

Implications for Skill Theories

None of the theories as developed to date can fully account for
performance on the current task. The race theories cannot account
for the results, even for the relatively infrequent partial algorithm
trials, because of the substantial algorithm first step slowing that
occurred even on those trials. Parallel models as a more general
class, including limited capacity models, fare little better. Al-
though a limited capacity model can explain the algorithm first
step slowing on trials approaching the first retrieval trial (and on
partial algorithm trials) when that result is considered in isolation,
it cannot in any straightforward way explain why that slowing was
not also observed on subsequent algorithm steps for those trials.

The results instead indicate a strategy choice process that involves
a competition between the algorithm first step and the memory
retrieval strategy. At that level of analysis the CMPL model fares
well. However, the CMPL simulation model as developed to date
(Rickard, 1997) assumes a zero-latency choice process, an assumption
that is not, on its face at least, consistent with the data. Given the
magnitude of the observed slowing (839 ms for Block �1 relative to
Block �5 in Figure 3A), the simplest way to modify the CMPL
model to account for the results would be to assume that the direct
retrieval strategy wins the initial competition on some of those trials,
and is executed, but that subjects are in some cases not sufficiently
confident in the retrieved answer. They may then hold the retrieved
answer in working memory and run the algorithm as a check. If the
answers generated by the two strategies match, they may then tag that
item as supporting correct retrieval and then rely solely on retrieval on
subsequent trials if they recall the tag. This hypothesis may also
explain the algorithm first step slowing that was observed on the
partial algorithm trials. During algorithm execution on those trials,
subjects may have decided to speak the previously retrieved answer
prior to finishing the algorithm. This might occur, for example,
because the act of counting narrows the range of candidate answers,
potentially leading subjects to have more confidence in their initially
retrieved answer. For both of these types of trials, this account
characterizes the algorithm first step slowing as being the result of a
postchoice strategy. The zero-latency choice process is thus, in prin-
ciple, consistent with this account (i.e., the initial choice to retrieve
might not be slowed by the competition with the algorithm). It should
also be noted that the initial attempt at retrieval might simply fail to
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Figure 6. Relative frequency bar chart of expected (according to a race
model) and observed completion frequencies for each algorithm step on the
first five correct retrieval trials.

119STRATEGY EXECUTION



yield an answer. Within a framework such as the CMPL model, the
retrieval strategy might win the competition, but the association to the
answer may not be strong enough to bring answer activation above a
response threshold. In this case, subjects would shift to the algorithm
as a back-up strategy, in a manner analogous to that hypothesized in
Siegler’s (1988) distribution of associations model.

Alternatively, or in addition to the postchoice, sequential strat-
egy execution hypothesized above, it is possible that the first step
slowing reflects a prechoice (and presumably preconscious) com-
petition that increases the time for the algorithm first step to be
selected. This possibility corresponds, by our earlier definition, to
a positive latency choice process, and it does not currently have an
implementation in the CMPL model. Given the observed first step
slowing of more than 800 ms (see Figure 3A), we speculate that
the postchoice, sequential strategy account is most likely correct,
at least as the major component of the slowing.

The Schunn et al. (1997) choice model has a number of features in
common with CMPL. Both models assume a strategy choice that
occurs prior to initiating either retrieval or the algorithm. Reder and
colleagues (e.g., Schunn et al., 1997) have focused on feeling of
knowing, which is modeled by the activation of stimulus representa-
tions within a semantic network, as a mechanism of strategy choice.
The CMPL model embodies a similar network implementation of
choice while also staking claims about the specific nature of the
bottleneck that requires a strategy choice and about the manner in
which the algorithm competes with retrieval. The two models appear
to be compatible, and indeed they may offer prospects for synthesis.
In the Rickard (1997) simulation model, activation of the problem-
level node that corresponds to the retrieval strategy could serve as the
basis for subjective feeling of knowing. The SAC model incorporates
a mechanism for interference among items with overlapping operands
that could be integrated with CMPL.

Generalization to Other Tasks

Clearly, strategy execution is not parallel in the current task, but
to what range of tasks does that conclusion extend? Although more
research is needed to address this question, a reasonably strong
prediction can be made by considering the simplicity and low sub-
jective cognitive load of our counting–tapping algorithm. We submit
that similar results would be obtained for any of the broad class of
algorithms that require a series of long-term memory retrieval steps.
For example, given the current results it seems unlikely that a repeated
addition algorithm for single-digit multiplication—which is much
more subjectively taxing for children than is simple counting for
adults—would run in parallel with retrieval.

Our task is atypical among those explored in the literature to
date in that it required a simple keypress response in coordination
with each algorithm step. It is not unique, however, in its require-
ment that a motor event take place in coordination with each algo-
rithm step. The dot-counting task (e.g., Palmeri, 1997), which requires
an orienting eye movement with each count, shares that property. For
a number of reasons, it is unlikely in our view that simple algorithm-
related motor events are the primary reason why retrieval and algo-
rithm strategies were not executed in parallel in the current task. First,
the counting component of the algorithm is a form of serial memory
retrieval with (presumably) subvocal manifestation of each count, and
it is on its face more likely to interfere with verbally based direct
retrieval of the answer than is simple repetitive keypressing. Buttress-

ing this claim is evidence that simple tapping alone has a negligible
effect on other cognitive processing (for discussion see Pashler,
1994). Second, as noted above, the overall attentional demands of the
algorithm used here are small compared to most other algorithms that
have been explored in the literature to date or that occur in natural
settings (e.g., arithmetic algorithms). Third, the item-level learning
curve categorization for the current experiment is highly similar to
that observed by Rickard (2004), who used an algorithm that involved
no motor component (see Table 1).

We cannot strictly rule out the possibility that subjects used
desynchronized algorithm tapping and counting; for example, tap-
ping between counts. However, because desynchronizing is likely
more time consuming than synchronizing, and because there was
no task performance benefit to desynchronizing, it is reasonable to
assume that subjects synchronized. If subjects did desynchronize,
with counting preceding tapping, then it is possible that they
executed retrieval in parallel through completion of the first count
but aborted retrieval on the first tap. This possibility implies,
however, that the tapping is the primary factor preventing parallel
strategy execution, a possibility that appears unlikely in light of
prior data on finger tapping that we noted above. Note also that
neither the race models of skill nor any other current model of
attention and performance that we know of would predict that
simple, repetitive keypresses themselves would be sufficient to
preclude parallel direct retrieval from long-term memory. The race
models of skill as developed to date treat all algorithms homoge-
neously, and they assume that retrieval can take place in parallel
throughout the execution of any algorithm.

It is an open question whether the same results will be obtained
for the class of algorithms that do not require a sequence of
long-term memory retrieval steps. Examples include practice on
visual search and mental rotation with repeated presentation of the
same items. More generally, any algorithm that involves only the
execution of rules held in working memory is a member of this
class. Additional work to explore strategy execution dynamics in
such task domains is needed.
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Phase 2 Stimulus–Response Pairings

Stimuli Responses

20 34
21 36
22 32
23 35
24 33
25 37
26 41
27 40
28 39
29 38
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