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Abstract The identical elements (IE) model (Rickard, Healy,
& Bourne, Learning, Memory, and Cognition 32:734–748,
1994) of fact representation predicts that, in both verbal and
numerical domains, performance gains with retrieval practice
on multielement items will be specific to the practiced
stimulus–response combinations, failing to transfer even to
altered stimulus–response mappings of practiced items. In
the case of arithmetic, the model predicts no transfer across
either complementary operations (e.g., 4 × 7 to 28 / 4) or
complementary division or subtraction problems (e.g., 28 / 4
to 28 / 7). Although that model has successfully described
transfer effects in the domains of multiplication–division and
episodic cued recall, it is challenged by a recent demonstration
of positive cross-operation transfer for addition and subtraction
(Campbell & Agnew, Psychonomic Bulletin & Review
16:938–944, 2009). We report results of a new addition–
subtraction transfer experiment, the design of which closely
matched that of a prior multiplication–division experiment
that supported the model. The transfer results were consistent
with the IE model. A two-component model of memory
retrieval practice effects is proposed to account for the
discrepant experimental results for addition and subtraction
and to guide future work.
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When teaching or practicing any skilled activity, there is
typically a hope—if not an expectation—that the learner's

burgeoning skills will generalize beyond the specific focus
of practice. If, for example, a teacher assigns students a
particular set of arithmetic problems, it is likely intended
that this practice will result in greater fluency for related
arithmetic problems encountered later. But to what extent is
this true? Investigations into the specificity of learning that
occurs through memory retrieval practice can yield insights
into this question, revealing general principles of memory
representation and addressing the viability of candidate
models of memory-based skills.

For the cases of cued episodic recall practice (Rickard &
Bajic, 2006) and multiplication–division, the data support
the identical elements (IE) model (Rickard, Healy, &
Bourne, 1994). That model assumes that, regardless of the
content domain or the manner in which memory is initially
encoded, retrieval practice always yields a separate and
independent representation for each unique combination of
practiced stimulus elements, ignoring perceptual factors
such as stimulus modality and the spatial or temporal
ordering of the elements. Each stimulus representation, in
turn, has an association to the required response.

The set of representations that is predicted by the IE
model is shown for sample multiplication–division (4, 7,
28) and addition–subtraction (4, 7, 11) number triplets in
Fig. 1. The model assumes that practice on either 4 × 7 or
7 × 4 strengthens (i.e., facilitates subsequent access of)
only the multiplication representation in Fig. 1 and that
practice on either division problem strengthens only its
corresponding representation. Analogous assumptions hold
for addition–subtraction.

In the original version of the IE model, corresponding to
Fig. 1 without the left-going arrow for multiplication, only
the representation that exactly matches a presented problem
(within the limits specified above) can be used successfully
to retrieve the answer. Improvements in retrieval performance
with practice, therefore, should not transfer to problemswhose
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elements do not match the practiced representation, even
if the same number triplet is involved. Speedup with
retrieval practice on 4 × 7 should not transfer to 28 ÷ 4,
and vice versa. Furthermore, speedup on 28 ÷ 4 should
not transfer to 28 ÷ 7, and vice versa. Speedup on 4 × 7 will,
however, transfer to 7 × 4 (and vice versa). Analogous
predictions apply for addition–subtraction.

For multiplication–division, the IE predictions have, to a
close approximation, held across several experimental
paradigms (for reviews, see Campbell & Agnew, 2009;
Rickard, 2005). The relatively small cross-operation transfer
that has sometimes been observed—primarily for large
division problems (e.g., LeFevre & Morris, 1999)—can be
accommodated by a revised version of the model (Rickard,
2005) in which multiplication practice simultaneously
strengthens bidirectional associations, as depicted by the
combined right- and left-going arrows for multiplication in
Fig. 1 (see also Campbell & Robert, 2008; Rusconi, Galfano,
Rebonato, & Umiltà, 2006). At intermediate skill levels,
wherein the IE associations for large division problems may
not yet have formed, the reverse (i.e., left-going) association
from the product back to the corresponding multiplication
operands may support a division-by-factoring strategy that
yields positive transfer between operations (for details, see
Rickard, 2005). At higher skill levels, however, the full set of
IE associations has been learned, and direct retrieval through
the division associations is selected in lieu of the slower and
more complex division-by-factoring strategy. From that point
onward, Rickard proposed, the simpler version of the IE
model (with no left-going association in Fig. 1) holds, and
cross-operation transfer should not occur. Consistent with that
prediction, cross-operation transfer has not been observed for
small problems (e.g., 3 × 4 to 12 ÷ 3), for which adult
performance is most likely to reflect memory retrieval
(Zbrodoff & Logan, 2005).

Unlike multiplication, each addition sum can result from
multiple operand combinations, rendering useless any
association from the sum to the problem operands (as
would be depicted in Fig. 1 by a left-going arrow for
addition; see Rickard, 2005; Campbell & Robert, 2008).

Thus, at intermediate skill levels, the IE prediction of no
cross-operation transfer is stronger for addition–subtraction
than it is for multiplication–division. Although there is some
empirical support for that prediction (e.g., Campbell, Fuchs-
Lacelle, & Phenix, 2006), more recent demonstrations of
substantial cross-operation transfer between addition and
subtraction (Campbell & Agnew, 2009; see also Campbell &
Alberts, 2010) are problematic for the IE model.

In the Campbell and Agnew (2009) experiment, subjects
were trained on 12 addition and 12 subtraction problems,
with 1 problem being derived from each of 24 number
triplets. Half of the subjects were then given a transfer test on
24 addition problems derived from the 24 trained triplets,
plus 12 addition problems derived from 12 untrained triplets.
The remaining subjects were given a transfer test on 24
subtraction problems derived from the 24 trained triplets, plus
12 subtraction problems derived from 12 untrained triplets.
Thus, all subjects encountered three transfer conditions: a no-
change condition, an operation change condition, and a new
problems condition. In contrast with the IE predictions,
response times (RTs) were significantly shorter for operation
change problems than for new problems.

Campbell and Agnew (2009) concluded that the IE model
does not provide a sufficient account for the case of
addition–subtraction. They suggested two possible explan-
ations of the difference between their results and the
aforementioned results for multiplication–division. First, for
addition–subtraction, fact organization may take the form of
a holistic representation for each number triplet. If training
on a specific problem speeds subsequent access to the
holistic triplet representation in a manner that is accessible to
all problems derivable from that triplet, cross-operation
transfer will be observed (for related models, see Anderson,
Fincham, & Douglass, 1997; Rabinowitz & Goldberg,
1995). This account leaves unaddressed the question of
why holistic triplet representations apparently do not exist
for or, at least, are not a significant factor underlying
performance on multiplication–division.

Second, Campbell and Agnew (2009) suggested that
addition–subtraction may be performed by way of semantic
quantity (e.g., mental number line) procedures, rather than
by retrieval via discrete fact representations. If training
makes subjects generally more efficient with these procedures
in the particular number line regions that correspond to the
trained problems, positive transfer to operation change
problems might be observed. Note that analogous mental
number line operations cannot underlie multiplication–
division performance (barring the possibility that subjects
perform logarithmically scaled mental “slide-rule” calculations
for those operations).

In the experiment reported below, we attempted to
replicate the Campbell and Agnew (2009) findings for
addition–subtraction, but using a design that closely

(4, 7, x)    28 (4, 7, +) 11

28 ÷ 4     7 (11 – 4) 7

28 ÷ 7     4 (11 – 7) 4

Fig. 1 Representations and associations assumed by the IE model for
multiplication–division and addition–subtraction. The notations (4, 7, ×)
and (4, 7, +) represent the assumption that the two operand orders for
multiplication and addition activate the same representation. The left-
going arrow for multiplication was incorporated into a revised version of
the model (Rickard, 2005)
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matched a multiplication–division experiment conducted by
Rickard and Bourne (1996, Experiment 1). The design differs
from Campbell and Agnew’s in multiple respects, including
response modality, transfer conditions investigated, mixing
versus not mixing of operations within each block, time
interval between trials, amount of practice, presence or
absence of strategy probing, number of training sessions, and
the delay between the training and transfer tests.

If the results replicate those of Campbell and Agnew (2009),
cross-operation transfer for addition–subtraction will have
proven robust across disparate experimental paradigms, and
Campbell and Agnew’s proposals for addition–subtraction
representation will be supported. Alternatively, the results may
be as predicted by the IE model. That outcome would raise
the intriguing possibility that, for arithmetic and perhaps other
domains, the specificity of learned representations depends
critically on the implementation of the training regimen.

Method

Subjects

Twenty-four University of California at San Diego under-
graduate students participated for course credit.

Materials, design, and procedure

Subjects were tested individually on personal computers.
The experiment consisted of three sessions over 5 days.
Stimuli were visually presented addition and subtraction
problems constructed from three sets of eight addition–
subtraction number triplets (see Table 1). From those three
sets, 96 distinct arithmetic problems can be formed (2
addition and 2 subtraction problems from each triplet). For
the triplet 5, 7, 12, for example, the 4 problems are 5 + 7, 7 + 5,
12 − 7, and 12 − 5. In session 3 (the transfer test), the full set of
96 problems was presented. In sessions 1 and 2, each subject
received training on 16 problems, consisting of 8 addition
problems derived from one of the sets of eight triplets in
Table 1 and 8 subtraction problems derived from another of

the sets of eight triplets. One set of eight triplets was
withheld from training to serve as new problems on the
transfer test. Full counterbalancing of which two triplet
sets were used to derive the training problems and of
the four possible problem types (i.e., addition or
subtraction; ascending or descending operand order)
yielded 12 sets of 16 training problems. In each set of
training problems, half of the problems had ascending
left-to-right operand order, and half had descending
order. Two subjects were trained on each set.

For subtraction problems on the transfer test, all eight
single-digit keypress responses were required for problems
in both the new problems condition and the combined
operation and operation plus order change conditions.
Analogously, for addition, exactly three of the eight two-
digit keypress answers in both the new problems condition
and the combined operation and operation plus order
change conditions were answers to (different) training
problems. Thus, any motor-stage latency facilitation that
might occur during training for specific required keypress
responses would be unlikely to differentially influence RTs
in the pivotal comparisons among those conditions.

Within each session, a block was defined as one
randomly ordered presentation of each of that session's
problem stimuli, yielding 16 trials per block in sessions 1
and 2 and 96 trials per block in session 3. In session 3,
problems derived from the same triplet were not presented
on consecutive trials. Subjects received 40 blocks in session
1, 50 in session 2, and 5 in session 3.

Subjects were instructed to work as quickly and accurately
as possible while continuously trying to improve their
performance. All trials consisted of (1) a 500-ms blank screen,
(2) presentation of a stimulus (e.g., "6 + 7 = __" or "13 − 7 =
__") at the center of the screen, and (3) the subject’s response,
typed on the computer’s number keypad. If the subject entered
an incorrect response, the word "Incorrect" was displayed,
along with the correct answer just below it, for 1,500 ms.

At the start of each block, the current block number and
the message "Get ready" were displayed for 1 s. At the end
of each block, the subject's accuracy percentage and mean
RT on that block were presented for 2 s. When ready, the
subject pressed a key to proceed to the next block.

Results

Training

On the first training block, the error rate was .052 for
addition and .036 for subtraction. On the 90th block, these
values were .042 and .073, respectively.

All reported RT results are for keypress initiation latency
(i.e., latency from stimulus presentation to the first keypress).

Set 1 Set 2 Set 3

3, 5, 8 5, 4, 9 3, 7, 10

9, 2, 11 2, 6, 8 4, 3, 7

4, 6, 10 6, 5, 11 2, 8, 10

7, 5, 12 3, 6, 9 3, 8, 11

6, 7, 13 7, 8, 15 8, 5, 13

9, 8, 17 9, 3, 12 5, 9, 14

4, 9, 13 6, 8, 14 7, 4, 11

9, 7, 16 8, 4, 12 9, 6, 15

Table 1 The three triplet sets
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Analyses in which RT was measured to the second keypress
(for items with two-digit answers) yielded equivalent results.
The RT analyses discussed below were performed on the full
set of correctly answered problems. Supplementary analyses
limited to “easy problems” (i.e., the first four problems listed
in each set of eight in Table 1) and “difficult problems” (the
remaining four problems in each set of eight) yielded
equivalent results. To minimize outlier influences, log
transformation of each trial-level RT was performed prior to
analysis. Antilogs of the mean log RTs are presented in the
figures.

Mean RTs are shown in Fig. 2 as a function of block and
arithmetic operation. The RT convergence by the end of
training mirrors that observed for multiplication and
division by Rickard and Bourne (1996). The combined RT
and error data suggest a speed–accuracy trade-off, such
that, for subtraction, there is greater accuracy emphasis at
the beginning of training but greater speed emphasis toward
the end of training.

Transfer test: addition

Example problems for the addition transfer test are shown
in the top half of Table 2, along with the IE predictions.

Response time Mean RTs are plotted in the top panel of
Fig. 3 as a function of block and condition. To efficiently
test the IE predictions, four orthogonal transfer condition
contrasts were performed. Each contrast involved a within-
subjects factorial analysis of variance with factors of block,
transfer condition, and their interaction. A description of
each contrast, along with the statistical results for the
condition and the condition × block interaction factors, is
given in Table 3. The effect of block was significant in most

cases, confirming the expected continuation of learning
across transfer blocks. Note that supplemental contrasts
limited to the first transfer block, which provides the purest
measure of transfer from training, replicated the following
pattern with respect to the condition effects.

The contrast comparing the RTs in the no-change and order
change conditions with those in the other three conditions
(contrast 1) was highly significant. The interaction between
block and condition was also highly significant, reflecting the
fact that the conditions being compared were at different
points on the inherently nonlinear RT speedup curve. In
contrast, neither the condition factor nor the condition × block
interaction approached significance in the contrasts limited to
the operation change, operation plus order change, and new
problems conditions (contrasts 2 and 3).

The roughly 80-ms difference between the no-change and
order change conditions was highly significant (contrast 4).
This effect, which was previously observed for multiplication–
division, may reflect learning or strengthening during training
of specific element configurations corresponding to no-change
problems (e.g., a visual memorymay form for the configuration
“4 × 7”). Assuming that such representations can become part
of the input to the IE-based answer retrieval, the RT advantage
for no-change or order change problems can be accommodated
by that model.

To evaluate the relative evidence for the null and
alternative hypotheses, JZS Bayes factors (Rouder &
Morey, 2011; henceforth, JZS–BF) were calculated for the
paired t-tests that correspond to the four addition single
degree of freedom (i.e., main effect) contrasts listed in
Table 3.1 The JZS–BF results were <0.0001, 6.22, 4.57, and
<0.001 for contrasts 1–4, respectively. These values
correspond, using the widely accepted categorization
scheme (e.g., Wagenmakers, Wetzels, Borsboom, & van
der Maas, 2011), to extreme evidence for H1, substantial
evidence for H0, substantial evidence for H0, and extreme
evidence for H1, respectively.

Error rates Error rates (bottom panel of Fig. 3) were more
variable than were RTs and, thus, were averaged over
blocks prior to analysis. The equivalent of contrast 1 in
Table 3 was highly significant [sign test on the subject-level
error difference scores, p < .0001; t(23) = 5.67]. There were
no trends toward significant error rate differences for
contrasts 2–4. The corresponding JZS–BFs, based on
paired t-tests, were <0.001 (extreme H1), 5.40 (substantial
H0), 5.67 (substantial H0), and 4.55 (substantial H0), for
contrasts 1–4, respectively.
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Fig. 2 Antilog of the mean log response times (RTs) as a function of
operation and training block

1 Bayes factors were computed using an online calculator for paired t-
tests (http://pcl.missouri.edu/bayesfactor)
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Transfer test: subtraction

Response time Mean RTs are shown in the upper panel of
Fig. 4. Contrast 1 (see Table 3) was highly significant, as was
the corresponding interaction. None of the other contrast

effects approached significance. Supplemental RT analyses
limited to the first transfer block produced a highly
significant effect for contrast 1 (p < .0001) and a marginally
significant effect for contrast 3 (p = .049; JZS–BF = 0.92,
anecdotal for H1). There were no trends toward significance
for the other first block contrasts. JZS–BFs for the main
effect contrasts listed in Table 3 (i.e., averaging over the five
test blocks) were <0.0001 (extreme H1), 4.69 (substantial
H0), 2.76 (anecdotal H0), and 5.06 (substantial H0).

Error rates The equivalent of subtraction contrast 1
(Table 3) on the error rates averaged over transfer blocks
was significant [sign test on the difference scores, p < .003,
t(23) = 4.86], an effect that is visually most evident on the
first block. None of the other three contrasts were
significant by the sign test, although contrast 3 was
marginally significant by the paired t-test, t(23) = −2.11.
JZS–BFs for the four contrasts were 0.0038 (extreme H1),
3.46 (substantial H0), 0.89 (anecdotal H1), and 1.76
(anecdotal H0).

Curiously, error rates for the operation plus order change
condition, but not for the other conditions, decreased
systematically over blocks. A post hoc t-test comparing
the mean error rate (averaged over blocks) in that condition
with that of the new problems condition was significant,
t(23) = −2.48. The evidence for H1 in that test, however, is
only anecdotal (JZS–BF = 0.46).

Discussion

Among the 17 main effect contrasts (i.e., condition effects
averaged over test blocks) that were conducted on RTs and
errors, the IE model predicted that 5 would be statistically
significant. All 5 of those contrasts were, in fact, highly
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Fig. 3 Addition performance on the transfer test as a function of
block and transfer condition. a Antilog of the mean log response times
(RTs). b Accuracy

Table 2 Test conditions for an
example problem Test condition Training Test IE Prediction

Addition

No change 3 + 7 = __ 3 + 7 = __ reference condition for full transfer

Order change 7 + 3 = __ 3 + 7 = __ strong transfer

Operation change 10 − 3 = __ 3 + 7 = __ no transfer

Order and operation change 10 − 7 = __ 3 + 7 = __ no transfer

New problems 3 + 7 = __ reference condition for no transfer

Subtraction

No change 10 − 3 = __ 10 − 3 = __ reference condition for füll transfer

Order change 10 − 7 = __ 10 − 3 = __ no transfer

Operation change 3 + 7 = __ 10 − 3 = __ no transfer

Order and operation change 7 + 3 = __ 10 − 3 = __ no transfer

New problems 10 − 3 = __ reference condition for no transfer

1152 Psychon Bull Rev (2011) 18:1148–1155



significant (p-values < .0027, and extreme evidence for H1 in
all cases based on JZS–BFs), and all 5 remained significant
even when the conservative Bonferroni correction for 17
comparisons (yielding α = .0029) was applied. Among the
remaining 12 main effect contrasts, for which the IE model
predicts null results, JZS–BF evidence was substantial for H0

in 8, anecdotal for H0 in 2, and anecdotal for H1 in 2 (1 of
which was conducted post hoc).

In combination, this experiment and Rickard and Bourne’s
(1996) Experiment 1 constitute the first procedurally
matched investigation of transfer for the two complement
pairs of arithmetic operations: addition–subtraction and
multiplication–division. The finding of nearly identical
transfer patterns in the two experiments has two important
implications for adult arithmetic representation. First, what-
ever form that representation may have, it appears to be
identical or at least highly similar for the two complement
pairs. Second, mental number line procedures, which do not
plausibly underlie multiplication–division performance, are
apparently also not central to adult addition–subtraction. We
cannot strictly rule out an alternative account in which
mental number line procedures underlie addition–subtraction
performance and in which training on those procedures
yields transfer results that happen to exactly match the IE
predictions. Parsimony, however, favors the former account.

An important goal for future work is identification of the
factors that underlie the diverging transfer results of the
present experiment, as compared with those in Campbell
and Agnew (2009). As was noted in the introduction, there
are multiple differences between the two experiments with
respect to both overall design and trial-level procedures. An
intriguing possibility is that the specificity and transferability
of learning—in arithmetic and, perhaps, other domains—
depends critically on currently undocumented properties of
training regimens.

Multiple experiments will likely be needed to identify
which of the design differences critically drive the observed
transfer differences. Here, we attempt to provide guidance by
advancing a candidate theoretical framework. The framework,
which builds on a dual-memory model proposed by Rickard
and Bajic (2006), has three core assumptions. (1) There are
distinct IE and episodic memory representations that can
support arithmetic fact retrieval. The IE representations are
strengthened through retrieval practice and are the basis for
most retrieval speedup. Episodic memory, in contrast, is
memory for specific trials, and it is assumed in this
framework to have a holistic form that can support transfer.
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Fig. 4 Subtraction performance on the transfer test as a function of
block and transfer condition. a Antilog of the mean log response times
(RTs). b Accuracy

Table 3 Analysis of variance
results

For conditions contrasted:
1 = no-change, 2 = order
change, 3 = operation change,
4 = order and operation change,
5 = new problems

Conditions Contrasted Condition Effect Interaction

Addition

Contrast 1 1 & 2 vs. 3, 4, & 5 F(1, 23) = 44.8, p < .0001 F(4, 92) = 5.88, p < .001

Contrast 2 3 & 4 vs. 5 F(1, 23) = 0.05, n.s. F(4, 92) = 0.77, n.s.

Contrast 3 3 vs. 4 F(1, 23) = 0.70, n.s. F(4, 92) = 0.73, n.s.

Contrast 4 1 vs. 2 F(1, 23) = 38.6, p < .0001 F(4, 92) = 1.43, n.s.

Subtraction

Contrast 1 1 vs. 2, 3, 4, & 5 F(1, 23) = 171.59, p < .0001 F(4, 92) = 5.96, p < .001

Contrast 2 2, 3 & 4 vs. 5 F(1, 23) = 0.64, n.s. F(4, 92) = 0.47, n.s.

Contrast 3 2 vs. 3 & 4 F(1, 23) = 1.82, n.s. F(4, 92) = 1.01, n.s.

Contrast 4 3 vs. 4 F(1, 23) = 0.48, n.s. F(4, 92) = 0.63, n.s.
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This flexibility of use, however, comes at the cost of slower
retrieval, as compared with strong IE memories. (2)
Strengthening of the IE associations is assumed to be
obligatory and automatic and to occur simultaneously with,
and as a consequence of, retrieval performance. In contrast,
episodic memory is assumed to form, in part at least, as a
consequence of postresponse rumination about the just-
solved problem. (3) The forgetting rate is assumed to be
greater for the episodic than for the IE memory components
(for a related proposal, see Clawson, Healy, Ericsson, &
Bourne, 2001).

On some transfer trials, particularly those of the operation
change, operation plus order change, new problems, and
division order change conditions, the IE associations may not
support rapid retrieval, due to incomplete prior learning,
forgetting, or other random factors that may transiently affect
its availability. On such test trials, subjects can either resort to a
time-consuming calculation strategy (LeFevre &Morris, 1999)
or attempt retrieval through episodic memory of training trials.
Episodic retrieval—although, by our assumption, slower, on
average, than IE retrieval—may occur faster than multistep
calculation and, if so, would be preferred if IE memory for the
item is not available.

Consider, for example, an operation change problem like
15 − 8 on a transfer test. If the IE association cannot be
accessed for that problem on a particular trial of the transfer
test, the subject may use the presented problem as a cue to
attempt retrieval of a holistic, episodic memory that may
have been encoded during training (i.e., 8 + 7 = 15). If
successful, that retrieval would include the answer (i.e., 7),
avoiding the need for slow calculations on that trial and
yielding cross-operation transfer. Retrieval in this case can
be said to be “episodically mediated.”

This dual-memory model suggests that one or more
features of the Campbell and Agnew (2009) design
increased the relative influence of the hypothesized episodic
memory component, giving rise to cross-operation transfer.
Three aspects of their design seemmost pertinent. First, unlike
the present experiment and those in Rickard and Bourne
(1996), their transfer test occurred immediately after the last
training block. If, as we have proposed, the episodic memory
component is quickly forgotten, an immediate transfer test
would facilitate episodically based cross-operation transfer.

Second, the interval between vocal response onset and
presentation of the next problem in the Campbell and
Agnew (2009) experiment was on the order of several
seconds. That design feature may promote postresponse
rumination on training trials about the just-solved problem,
facilitating formation of episodic memory that can later
support cross-operation transfer. The opportunity for post-
response rumination was substantially reduced in the
present experiment and in Rickard and Bourne (1996) by
the brief delay between trials.

Third, Campbell and Agnew (2009) used strategy probing
on the transfer test. Although strategy probing can provide
important data, it also carries the risk of reactivity, especially
when the strategy categories are potentially leading (Ericsson
& Simon, 1993). One of the strategy categories from
Campbell and Agnew was “ADDITION/SUBTRACTION
REFERENCE: You used knowledge of the inverse addition or
subtraction problem.” Presentation of this option may have
promoted a strategy—namely, search of episodic memory
from the training session for operation complements that may
have been presented—that subjects might have otherwise
been less likely to employ. The search for an episodic memory
from the training sessions could succeed for operation change
problems, but by definition, it could not succeed for new
problems, potentially yielding an episodically mediated cross-
operation transfer effect.

Although this dual-memory account is speculative, it is
plausible, and it connects with the more general memory
and skill literature. It also provides a theoretically grounded
reference point for hypothesis generation and further
empirical work.

Author Note Daniel Bajic, Department of Psychology, University of
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