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Much of the existing formal work on war models the decision to go to war as a game-ending, costly lottery. This article relaxes
this assumption by treating war as a costly process during which the states run the risk of military collapse. The model also
allows for uncertainty over either the cost of fighting or the distribution of power. The analysis makes four contributions to
the growing costly-process literature: (i) the present model provides a more general treatment of the learning process that
occurs when states are uncertain about the distribution of power, (ii) it explicitly compares the bargaining and learning
processes for the two different sources of uncertainty, (iii) it suggests a way to empirically distinguish wars arising from these
two sources, and (iv) it shows that the equilibrium dynamics of informational accounts of war may be quite sensitive to the
underlying bargaining environment through which information is conveyed.

Recent work on the causes of war raises two re-
lated issues. First, both formal and nonformal
analyses see uncertainty as a fundamental cause

of war. But ordinary-language analyses typically em-
phasize uncertainty about the distribution of power.1

Blainey, for example, argues that “wars usually begin
when fighting nations disagree on their relative strength”
(1973, 122). By contrast, many formal analyses focus on
uncertainty over the costs of fighting.2 This emphasis
largely reflects tractability considerations in that intro-
ducing uncertainty via costs rather than the distribution
of power has led to models that have proved much easier to
analyze.

These different sources of uncertainty pose impor-
tant theoretical and empirical questions: Do these differ-
ent sources of uncertainty lead to fundamentally different
dynamics? And what empirical patterns, if any, distinguish
wars arising primarily from one source of uncertainty
from those that are largely due to the other?

A second, related issue is that until recently most for-
mal studies of the causes of war treated the decision to go
to war as a game-ending move (e.g., Fearon 1995; Powell
1999; Schultz 1999; Smith 1998b). Strategic interaction
stops once the states decide to fight, and each state typ-
ically receives a payoff that reflects the distribution of

Robert Powell is Robson Professor of Political Science, University of California, Berkeley, Berkeley, CA 94720-1950 (rpowell@socrates.
berkeley.edu).

I am grateful to James Morrow, Leo Simon, Alastair Smith, R. Harrison Wagner, and to the participants at the conference on the “Political
Economy of Conflict,” Yale University, March 23–24, 2001, for many helpful comments and criticisms. This work was assisted by a grant
from the National Science Foundation (SES-9911075).

1Goemans (2000) surveys this work.
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power. In the language of bargaining theory, this work
models war as an “outside option” which, if exercised,
ends the bargaining.

This approach has proved to be quite fruitful. Infor-
mational accounts based on costly-lottery models offer
a more coherent theoretical explanation of the origins of
war than do many other explanations based on anarchy or
preventive war (Fearon 1995) or on the offense-defense
balance or relative-gains concerns (Powell 2002, 11–13).
These models also cast considerable doubt on traditional
ideas about the tendency of states to balance (Powell 1999;
Werner 2000). Moreover, analyses that model war as a
game-ending move have demonstrated the theoretical and
empirical importance of taking selection effects into ac-
count in, for example, understanding the relation between
deterrence and ex ante indicators like alliances. Fearon
(1994b), for instance, provides a natural explanation of
the negative correlation between the existence of an al-
liance and deterring an attack. And, costly-lottery formu-
lations may help explain why it has been very difficult to
find any stable empirical relation between the distribution
of power and the likelihood of war (Powell 1996; Wagner
1994).

However, the costly-lottery simplification comes at a
cost. It necessarily limits the scope of any analysis to the
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origins of war. These models cannot be used to study
the dynamics of intrawar conflict and bargaining, e.g.,
the relation between the states’ negotiating positions and
battlefield outcomes (Goemans 2000). This limitation by
itself is a good reason to try to relax the costly-lottery as-
sumption. But Wagner (2000) argues that there is an even
more compelling reason. He charges that this assumption
“can only lead to misleading conclusions” even about the
origins of war (2000, 469).

The desire to relax the game-ending, costly-lottery
assumption—reinforced by Wagner’s charge—has spaw-
ned what might be called a second wave of formal work
on war (Filson and Werner 2002a,b; Kim 2002; Slantchev
2003, 2002b; Smith 1998a; Smith and Stam 2003; and
Wagner 2000). This second wave treats war as a costly
process during which states can continue to bargain while
they fight. War, in other words, is being modeled as an
“inside option.”3

The present study sees war as a bargaining process
during which the states run a risk of military collapse.
(As elaborated below, this is closest in spirit to Wagner’s
(2000) formulation.) The bargaining in the model begins
before there is any fighting, continues during the fighting,
and concludes only when the states agree to a settlement
or one of them collapses. The model developed here also
allows for uncertainty over either the cost of fighting or
about the distribution of power.

The analysis makes four contributions. First, it of-
fers a more general treatment of the learning process that
occurs when there is uncertainty over the distribution of
power. Unlike Smith and Stam (2003), the present analy-
sis incorporates the strategic transmission of informa-
tion into the learning process and does so in a much
less restrictive setting than Filson and Werner (2002a).
(The latter assume that a state is unsure whether its ad-
versary is either strong or weak, i.e., there are only two
types, and that there can be no more than two rounds of
bargaining.)

Second, allowing for uncertainty either over the cost
of fighting or about the distribution of power makes it
possible to explicitly compare the bargaining and learn-
ing processes in these two cases. This comparison shows
the bargaining dynamics are quite similar. Regardless of
the source of uncertainty, the satisfied state makes a series
of ever more attractive concessions that “screen” the dis-
satisfied state according to its type. Higher-cost types, i.e.,
those for whom fighting is more costly, settle sooner on

3In contrast to an outside option, an “inside” option keeps the
bargaining going for at least one more period and defines what
payoffs the bargainers get during that period. See Muthoo (1999)
for a discussion of inside and outside options.

worse terms than lower-cost types when there is uncer-
tainty about the cost of fighting. In a like manner, weaker
or less powerful types settle sooner than stronger types if
there is uncertainty over the distribution of power. The
comparison also shows that Wagner’s (2000) conjectures
about the differences between the learning processes in
these two cases are only partially correct.

That the screening dynamics are similar regardless of
the source of uncertainty poses an empirical challenge.
Given the prevalence of both types of uncertainty in in-
ternational politics, how can one empirically distinguish
wars resulting primarily from one source of uncertainty
or the other? The third contribution is to suggest a way.
States in many situations can make offers more quickly
than they can prepare for and fight battles. This differ-
ence affects the screening processes. Screening can take
place without actually fighting any battles if the states are
uncertain about each other’s costs and can make offers
very rapidly. If, by contrast, the states are uncertain about
the distribution of power, then screening requires that the
states actually fight battles regardless of how fast they can
make offers. This suggests that crises arising out of un-
certainty over costs or resolve are likely to be settled more
quickly and short of large scale fighting than are crises
arising out of uncertainty over the distribution of power.

One of the reasons for trying to relax the costly-lottery
assumption is that costly-process models can be used to
study the factors that affect the duration of war. The
fourth contribution is to underscore the potential influ-
ence of the bargaining environment (e.g., how fast states
can make offers) in models where fighting results from
informational problems. Indeed, the effects of the bar-
gaining environment in the present model swamp other
factors (at least in the limit as the time between offers
goes to zero) that might be thought to affect duration
such as the cost of fighting or the distribution of power.
(See, for example, Bennett and Stam 1996). This suggests
that future efforts to use informational asymmetries to
explain war and, especially, long wars have to pay a great
deal of attention to the mechanism through which the
actors convey information (e.g., the bargaining environ-
ment or protocol). In particular, these accounts have to
explain why it takes so long to resolve the informational
asymmetry.

The next two sections specify the costly-process
model and describe its relation to other formulations.
The third section discusses the bargaining and learning
that takes place in equilibrium when there is uncertainty
either over the cost of fighting or the distribution of power.
The fourth section extends the basic model by allowing
multiple offers between battles. The appendix contains
proofs of key results.
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FIGURE 1 Models of War
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(a) A round of the costly-lottery game.

(b) A round of the costly-process game.

A Costly-Process Model of Conflict

This section presents a costly-process model which gen-
eralizes the costly-lottery approach. In a typical costly-
lottery game, two states, say S and D, bargain about re-
vising the territorial status quo, q.4 Figure 1(a) depicts a
round of the game. S begins the game by making an offer,
x ∈ [0, 1], to D who can accept the offer, reject it, or go to
war to change the territorial status quo. Accepting ends the
game with the territory divided as agreed. If D fights, the
game ends and one state or the other is eliminated. More
precisely, the game ends in a lottery in which both states
pay a cost of fighting; D obtains all of the territory and
eliminates S with probability �; and S eliminates D and
thereby gains all of the territory with probability 1 − �.
The parameter � represents the distribution of power. If,
for example, � = 1

2 , then each state has the same chance
of winning and there is an even distribution of power. If,

4See Fearon (1995) and Powell (1999) for extensive discussions of
the costly-lottery model.

alternatively, � is close to one or zero, D or S has a pre-
ponderance of power. One can think of the game-ending
lottery as a fight to the finish in which either S collapses
and is unable to offer further resistance with probability
� or D collapses and is unable to offer further resistance
with probability 1 − �. If D rejects S’s offer, then S can
attack or pass. Attacking again ends the game in a lottery.
Passing ends the round, and another begins with S making
an offer.5

In the costly-process game, fighting only creates a risk
of collapse. If neither state collapses, the bargaining and
fighting can continue until the states reach agreement or
until one of them eventually does collapse. Assume, more
specifically, that if S and D fight in a given round, then this
fighting generates a risk kS that S collapses in that round
and a risk kD that D collapses. These risks are assumed to
be positive but possibly very small. Fighting is also costly,
and S and D pay costs s and d each time they fight.6

Figure 1(b) illustrates a round of the game. As be-
fore, state S begins by proposing a territorial division x
∈ [0, 1]. D can accept this offer, reject it, or fight. If D
accepts, the game ends with D and S in control of x and
1 − x , respectively. If D fights, the states pay costs s and
d, respectively, and the game ends with probability k ≡
1 − (1 − kD)(1 − kS), which is the probability that one or
both of the states collapse. If only S collapses, D obtains all
of the territory. If D alone collapses, S gets everything. If
both collapse, the territorial status quo q remains in place.
Finally, if neither state collapses, the current round ends,
and the next begins. If D rejects S’s offer without fighting,
then S has the option of fighting or not. Not fighting ends
the round and the next begins. If S fights, one or both
states collapse with probability k and the game ends. If
neither state collapses, the round ends and the next starts
with a new offer from S.

It will be useful to define the distribution of power
in the costly-process game. The distribution of power �

in the costly-lottery formulation is the probability that D
prevails in a fight to the finish (which is the only kind of

5There are several variants of the costly-lottery model depending
on which bargainers can make offers and how many they can make.
At one extreme, Fearon (1995) allows only one bargainer to make a
single take-it-or-leave-it offer. At the other extreme, Powell (1999)
allows both bargainers to make as many offers as they wish. In the
costly-process model discussed here, only one bargainer can make
offers but that bargainer can make as many offers as it pleases.
One-sided, infinite-offer models are more general than take-it-or-
leave-it models and easier to analyze than alternating-offer models.

6In the present analysis, s and d are taken to be the tangible costs
of war measured in lives and economic losses. These costs will be
discussed more fully below. Alternatively, one might think of s and
d as more subjective measures of the states’ resesolve or willingness
to fight. The larger s and d, the lower the states’ utilities to fighting,
and the less resolute or willing to fight they are.
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fight that can happen in that model). But there is another
equivalent way of interpreting �: It is the expected terri-
torial division resulting from a fight to the finish. That is,
� also equals D’s expected share of the territory, i.e., � =
(1)� +0(1−�) where, recall, D obtains all of the territory
with probability � and loses everything with probability
1 − �. Paralleling this, define the distribution of power p
in the costly-process model to be D’s expected territorial
division resulting from a fight to the finish. This is:

p ≡ kS(1 − kD)

k
+ qkSkD

k
. (1)

Note that the distribution of power shifts in favor of D
as its probability of collapse decreases, i.e., p is strictly
decreasing in kD.

The payoffs in the game are defined formally in the
appendix. Suppose, less formally, that the states agree at
time a to territorial division x after fighting at times f 1,
f 2, . . . , f n. The expected payoff to this outcome is the
payoff if the game ends when the states fight at f 1 weighed
by the probability that the game ends at that time, plus
the payoff if the game ends at time f 2 weighted by the
probability that the game ends at that time, and so on
through the n-th time that the states fight, plus the payoff
to agreeing to x at time a weighted by the probability that
the states did not collapse at times f 1, . . . , f n.

Finally, the model assumes one-sided incomplete in-
formation. S is uncertain either about D’s cost of fighting,
d, or about D’s probability of collapse, kD. Because p is
strictly decreasing in kD, uncertainty over kD is equiva-
lent to uncertainty over the distribution of power p (and
working with uncertainty over the former is much easier).
Although S is uncertain of D’s cost or of the distribution
of power, S believes that D is dissatisfied, i.e., D prefers
fighting to the finish to living with the status quo.7

Other Costly-Process Models

Recent work has relaxed the costly-lottery assumption in
several different ways that highlight complimentary as-
pects of the underlying process and reflect different mod-
eling trade offs.8 The present formulation is closest to
Wagner (2000). He also bases his analysis on a model in
which rejecting an offer generates a risk that the game will
end in that round because one state or the other collapses.
Wagner, however, does not formally derive the equilibria
of the game when there is asymmetric information, and,

7S’s beliefs are formalized in the appendix. The assumption that D
is dissatisfied eliminates a mulitplicity of equilibria.

8See Wittman (1979) for an earlier, path-breaking effort to model
conflict.

as will be discussed more fully below, some of his conjec-
tures about the equilibrium dynamics are only partially
correct.

Smith and Stam (2003) model the costly process dif-
ferently, emphasizing the way that the probability of ul-
timate success in a fight to the finish can shift back and
forth with the tide of battle. Building on Smith (1998a),
they assume that two states, say S and D, are bargaining
and that there are n “forts” which are initially divided be-
tween the states. S begins the game by making an offer
to D who can accept or reject. Accepting ends the game
on the agreed terms. If D rejects, the states fight with D
winning a fort with probability � and losing a fort with
probability 1 − �. The game continues in this way with S
making all of the offers until the states reach agreement
or until a state collapses because it no longer controls any
forts.

The states also disagree about the probability �. This
disagreement is not due to differences in the states’ infor-
mation about, say, their respective military capabilities
but to a more basic subjective difference about the bal-
ance of power. Formally, Smith and Stam assume that the
states have complete information but heterogeneous pri-
ors. This formulation contrasts with the informational
approach generally taken in economics and in the exist-
ing formal work on war. (Smith and Stam is the only
exception.) In this approach, actors are assumed to share
a common prior and any differences in their beliefs are
attributed to informational differences.9

Slantchev (2003) also uses Smith’s (1998a) basic
model of warfare but allows for alternating offers in the
context of one-sided uncertainty about the distribution
of power �. Following the informational approach, he at-
tributes the differences in the states’ beliefs about the dis-
tribution of power to informational differences. In this
case, one has state has private information about its mil-
itary capability.

Filson and Werner (2002a,b) underscore the resource
constraint states face when fighting. In their formulation,
the game begins with each state in control of a limited
amount of resources. As in Smith and Stam and Slantchev,
the states fight a battle whenever an offer is rejected with
D wining with probability � and losing with probability
1 − � . Fighting a battle also consumes resources
(although the amounts may differ depending on whether
a state wins or loses), and a state collapses when it runs

9An extended discussion of the common priors assumption is be-
yond the scope of the present analysis. (Morris 1995 provides a
good overview.) Suffice it to say here that this assumption is ex-
tremely strong and at best justified on methodological grounds:
among other things, it helps to discipline arguments. But it is also
well worth trying to relax this assumption in a disciplined way.
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out of resources. Thus, the bargaining continues un-
til the states reach agreement or until one of the states
runs out of resources. There is also one-sided uncertainty
about � .

These formalizations of fighting embody different
modeling trade offs. The costly process in Filson and
Werner (2002a) is the only one that explicitly models the
idea that resources are limited and consumed by fighting.
However, their treatment of bargaining is the simplest
and most restrictive: D can be one of only two possible
types (i.e., S is unsure whether D’s probability of prevail-
ing in a battle, �, is high or low), and the states’ resources
are so constrained that there can be no more than two
battles.10 Smith and Stam (2003) and Slantchev (2003)
trade a somewhat simpler formulation of the costly pro-
cess for a richer treatment of the dynamics of bargaining.
They abstract away from the resource constraint but do
not impose exogenous limits on the number of offers.
Slantchev’s alternating-offer formulation also allows him
to study signaling, albeit in a limited setting where D is
one of only three possible types.11 The costly process in
the present formulation is the simplest, abstracting away
from both the effects of the ebb and flow of battle and from
any resource constraints. But the analysis places fewer re-
strictions on S’s uncertainty about D, and this allows for
a more general treatment of the learning and updating
that occurs while fighting.12 And, as will be seen below,
the model can be readily extended to allow for multiple
offers between battles.

Bargaining and Learning
in Equilibrium

A satisfied state in a costly-lottery game faces a trade off
when deciding what to offer the dissatisfied state. The
more the satisfied state concedes, the better the chances
of a settlement but the worse the terms of that settlement.
The optimal offer that resolves this trade off typically en-
tails some risk that the dissatisfied state will reject the offer
and go to war.

10Filson and Werner (2002b) subsequently relax these constraints
to some extent in the context of specific numerical examples.

11Signaling occurs when a state with private information makes
offers. All of the other asymmetric-information models discussed
here focus on screening, i.e., the state with private information
receives offers but cannot make them.

12Formally, D’s type is not restricted to a finite number of potential
types. Rather, D’s type is assumed to be distributed according to a
continuous distribution which satisfies a few technical restrictions
(which are described in the appendix).

In the costly-process game, the satisfied state con-
fronts the same trade off when making its first offer, and
the optimal offer usually entails some risk of rejection and
fighting. But this fighting generally does not end the game.
With probability 1 − k, neither state collapses during the
first round of fighting, and the bargaining continues. The
satisfied state updates its beliefs based on the facts that
(i) the dissatisfied state rejected the opening offer and
that (ii) the dissatisfied state fought one round without
collapsing. In light of these updated beliefs, the satisfied
state makes a second offer which, like the first, usually
carries some risk of rejection. The bargaining continues
in this way until the dissatisfied state accepts an offer; one
of the states collapses; or there is so little uncertainty left
that S’s optimal offer is to concede enough to buy D off
and thereby end the bargaining.

These offers define the basic screening process that
characterizes the equilibrium, and this process is the same
regardless of the source of uncertainty. When there is un-
certainty over D’s cost of fighting, high-cost types accept
smaller offers and settle earlier than do low-cost types
who hang on longer and run greater risks of collapse in
order to obtain larger concessions. More specifically, S’s
offers x1 < x2 < x3 < · · · < xn induce a set of cut points
d̄ > d̃1 > d̃2 > · · · > d̃n = d

¯
such that the dissatisfied

state counters all of the satisfied state’s offers by fighting
until it accepts xj (assuming that neither of the states has
already collapsed) if its actual cost of fighting d is be-
tween d̃ j−1 and d̃ j . Similarly, S’s concessions when there
is uncertainty over the distribution of power induces a set
of cut points k̄D > k̃1 > k̃2 > · · · > k̃m = k

¯ D such that
the dissatisfied state counters the satisfied state’s offers by
fighting until accepting xj if the dissatisfied state’s prob-
ability of collapse kD is between k̃ j−1 > k̃ j . Stating the
results more formally:

Proposition 1. Suppose that S is satisfied, D is dissatis-
fied, and that S’s beliefs about D’s cost of fighting satisfy the
technical assumptions specified in the appendix. Then there
is a generically unique perfect Bayesian equilibrium. In it, S
makes a finite number of offers which are strictly increasing.
D responds to these concessions by fighting until ultimately
accepting an offer. The lower D’s cost d, the longer D fights
and the better terms it obtains, i.e., d fights at least as long
as d ′ if d < d ′.

Proposition 2. Suppose that S is satisfied, D is dissatis-
fied, and that S’s beliefs about D’s probability of collapse
satisfy the technical assumptions specified in the appendix.
Then there is a generically unique perfect Bayesian equilib-
rium. In it, S makes finitely many offers which are strictly
increasing . D responds to these concessions by fighting until
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ultimately accepting an offer. The more powerful D, the
longer it fights and the better terms it obtains, i.e., kD fights
at least as long as k′

D if kD < k′
D .

The demonstration of these results is extremely te-
dious. The appendix outlines the basic logic of the overall
argument and proves key lemmas. Powell (2003) provides
a more complete analysis.

Although the screening processes are broadly simi-
lar regardless of the source of uncertainty, there are sub-
tle differences in the learning processes underlying them.
Wagner (2000) argues that the bargaining and learning
that take place when there is uncertainty over the distri-
bution of power are different and simpler than they are
in standard economic models of bargaining in which, say,
a buyer has private information about how much he is
willing to pay for an object for sale.

In the standard bargaining models used in eco-
nomics, private information explains why agree-
ment is not immediate, but the only way that bar-
gainers have to reveal their private information is
by temporarily refusing to agree. Since they de-
termine whether and how long they will hold out,
they have an incentive to use this decision to mis-
represent their private information. As a result,
the signals they give by deciding whether to hold
out or not are noisy and can be interpreted only
by taking into account the strategic incentives of
the bargainers . . .

Bargaining in the context of war is different, in
that fighting is a source of information that is
much less subject to manipulation by adversaries
(2000, 478).

To the extent that Wagner’s argument holds, it goes
beyond the economic models of bargaining. It also applies
to costly-process models of war in which states have pri-
vate information over the cost of fighting as in the model
above. (See Kim 2002 for another example.) The only way
that states can signal their costs in these models, as in the
standard bargaining models in economics, is by refusing
to agree.

However, the analysis underlying Proposition 2 shows
that Wagner is only partially correct. When there is asym-
metric information about the distribution of power, fight-
ing does convey some information that, in a certain sense,
is less subject to strategic manipulation. But this less ma-
nipulable channel does not replace the more manipulable
channel present in the standard models. Both channels
are present.

In asymmetric-information models, one actor learns
about another actor or, more specifically, about another

actor’s type by watching how that actor behaves and then
updating its beliefs about that actor’s type in light of the
observed behavior. Suppose, for example, that a seller
makes an offer that one type of buyer, say b, is more likely
to reject than type b′ is. If the buyer subsequently does re-
ject this offer, then the seller reasons backwards from this
behavior and, applying Bayes’ law, becomes more confi-
dent that it is facing type b who was more likely to reject
the offer.

In what Wagner calls the standard model, learning de-
pends on different types behaving differently. If two types
behave identically, their behavior does not reveal anything
that helps another actor distinguish between them. Sup-
pose, for instance, that b and b′ are equally likely to reject
an offer that is ultimately rejected. The seller learns noth-
ing about the relative likelihood of these two types from
this rejection because both types would have behaved in
the same way.

In contrast to the standard models, fighting when
there is uncertainty over the distribution of power does
convey information about types even if they behave in the
same way. Suppose, for example, that the satisfied state is
trying to distinguish between types kD and k′

D where kD

is less likely to collapse than k′
D (kD < k′

D) and therefore is
more powerful. At the outset of the game, S believes that
D’s probability of collapse is distributed according to �

with density �. Consequently, the odds that S is facing kD

rather than k′
D are given by the ratio �(kD)/�(k′

D). Assume
further that in equilibrium both of these types reject S’s
initial offer. In a standard model, the odds of facing kD or
k′

D would remain �(kD)/�(k′
D) because both types behave

in the same way. But the fact that both types fought and did
not collapse reveals information about them even though
they behaved identically.

To see that this is the case, observe that the chances
that D’s probability of collapse is kD given that it fought
once and did not collapse is the probability of not col-
lapsing, (1 − kD), times the prior �(kD). Consequently,
the odds of kD versus k′

D given that D did not col-
lapse in the first round of fighting are (1 − kD)�(kD)/
[(1 − k′

D)�(k′
D)]. These updated odds are greater than

the initial odds �(kD)/�(k′
D) because kD < k′

D . Thus, the
satisfied state becomes more confident that it is facing
the more powerful type kD relative to k′

D even though
both types behaved identically. Indeed, the odds of facing
kD increase with each round of fighting. If these types
have fought r times without collapsing, the odds rise to
(1 − kD)r �(kD)/[(1 − k′

D)r �(k′
D)]. This is the sense in

which fighting conveys information that is less subject to
strategic manipulation.

Fighting, however, is only one of the ways that in-
formation is conveyed when there is asymmetric in-
formation. Dissatisfied types also have an incentive to
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misrepresent their types by delaying an agreement in or-
der to appear “tougher” just as they do in standard models.
To verify this, consider S’s beliefs about D when making
the r + 1-st offer, xr+1. The proof of Proposition 2 shows
that these beliefs depend on the prior �(kD) updated in
light of the facts that D fought r times without collapsing
and that kD must be no more than kr (otherwise D would
have accepted a previous offer).

To formalize this updating, define the posterior dis-
tribution �r (kD) to be the prior distribution � given that
D has fought r times without collapsing. This updated dis-

tribution is �r (kD) = [
∫ kD

k
¯D

(1 − z)r �(z) dz]/[
∫ k̄D

k
¯D

(1 −
z)r �(z) dz]. Then, S’s beliefs when making the r + 1-st
offer are given by �r conditional on kD < kr , i.e., by
�r (kD)/�r (kr).

The fact that S’s beliefs depend on both the distribu-
tion �r and the cut point kr means that information is
conveyed through two channels when there is uncertainty
over the distribution of power. �r reflects the first chan-
nel. It depends solely on the prior � and the number of
previous rounds of fighting. The cut point kr captures the
effects of the second channel. This cut point is the type
that is indifferent between accepting the r-th offer and
fighting one round before accepting the next offer. But,
S’s next offer depends on its beliefs when making that of-
fer, and these beliefs depend on the cut point kr . Hence,
which types hold on for the next offer and what S offers
next are strategically interdependent. This means that the
signals dissatisfied types send “by deciding whether to
hold out or not are noisy and can be interpreted only by
taking into account the strategic incentives of the bargain-
ers” (Wagner 2000, 478) even when there is uncertainty
about the distribution of power.

In sum, bargaining while fighting when there is uncer-
tainty or, more precisely, asymmetric information about
the distribution of power does not substitute one channel
of conveying information which is less manipulable for
another. This type of bargaining combines both channels.

Multiple Offers Per Battle and the
Importance of the Bargaining

Environment

The preceding suggests that it may be quite difficult em-
pirically to distinguish conflicts that arise because of un-
certainty over costs or from those due to uncertainty over
the distribution of power. Propositions 1 and 2 show
that the basic screening processes are the same in the
model regardless of the source of uncertainty and, con-
sequently, cannot be used to differentiate between these

sources.13 Although the learning processes are subtly dif-
ferent, it seems doubtful that this difference could provide
a basis for distinguishing between these sources given the
limitations of the data that generally exist in international
relations. This section proposes one way of differentiating
between these two sources of uncertainty based on the idea
that states can often make offers much more quickly than
they can prepare for battle.14 The analysis also demon-
strates that the bargaining environment in informational
explanations of war may play a critical role in shaping the
dynamics of conflict, e.g., the duration of the fighting.
The potential significance of these effects suggests that
empirical studies need to take these effects into account.

To modify the model to allow for multiple offers be-
tween battles, suppose that S can make m offers between
battles. That is, the states pay “mobilization” or “prepara-
tion” costs if the dissatisfied state “fights” in Figure 1(b)
in response to the first m − 1 offers by preparing to fight.
(The substantive interpretation of these costs and their
relation to the cost of fighting in the one-offer-per-battle
game are discussed below.) But the states do not actually
fight and therefore run no risk of collapse. If, however,
the dissatisfied state fights in response to the m-th offer,
the states do run a risk of collapse.

The ability to make multiple offers before having to
run the risk of collapse affects the screening processes
differently. If there is uncertainty over costs and if the
number of offers between battles, m, is sufficiently large,
then the states settle before they ever fight. If, by contrast,
the states are uncertain about the distribution of power,
screening requires that there must be some chance that the
states fight regardless of the number of offers per battle.
This suggests that crises driven by uncertainty over costs
will frequently settle short of large scale fighting while
those driven by uncertainty over the distribution of power
are more likely to entail significant fighting.

More formally, suppose there are m offers per battle
where the time between offers is � ≡ 1/m (and, there-
fore, the total time between battles is m� = 1 as it is in the
one-offer-per-battle game above). S begins the game by
making an offer which D can accept or counter by fighting

13As might be expected, the comparative statics also appear to be
quite similar although I have not been able to characterize all of
them explicitly.

14This, of course, depends on the existing military and commu-
nications technologies. When proposals had to be carried by ship,
bargaining may not have been faster. The Treaty of Ghent ending
the War of 1812 was signed on December 24, 1814; American en-
voys carrying the treaty left London on January 2, 1815; and the
treaty arrived in Washington, D.C., for ratification on February 14.
Meanwhile, British and Amerian forces fought the Battle of New
Orleans on January 8 (Hickey 1989).



BARGAINING AND LEARNING WHILE FIGHTING 351

or waiting. If D waits, S decides whether to fight or wait af-
ter which the round ends. If either state decides to fight, S
and D pay costs s m and dm, but there is no risk of collapse.
The game continues in this way through m − 1 offers. If,
however, the states fight in the m-th round, then S and D
collapse with probabilities kS and kD, respectively. If nei-
ther collapses, there is no further risk of collapse until S
makes the 2m-th offer. The game continues this way until
the states agree on a settlement or one of them collapses.
Finally, the discount factor and the states’ payoffs are ad-
justed in order to make the games comparable regardless
of the number of offers between battles.15

Now consider the equilibrium screening process in
the m-offer game in which S is uncertain of D’s cost. Be-
cause D pays this cost whether or not the states generate
any risk of collapse, S, not surprisingly, can still use its
offers to screen the dissatisfied state even when reject-
ing those offers entails no risk of collapse. Furthermore,
Proposition 3 shows that the bargaining satisfies the Coase
conjecture which posits that the outcome of the bargain-
ing will be efficient, i.e., the bargaining is virtually certain
to end almost immediately if the time between offers is
small enough (or, equivalently, if the number of offers m
is large enough).16

Proposition 3. For any ε > 0, there exists an M such that
the probability that the bargaining ends by time ε is greater
than 1 − ε whenever the number of offers-per-battle is at
least M .

Proof : See the appendix for a sketch.

15Since the time between offers is shorter in the m-offer game, the
states discount less between offers and the discount factor �m in
the m-offer game is �m ≡ �1/m. The states’ per-offer costs, s m and
dm, must also be amended so that the total cost of preparing for
and fighting one battle remains s and d. That is, the total cost of
paying s m for m-rounds,

∑m−1
j=0 � j

msm, must equal s. This implies
s m = s (1 − �m)/(1 − �) and similarly for dm. Finally, a state’s per-
period payoff, xm, to controlling a fraction x of the territory in the
m-offer game must be normalized so that it is the same as the payoff
to controlling x for one period in the one-offer game. This leaves
xm = x(1 − �m)/(1 − �).

16The Coase conjecture, stationary strategies, and the fact that S
never makes offers that are sure to be rejected (as described in
Propositions 1 and 2) are closely related. Suppose D’s strategy is
stationary in the sense that D’s response to an offer of x is inde-
pendent of the previous history of offers leading up to x as long as
x is larger than any previous offer. Gul and Sonnenschein (1988)
then show (in a buyer-seller game) that stationarity implies that
the Coase conjecture holds. It is also clear that S will never make
an offer which is sure to be rejected. For S could always do better
by skipping that offer, because stationarity ensures that skipping
an offer does not affect D’s response to subsequent offers. See
Fudenberg and Tirole (1991, 401) and Gul, Sonnenschein, and
Wilson (1986) for further discussion of the Coase conjecture.

The screening dynamics are different if S is uncertain
of the distribution of power. If there is any bargaining at
all, then there must be some chance that the states fight
at least one battle. If, that is, S does not initially offer
enough to buy off the toughest type k

¯ D (and, therefore,
any other type), then there must be a positive probability
that the states actually fight a battle. (The appendix also
establishes a condition sufficient to ensure that S does not
immediately end the game by offering enough to buy k

¯ D

off at the outset of the game.)

Proposition 4. Suppose S is uncertain of the distribution
of power in the m-offer game. Then the game either ends
immediately with S’s offering enough to buy off the toughest
type it might be facing, namely k

¯ D , or there is a positive
probability that the states fight at least one battle.

See the appendix for a formal discussion of this result.
To sketch the basic argument, suppose S’s first offer is x1

and k
¯ D strictly prefers waiting for a subsequent offer, say

xj , that S makes no later than round m, i.e., before any
fighting takes place. This leads to a contradiction. Because
all types kD pay the same cost dm and do not have to run
any risk of collapse in order to obtain xj , the payoff to
accepting x1 or waiting for xj is the same for all types.
Hence, all kD are sure to reject S’s initial offer x1 and wait
for xj because k

¯ D strictly prefers waiting for xj . But this
is a contradiction as it is straightforward to show that S
never makes an offer in equilibrium which is sure to be
rejected because S could do better by simply skipping that
offer.17

Two conclusions follow from these results. First, to
the extent that asymmetric information is the underlying
cause, crises due to uncertainty over the distribution of
power seem likely to last longer and entail more fighting
than those growing out of uncertainty over costs.18 In-
deed, there may be little or no fighting in the latter case if
states can make offers quickly.

The second, broader conclusion is that the bargain-
ing environment through which actors convey informa-
tion may play a critical role in informational accounts of
war and, especially, of prolonged conflict. Costly-lottery
models obscure this role, and its importance has hereto-
fore not been fully appreciated in either theoretical or
empirical work on war. For example, existing empirical
studies of duration (e.g., Bennett and Stam 1996) tend

17If k
¯ D is indifferent between xj and x1 and the game does not end

immediately, then an atom of types must be holding out for xj . But
this too leads to a contradiction as S would be able to increase its
payoff by offering slightly more than x1 and settle immediately.

18For discussions about noninformational explanations of war, see
Fearon (1995) and Powell (2002, 23–27).
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to focus on factors like the states’ total military capabil-
ities and the distribution of power and do not consider
the bargaining environment in which the underlying con-
flicts play out. But the results above show that features of
the bargaining environment such as how fast states can
make offers can swamp the effects that factors like the
distribution of power have on the duration of war.

This second conclusion requires elaboration for it de-
pends on a careful interpretation of “costs” and, more
subtly, of the relation between formal results and their
substantive meaning. In the one-offer-per-battle model,
s and d conflate the economic costs of mobilizing and
preparing for war with the costs of actually fighting, the
loss of life and physical destruction. This is also true of
other costly-process models (e.g., Filson and Werner 2002;
Slantchev 2003; Smith and Stam 2003) and the costly-
lottery models.

The multiple-offer model makes it possible, indeed
requires, that these costs be separated. Let dp be D’s per-
period cost of preparing to fight and df be its cost of
fighting. Then the total cost of preparing for and fighting
a battle, which is simply s in the one-offer game, can be
broken down into the total cost of mobilizing in m − 1
rounds plus the cost of fighting in the m-th round. In
symbols, s = ∑m−2

j=0 �
j
mdp + �m−1

m d f where �m = �1/m is
the comparable discount rate for the m-offer game (see
footnote 15).

The discussion above assumed that dp and df were
equal, i.e., dp = df = dm. If, alternatively, these costs are
unequal but directly related to each other with higher
mobilization costs associated with higher costs of fight-
ing, then S can still screen D during the mobilization
phase (i.e., during the m − 1 offers preceding a battle)
because continuing to mobilize in order to secure a better
offer costs different types different amounts. Proposition
3, therefore, continues to hold.

Suppose, however, that dp and df are completely un-
related and that the mobilization costs are the same for
every type of D, i.e., what distinguishes different types of
D are their costs of fighting df . If so, then S can no longer
use dp to screen D during the mobilization phase and re-
sults analogous to those in Proposition 4 obtain: There
must be some chance of fighting if the game does not end
immediately.19

All of this underscores the potential sensitivity
of informational accounts of war to the bargaining

19The results in Proposition 4 depend on the fact that kD and k ′
D

obtain the same payoff to agreeing to x at time t1 and the same
payoff to continuing to mobilize in order to obtain y at some later
time t2 as long as there are no battles between t1 and t2. The same is
true if each type of D has the same mobilization cost dp but different
mobilization cost than df .

environment—to the sources of uncertainty and the abil-
ity to resolve that uncertainty.20 This sensitivity means
that future informational efforts should either include
some robustness checks for a particular formalization of
the bargaining environment or they should ground that
formalization empirically. For example, a satisfactory ex-
planation of prolonged fighting that only holds if the states
cannot make offers quickly must also explain in an empir-
ically convincing way why the states cannot make offers
quickly.

Conclusion

Modeling war as a game-ending move has proved enor-
mously useful both theoretically and empirically. But this
simplification necessarily limits the scope of the analysis
to the origins of war. Investigating the strategic interac-
tion inherent in the conduct of war requires more explicit
models of the process of fighting.

The present study sees war as a process during which
the states can continue to bargain while facing a risk of
military collapse. The model also allows for uncertainty
over the costs of fighting or over the distribution of power.
In equilibrium, the satisfied state, regardless of the source
of uncertainty, makes a series of ever more attractive of-
fers. These offers screen the dissatisfied state with tougher
types (i.e., stronger or low-cost types) fighting longer in
order to secure a better agreement but at the cost of run-
ning a greater risk of military collapse. There are, however,
subtle differences in the underlying learning processes as-
sociated with each source of uncertainty. When there is
uncertainty over the distribution of power, fighting it-
self conveys information even about types that behave
identically.

To distinguish between conflicts arising from these
different sources, the analysis made an identifying as-
sumption: States can make offers more quickly than they
can prepare for and fight battles. In these circumstances,
crises arising from uncertainty over costs are likely to be
shorter and entail less fighting (and in the limit no fight-
ing). By contrast, crises resulting from uncertainty over
the distribution of power are likely to be longer and entail
significant fighting.

20To highlight this sensitivity and complicate matters still further,
the present model, like other costly-process models, follows the
Rubinstein-Ståhl approach of in which the timing of the offers
is imposed exogenously. An alternative approach endogenizes the
timing of the offers. Admati and Perry (1987) develop this approach
in a buyer-seller context, and Heifetz and Segev (2002) use this
approach to model conflict.
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Finally, the critical role that the bargaining environ-
ment plays in the present analysis and is likely to play in
other informational accounts of war poses a challenge for
future work. Future efforts to explain conflict, especially
prolonged conflict, in terms of informational problems
must give detailed attention to and a plausible empirical
account of the mechanism through which the bargainers
can and cannot convey information.

Appendix

This appendix formalizes some aspects of the game and
outlines the proofs of Propositions 2, 3, and 4. (The ba-
sic logic establishing Proposition 1 is the same as that of
Proposition 2.) The proofs of some key lemmas are also
presented, but limitations of space prevent a more com-
plete presentation. (See Powell 2003 for omitted proofs.)

Some Preliminaries

Some preliminaries are needed before sketching the ar-
guments. Recall that the distribution of power, p =
kS(1 − �)/k + qkS�/k, is D’s expected territorial share
resulting from a fight to the finish. (For expositional ease,
it will be convenient to use the simpler notation � in-
stead of kD to represent D’s probability of collapse where
� ∈ [�

¯
, �̄].) The distribution of power can be interpreted

in another way which will be useful in specifying the states’
payoffs. Suppose the game is in a round, say m, and ends
in that round because one or both of the states collapses in
that round. Then, the distribution of power is also equiva-
lent to the expected territorial division resulting from that
collapse. To establish this, note that the probability that
S alone collapses given that one of the states collapses is
kS(1 − �)/k, and the probability that S and D collapse
given that one of them does is kS�/k. Hence, the first
term in the expression for p is the total territory (i.e.,
one) weighted by the conditional probability that S alone
collapses, and the second term is D’s status quo share
q times the conditional probability that both states col-
lapse. Thus, p is D’s expected territorial share conditional
on the game’s ending in a specific round because one or
both states collapses in that round.

To formalize the payoffs, suppose that the states agree
at time a to territorial division x after fighting at times
f 1, f 2, . . . , f n. The probability that the game ends when
the states fight for the m-th time in period f m is the
probability that the states do not collapse during their
first m − 1 fights and then do. This is (1 − k)m−1k. D’s
payoff if the states collapse at this time is its return to

having q through time f m less paying d in rounds f 1,
f 2, . . . , f m when the states fight plus the payoff to hav-
ing the expected territorial share p from time f m + 1
on. This is

∑ fm

j=0 � j q − ∑m
j=1 � f j d + p

∑∞
j= fm+1 � j . The

probability that the states do not collapse before agree-
ing to x at time a after fighting n times is (1 − k)n, and
D’s payoff to this outcome is

∑a−1
j=0 � j q − ∑m

j=0 � f j d +∑∞
j=a � j x . Pulling all of this together, D’s expected payoff

to agreeing to x at a after fighting at times f 1, f 2, . . . ,
f n is: [

∑n
m=1(1 − k)m−1k(

∑ fm

j=0 � j q − ∑m
j=1 � f j d +

p
∑∞

j= fm+1 � j )] + (1 − k)n[
∑a−1

j=0 � j q − ∑m
j=0 � f j d +∑∞

j=a � j x]. S’s payoff is defined analogously.
A player-type � of D is dissatisfied in the costly-

process game if � ’s payoff to fighting to the finish,
F D(�), is greater than its payoff to living with the status
quo. In symbols, � is dissatisfied if FD(�) = ∑∞

m=0(1 −
k(�)) j k(�)[

∑m
n=0(q − d)�n + p(�)

∑∞
n=m+1 �n] > q/

(1 − �). This reduces to p(�) − q > d(1 − �)/(� k(�)).
Now let x̃(�) denote � ’s certainty equivalent of fight-

ing to the finish. That is, x̃(�) satisfies x̃(�)/(1 − �) =
FD(�) which yields x̃(�) = [�k(�)p(�) + (1 − �)(q −
d)]/[1 − �(1 − k(�))]. It is straightforward to show that
D’s certainty equivalent for fighting increases as its prob-
ability of collapse � decreases, i.e., is x̃(�) decreasing in � .
If, moreover, � is dissatisfied, then � ’s payoff to fighting
to the finish is strictly higher than its payoff to living with
the status quo: x̃(�) > q .

Formalizing S’s beliefs, S believes that d is distributed
over [d

¯
, d̄] according to the cumulative distribution func-

tion G(d) which has a bounded and continuous density
0 < g

¯
≤ g (d) ≤ ḡ . That D is sure to be dissatisfied implies

�k(p − q) − (1 − q)d ≤ 0 for all d ∈ [d
¯
, d̄]. If S is uncer-

tain about the distribution of power, then � is distributed
over [�

¯
, �̄] according to �(�) which has a bounded den-

sity 0 < � ≤ �(�) ≤ �̄. It will also be necessary to assume
that the derivative of the density, �′(�), is bounded at least
in a neighborhood of �

¯
. As before, � is common knowl-

edge as is the fact that D is dissatisfied, i.e., �k(�)(p(�) −
q) − (1 − �)d ≤ 0 for all � ∈ [�

¯
, �̄].

Finally, Lemma 3 below shows that S’s beliefs along
the equilibrium path are described by a cut point � ′ and
the number of previous fights r (along with the prior �).
Call the pair (� ′, r ) the state of the game.

Basic Lemmas for Proposition 2

Proving Proposition 2 or the stronger version stated be-
low takes three steps. The first establishes four lemmas
that describe conditions that any perfect Bayesian equi-
librium (PBE) of the game must satisfy. The second step
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uses these results to specify a dynamic programing prob-
lem and then shows that the solution to this problem is
generically unique. Finally, a series of offers and cut points
is a PBE-path if and only if it is a solution to the dynamic
programing problem.

The first lemma shows that if �̂ is the toughest type
that S might be facing, then S never offers more than �̂ ’s
certainty equivalent of fighting to the finish, x̃(�̂). The
second lemma demonstrates that D never waits; it either
accepts the current proposal or fights. Third, S’s beliefs
along the equilibrium path are truncations of �r , i.e., the
prior beliefs � conditioned on the number of previous
fights r. Finally, there is a �∗ > �

¯
such that S ends the

game by buying off the toughest type by offering x̃(�
¯
)

whenever the state is bounded above by �∗.

Lemma 1. Fix a PBE and let ĥ be any history, �( ĥ) be the
support of S’s beliefs at ĥ, �̂ = min{� : � ∈ �( ĥ)} be the
toughest type S might be facing at ĥ, and h be any history
that passes through ĥ, i.e., ĥ ⊆ h. Then S never offers more
than x̃(�̂) at h.

Lemma 2. Consider any PBE and let h be any history (not
necessarily on the equilibrium path) at which S makes an
offer. Taking �(h) to be the support of S’s beliefs at h, the
set of � ∈ �(h) that wait in response to S’s offer at h has
measure zero.

Lemma 3. S’s beliefs in period r along any PBE path are
a truncation of �r (�).

Lemma 4. There exists a �∗ > �
¯

such that S offers x̃(�
¯
)

in any state (� ′, r ) if � ′ ≤ �∗.

Defining a Dynamic Programming
Problem

The next step in the proof of Proposition 2 is to specify
a dynamic programing problem. Lemma 1 ensures that
S never offers more than the certainty equivalent of the
toughest type. Suppose, then, that S is exogenously con-
strained to make at most one offer before proposing x̃(�

¯
).

If the current state is (� ′, r ), S ’s payoff to offering x is:

V1|r (x | � ′) ≡ 1 − x

1 − �

(
�r (� ′) − �r (�̃)

�r (� ′)

)

+
∫ �̃

�
¯

[
1 − q − s + �k(�)

(
1 − p(�)

1 − �

)

+ �(1 − k(�))

(
1 − x̃(�

¯
)

1 − �

)]
d�r

�r (� ′)

where �̃ is the type that is indifferent between accepting
x and waiting for x̃(�

¯
). The first term is S’s payoff if D

accepts x weighted by the probability that D accepts. The
second term is S’s expected payoff to fighting one more
period, namely, S’s status quo share 1 − q , less the cost of
fighting s, plus the discounted value of its territorial share
if the game ends in collapse weighted by the probability
of collapse k(�), plus the discounted the payoff to settling
on x̃(�

¯
) weighted by the probability that the states do not

collapse. (The integral reflects the fact that S does not
know D’s probability of collapse.) Now define 	1|r (� ′) ≡
arg maxx∈[0,1]V1|r (x | � ′), 	

¯ 1|r (� ′) ≡ min{y : y ∈
	1|r (� ′)}, 	̄1|r (� ′) ≡ max{y : y ∈ 	1|r (� ′)}, 	̂1|r (� ′)
to be the convexification of 	1|r (� ′), i.e., 	̂1|r (� ′) ≡
{y : 	

¯ n|r (� ′) ≤ y ≤ 	̄n|r (� ′)}, and V1 | n(−� ′) ≡
max V1 | n(x|� ′).

Working backward, suppose that starting in state
(� ′, r − 1), S can make no more than two offers before
offering x̃(�

¯
). Then S would maximize

V2|r−1(x | � ′) ≡ 1 − x

1 − �

(
�r−1(� ′) − �r−1(�̃)

�r−1(� ′)

)

+
∫ �̃

�
¯

[
1 − q − s + �k(�)

(
1 − p(�)

1 − �

)

+ �(1 − k(�))V∗
1|r (�̃)

]
d�r−1

�r−1(� ′)

subject to the constraint that �̃ is indifferent between ac-
cepting x and fighting one round for some y ∈ 	̂1|r (�̃).
(The game-theoretic interpretation of y is that it is S’s
expected next offer. Because S’s next offer must maxi-
mize its payoff, i.e., be an element of 	1|r (�̃), the expected
next offer must be an element of 	̂1|r (�̃).) Continuing
in this way, define Vn|r (x|� ′), V∗

n|r (� ′), 	n|r (� ′), 	
¯ n|r (� ′),

	̄n|r (� ′), and 	̂n|r (� ′) recursively.
Now specify the correspondence 
 n|r (�) to be � ’s pos-

sible payoffs to fighting one round in order to obtain an
element of 	̂n|r (�):


n|r (�) ≡ {(1 − �)(q − d) + �k(�)p(�)

+ �(1 − k(�))y : y ∈ 	̂n|r (�)}
= (1 − �)(q − d) + �kS[1 − �(1 − q)]

+ �(1 − kS)(1 − �))	̂n|r (�).

Also, let 

¯ n|r(�) ≡ min{y : y ∈ 
n|r(�)} = (1 − �)(q − d)

+ �k(�)p(�) + �(1 − k(�))	
¯ n|r (�) and 
̄n|r (�) ≡

max 
n|r (�).
Finally, to ease the notational burden normalize

V n|r (x | � ′) by letting Wn|r (x | � ′) ≡ (1 − �)	r (� ′)×
V n|r (x | � ′) and W∗

n|r (� ′) ≡ (1 − �)	r (� ′)V∗
n|r (� ′)
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where 	r (� ′) ≡ ∫ � ′

�
¯

(1 − �)r �(�) d� and, consequently,

�r (� ′) = 	r (� ′)/	r (�̄). This leaves

Wn+1|r (y|� ′)

= (1 − y)[	r (� ′) − 	r (�̃)]

+
∫ �̃

�
¯

[
(1 − �)(1 − q − s ) + �k(�)(1 − p(�))

+ �(1 − �)(1 − k(�))V∗
n|r+1 (�̃)

]
(1 − �)r �(�)d�

= (1 − y)[	r (� ′) − 	r (�̃)] + [
(1 − �)(1 − q − s )

+ �(1 − qkS)
]
	r (�̃) − �(1 − qkS)	r+1(�̃)

+ �(1 − kS)W∗
n−1|r+1(�̃) (A1)

where �̃ is the subsequent cut point and the second equa-
tion uses the facts that 1 − k(�) = (1 − kS)(1 − �) and
k(�)p(�) = kS[1 − � (1 − q)].

Lemma 5 establishes useful properties about
Wn|r (y | �), 	̂n|r (�), and 
 n|r (�):

Lemma 5. The following properties hold for all r ≥ 0 and
n ≥ 0:

(i) Wn|r (y | �) is continuous in y and � and strictly
increasing in � .

(ii) The correspondence 	̂n|r (�) is upper hemi-
continuous and nonincreasing (i.e., 	

¯ n|r (�)≥ 	̄n|r (� ′) for
any � ′ > �), whereas 
 n|r (�) is upper hemi-continuous
and strictly decreasing (i.e., 


¯ n|r (�) > 
̄n|r (� ′) for any

� ′ > �).
(iii) Consider S’s offer of y in Wn+1|r−1(y|�̂). Then,

the next cut point �̃n+1|r−1(y) is a continuous, nonincreas-
ing function of y defined by the unique � for which y ∈

 n|r (�). The expected next offer en|r (y) is a continuous,
nondecreasing function of y. This offer is the unique e such
that e ∈ 	̂n|r (�̃n+1|r−1(y)) and �̃n+1|r−1(y) is indifferent
between accepting y and fighting one round for en|r (y), i.e.,
y = (1 − �)(q − d) + �k(�̃n+1|r−1(y))p(�̃n+1|r−1(y)) +
�(1 − k(�̃n+1|r−1(y)))en|r (y).

Proof: Figure 4 illustrates the correspondences
	̂n+1|r−1(�) and 
 n|r (�) and the state �̃n+1|r−1(y) induced
by offering y ∈ 	n+1|r−1(� ′) (where 	n+1|r−1(� ′) is ass-
umed to be a singleton). Arguing by induction on n,
conditions (i)–(iii) hold trivially for n = 0 and r ≥ 0
as W0|r (y|�) ≡ (1 − �)(1 − x̃(�

¯
))	r (�) and 	0|r (�) =

{x̃(�
¯
)}. Suppose they hold for n and any r ≥ 0. Equa-

tion (A1) immediately implies that Wn+1|r (y|�) is strictly
increasing in � . The continuity of W∗

n and �̃n+1|r−1

also ensures that Wn+1|r (y|�) is continuous in y. Thus,
condition (i) holds for n + 1.

FIGURE A.1 Solutions to Wn|r (�)

As for condition (ii), Wn+1|r (y|�) is continuous and
being maximized over the compact set y ∈ [0, 1] which
varies continuously (or rather does not vary at all) with � .
Consequently, 	n+1|r (�) is well-defined and upper hemi-
continuous. The convexification 	̂n+1|r (�) is also upper
hemi-continuous since 	n+1|r (�) is bounded for all � and
the graph of 	̂n+1|r (�) is closed.

To see that 	̂n+1|r (�) is nonincreasing, let � ′ > � .
Since offering y induces the same cut point regard-
less of whether the current state is � ′ or � (see Equa-
tion A1), Wn+1|r (y|� ′)− Wn+1|r (y|�)= (1− y)[	r+1(� ′)
− 	r+1(�)]. Consequently,

[1 − 	̄n+1|r (� ′)][	r+1(� ′) − 	r+1(�)]

= Wn+1|r (	̄n+1|r (� ′) | � ′) − Wn+1|r (	̄n+1|r (� ′) | �)

≥ W∗
n+1|r (� ′) − W∗

n+1|r (�)

≥ Wn+1|r (	n+1|r (�)|� ′) − W∗
n+1|r (�)

≥ [
1 − 	

¯ n+1|r (�)][	r+1(� ′) − 	r+1(�)
]
.

This leaves 	n+1|r (�) ≥ 	̄n+1|r (� ′). It follows that

 n+1|r (�) is strictly decreasing in � since 
n+1|r (�) =
(1 − �)(q − d) + �kS[1 − �(1 − q)] + �(1 − kS)(1 −
�)	̂n+1|r (�) and 	̂n+1|r (�) is nonincreasing. Hence, con-
dition (ii) holds for n + 1.

To establish (iii), consider the state and expected
next offer induced by S’s offer of y in Wn+2|r−1(y|�̂).
By construction, the subsequent cut point � satisfies y ∈

 n+1|r (�). But 
 n+1|r (�) is strictly decreasing. Hence, a
single � satisfies the condition that y ∈ 
 n+1|r (�), and
this defines � as a function of y. The expected next offer
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e is also a function of y since y ∈ 
 n+1|r (�) implies y =
(1 − �)(q − d) + �kS[1 − �(1 − q)] + �(1 − kS)(1 −
�)e for some e ∈ 	̂n+1|r (�) and � is a function of y. Call
these functions �̃n+2|r−1(y) and en+1|r (y).

To see that �̃n+2|r−1(y) is nonincreasing, assume the
contrary. Then there is a y ′ > y such that � ′ > �

where � ′ ≡ �̃n+2|r−1(y ′) and � ≡ �̃n+2|r−1(y). Since y ′ ∈

 n+1|r (� ′) and y ∈ 
 n+1|r (�), it follows that 
̄n+1|r (� ′) −


¯ n+1|r (�) ≥ y ′ − y > 0 which in turn implies �(1 −
kS)[(1 − � ′)	̄n+1|r (� ′) − (1 − �)	

¯ n+1|r (�)] > �kS(1 −
q)(� ′ − �) > 0. Since 	̂n+1|r (�) is nonincreasing, the
previous inequality reduces to the contradiction 0 >

(� − � ′)	n+1|r (�) > 0. This contradiction guarantees
�̃n+2|r−1(y) is nonincreasing. That the graph of 
 n+1|r (�)
is connected and strictly decreasing also ensures that
�̃n+2|r−1(y) is continuous.

Finally, en+1|r (y) = [y − (1 − �)(q − d) − �kS[1 −
�̃n+2|r−1(y)(1 − q)]]/[�(1 − kS)(1 − �̃n+2|r−1(y))] is
clearly continuous since �̃n+2|r−1(y) is. To see that
en+1|r (y) is nondecreasing, suppose y ′ > y. Since
�̃n+2|r−1(y) is nonincreasing, � ′ ≤ � where � ′ ≡
�̃n+2|r−1(y ′) and � ≡ �̃n+2|r−1(y). If � ′ = � , then
the expression for en+1|r (y) shows that en+1|r (y ′) −
en+1|r (y) = (y ′ − y)/[�(1 − kS)(1 − �)] > 0. If
� ′ < � , then en+1|r (y ′) ≥ 	

¯ n+1|r (� ′) ≥ 	̄n+1|r (�) ≥
en+1|r (y) since 	̂n+1|r (�) is nonincreasing. Thus, en+1(y)
is nondecreasing and (iii) and holds for n + 1. �

Three more lemmas are needed in order to specify
the dynamic programing problem. The first shows that
being constrained to make no more than n offers does not
affect the set of optimal offers as long as n is sufficiently
large. (Ultimately this will ensure that S only makes finitely
many equilibrium offers.)

Lemma 6. There exists a finite N̄ such that W∗̄
N|r (�) =

W∗̄
N+ j |r (�) and 	N̄|r (�) = 	N̄+ j |r (�) for all � ∈ [�

¯
, �̄],

r ≥ 0, and j ≥ 0.

The intuition underlying this result is that each re-
alization or fight shifts the distribution of � toward �

¯
.

That is, �r (�) is increasing in r. After a sufficiently large
number of realizations, so much of the mass is close
to �

¯
that S’s optimal offer is x̃(�

¯
). Hence the num-

ber of offers is bounded. (Again, proofs are in Powell
2003.)

Now take N to be the smallest N̄ such that limiting
S to no more than N̄ offers before proposing x̃(�

¯
) does

not actually constrain S. Lemma 7 demonstrates that the
distance between any two states is bounded away from
zero:

Lemma 7. Let (� i , m) and (� i−1, m + 1) be any two
consecutive states along any solution to W∗

n|r (�) where �i ≥
�̂ and �̂ is as defined in Lemma 4 (i.e., 	n|r (�) = {x̃(�

¯
)}

for any � ≤ �̂ ). Then, there exists an ε > 0 such that � i −
� i−1 > ε for any n ≥ 0 and r ≥ 0.

Finally, observe that if S offers y in Wn|r (y|� ′), then
Lemma 5 ensures that S’s expected next offer e is an ele-
ment of the convexification of 	n−1|r+1(�) given by y ∈

 n−1|r+1(� ′′). If e does not maximize Wn−1|r+1(� ′′), i.e.,
if e /∈ 	n−1|r+1(� ′′), then the game-theoretic interpreta-
tion of e is that it is part of a mixed strategy in which S
randomizes over elements of 	n−1|r+1(� ′′). This suggests
that there may be a substantial amount of mixing along
the path that maximizes Wn|r (y|� ′). Lemma 8 shows that
this is not the case. S may randomize over the elements
of 	n|r (� ′) when maximizing Wn|r (y|� ′). But all of S’s
subsequent offers are deterministic.

Lemma 8. If S offers y ∈ 	n|r (� ′) for any n, r ≥ 0, then
S’s subsequent offers are deterministic and defined by y =


¯ n−1|r+1

(�).

The preceding lemmas make it possible to define a
dynamic programming problem such that: (i) S can make
arbitrarily many offers, and (ii) proposing y in state (�̂ , r )
induces a cut point defined by y ∈ 
 N|r (�). To this end,
let

Mr (� ′, {ym}∞m=0)

≡
∞∑

m=0

[
�m(1 − kS)m

(
(1 − ym)

[
	r+m

(

−1

N|r+m(ym−1)
)

− 	r+m
(

−1

N|r+m(ym)
) + [(1 − �)(1 − q − s )

+ �(1 − qkS)]	r+m
(

−1

N|r+m(ym)
)

− �(1 − qkS)	r+m+1
(

−1

N|r+m(ym)
))]

where y0 is S’s initial offer, y1 the next and so on, and where
the dummy y−1 is defined as 


¯ N|r (� ′) so that 
−1
N|r (y−1) =

� ′. Then M∗
r (� ′) ≡ max{ym}∈S Mr (� ′, {ym}∞m=0) where S

is the set of sequences {ym}∞
m=0 such that y−1 ≤ ym ≤

ym+1 ≤ x̃(�
¯
).

Lemma 9. The solutions to M∗
r (� ′) for � ′ ∈ [�

¯
, �̄] are

identical to the solutions of W∗
N|r (� ′).

The Equilibrium

It follows that a sequence of offers and states is a PBE
path starting in state (� ′, r ) if and only if it is a solution
to W∗

N|r (� ′). Consider the “only if” part first:
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Lemma 10. Any solution to W∗
N|r (� ′) is a PBE path start-

ing in state (� ′, r ).

To construct an equilibrium assessment based on a
solution to W∗

N|r (� ′), let the “fighting” history f n ≡
{y0, . . . , yn−1} be any sequence of offers in re-
sponse to which D has always fought, and let �( f n)
be the state induced by these offers, i.e., �n( fn) ≡
min{�̄ , 
−1

N|r+1(y0), . . . , 
−1
N|r+n(yn−1)}. Taking {x∗

n|r+n,

� n|n+r}N−1
n=0 to be any solution to W∗

N|r (� ′), define the
following strategies and beliefs: Given that the states have
fought m times, then type � accepts x if x ≥ 


¯ N|m+1
(�)

and fights if x < 

¯ N|m+1

(�). S’s strategy is: (i) offer

x∗
0|r in the first round; (ii) offer 	

¯ N|r+n(�( fn)) follow-
ing f n; (iii) offer x̃(�̄) following any history along which
D waited at least once; and (iv) wait in any around in
which D waits. S also believes � is distributed according to
�r+n(�)/�r+n(�( f n)) after f n and � = �̄ with probabil-
ity one if D has ever waited. Verifying that this assessment
is a PBE is tedious but straightforward.

Two definitions help demonstrate the “if” part, i.e.,
that any equilibrium path must be a solution to W∗

N|0(� ′).
Let (� i , r ) be the current state following any history in any
PBE. Suppose further that S offers y (which need not be
an equilibrium offer). Then, D is playing according to the
strategy 
 N|0(�) if all � > min{
−1

N|r+1(y), � i} accept y

and all � < min{
−1
N|r+1(y), � i} fight when offered y.

Note further that following this strategy implies station-
arity. Regardless of the history of previous offers, D always
responds in the same way to y. As for the second definition,
the pair (�̂ , 


¯ N|0(�)) is a reservation-offer strategy if the

cut point in the next state, � i+1, satisfies two conditions
for all � ′ < min{�̂ , �i }: (i) � i+1 ≤ � ′ if y > 


¯ N|r+1
(� ′),

and, (ii) � i+1 > � ′ if y < 

¯ N|r+1

(� ′).21

Clearly, D is playing according to 
 N|0(�) if
(�̄ , 


¯ N|0(�)) is a reservation-offer strategy. And, D’s play-

ing according to 
 N|0(�) implies that S’s best reply in state
(� ′, r ) must satisfy M∗

r (� ′) or, equivalently, W∗
N|r (� ′).

Hence, any PBE path must be a solution to W∗
N|0(� ′)

if (�̄ , 

¯ N|0(�)) is a reservation-offer strategy. Lemma 11

demonstrates this:

Lemma 11. The pair (�̄ , 

¯ N|0(�)) is a reservation-offer

strategy.

Proof: The argument takes three steps. The first shows
that a reservation-offer strategy actually exists for a �̂ . The
second demonstrates that there exists an ε > 0 such that

21The definition of a reservation-offer strategy as well as the proof of
Lemma 11 draw heavily on Gul, Sonnenschein, and Wilson (1986).

if the current state is (� ′, r ) and if � ′ ≤ �̂ + ε, then S’s
continuation payoff in any PBE is M∗

r (� ′). The third step
establishes that (�̂ + ε, 


¯ N|0(�)) is an reservation-offer

strategy. It then will be evident that the second and third
steps can be repeated finitely many times to establish that
(�̄ , 


¯ N|0(�)) is reservation-offer strategy.

Lemma 4 guarantees that there exists a �̂1 > �
¯

such
that S offers x̃(�

¯
) whenever the state is no more than �̂1. It

follows that (�̂1, 

¯ N|0(�)) is a reservation-offer strategy.

To see that (i) holds, suppose S offers y in state (� i , r ) and
y > 


¯ N|r+1
(�̂) for �̂ < min{�̂1, � ′}. Arguing by contra-

diction, assume further that �i+1 > �̂ . This assumption
implies that �̂ rejects y. However, the best that �̂ can do by
rejecting y is to obtain x̃(�

¯
) after fighting for one round.

Hence, the contradiction y ≤ [1 − �(1 − k(�̂))]x̃(�̂) +
�(1 − k(�̂))x̃(�

¯
) = 


¯ N|r+1
(�̂) where the equality holds

because 	N|r+1(�̂) = {x̃(�
¯
)} since �̂ < �̂1. Thus, (i) holds.

Turning to (ii), assume y < 

¯ N|r+1

(�̂) and �i+1 ≤ �̂

where �̂ < min{�̂1, �i }. The latter implies that �̂ at least
weakly prefers y to fighting on. It also implies �i+1 <

�̂1, which means that S’s offer in state (� i+1, r + 1)
in any PBE is x̃(�

¯
). Consequently, �̂ ’s payoff to re-

jecting y is [1 − �(1 − k(�̂))]x̃(�̂) + �(1 − k(�̂))x̃(�
¯
) =



¯ N|r+1

(�̂). But �̂ ’s weak preference for y yields the con-

tradiction that y ≥ 

¯ N|r+1

(�̂), and this contradiction en-

sures (ii) holds. Thus, (�̂1, 

¯ N|0(�)) is a reservation-offer

strategy.
Now define R


r (� ′) to be S’s continuation payoff in
the PBE 
 (normalized by multiplying (1 − �)	r (� ′))
starting in state (� ′, r ). Then, there exists an ε > 0 such
that R


r (� ′) = W∗
N|r (� ′) for all � ′ ≤ max{�

¯
, �̂2} where

�̂2 ≡ �̂1 + ε. To establish this claim, observe that there is
nothing to show if � ′ ≤ �̂1. In this case, S offers x̃(�

¯
) in

any PBE and R

r (� ′) = W∗

N|r (� ′).
The first step in demonstrating the claim for � ′ > �̂1

is defining ε. Lemma 7 ensures that there exists an ε′ > 0
such that the difference between any two cut points along
any solution to W∗

N|r (� ′) and therefore M∗
r (� ′) is at least

ε′. And, as shown below, there also is a � > 0 such that
(1 − �)V∗

N|r (� ′) > � + Br(� ′) for all � ′ ∈ [�̂1, �̄] and r ≥
0 where Br(� ′) is S’s (average) payoff to making an offer
that is sure to be rejected, i.e.,

Br (� ′) ≡
∫ � ′

�
¯

[
(1 − �)(1 − q − s )

+ �k(�)(1 − p(�)) + �(1 − �)

× (1 − k(�))V∗
n|r+1(� ′)

]d�r (�)

�r (� ′)
.

Define ε ≡ min{ε′, ��(�̂1)/[2(1 − x̃(�̄))�̄]}.
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To see that � exists note that (1 − �)V∗
N|r (� ′) > Br(� ′)

since it is never optimal to make an offer that is sure to be
rejected. The difference (1 − �)V∗

N|r (� ′) − Br(� ′) is con-
tinuous in � ′ since V∗

N|r (� ′) and Br(� ′) are continuous,
and � ′ is an element of the compact set [�̂1, �̄]. Hence,
(1 − �)V∗

N|r (� ′) − Br(� ′) takes on its minimum value for
some � ′′ in this set. This means that for each r ≥ 0, there
exists an � r > 0 such that (1 − �)V∗

N|r (� ′) − Br(� ′) ≥
(1 − �)V∗

N|r (� ′′) − Br(� ′′) > � r for all � ′ ∈ [�̂1, �̄].
To show that the � r are bounded away from zero,

take r large enough to ensure that (1 − �)V∗
N|r+1(� ′) <

1 − x̃(�
¯
) + (1 − �)(s + d)/4. To see that this can be done,

take �∗ < �̂1 small enough to guarantee that x̃(�
¯
) −

x̃(�∗) < (1 − �)(s + d)/4. Also take R1 large enough to
guarantee that S’s initial offer induces a state bounded
above by �∗ for all � ′ ∈ [�̂1, �̄] whenever r ≥ R1. The
proof of Lemma 6 (see Powell 2003) ensures that such an
R1 exists. The basic idea is that every time D fights with-
out collapsing, the mass of the distribution of � shifts
toward �

¯
. For r sufficiently large, so much of the mass

is so close to �
¯

that S’s optimal offer induces a cut point
below �∗.

Then, S’s initial offer in V∗
N|r+1(� ′), say y, must

be at least as large as x̃(�∗) since y induces a cut
point bounded above by �∗ and �∗ would never ac-
cept anything less than x̃(�∗). Moreover, S’s payoff is
bounded above by what S receives if this offer is accepted
for sure. Hence, (1 − �)V∗

N|r+1(� ′) ≤ 1 − y ≤ 1 − x̃(�∗).
But, �∗ is constructed so that 1 − x̃(�∗) < 1 − x̃(�

¯
) +

(1 − �)(s + d)/4.
Substituting this bound for (1 − �)V∗

N|r+1(� ′) in the
expression for Br(� ′) gives

Br (� ′) < 1 − x̃(�
¯
) − 3(1 − �)(s + d)

4

+
∫ � ′

�
¯

[(1 − �(1 − k(�)))(x̃(�
¯
) − x̃(�))]

× d�r (�)

�r (� ′)
.

Since the integrand is bounded above by x̃(�
¯
) − x̃(�) and

x̃(�) is decreasing in � , the integral is bounded above
by

[x̃(�
¯
) − x̃(�̃)]

�r (�̃)

�r (� ′)
+ [x̃(�

¯
) − x̃(� ′)]

× �r (� ′) − �r (�̃)

�r (� ′)

for any �̃ ∈ [�
¯
, � ′]. Now take �̃ close enough to �

¯
so that

x̃(�
¯
) − x̃(�̃) < (1 − �)(s + d)/4, and R2 large enough to

ensure that so much of the mass of �r (�) is so close
to �

¯
that the second term is also less than (1 − �)(s +

d)/4. This leaves Br (� ′) < 1 − x̃(�
¯
) − (1 − �)(s + d)/4

for � ′ ∈ [�̂1, �̄] and r ≥ R ≡ max {R1, R2}. That S can
always offer x̃(�

¯
) implies (1 − �)V∗

N|r (� ′) ≥ 1 − x̃(�
¯
).

Hence there exists a � R > 0 such that (1 − �)V∗
N|r (� ′) >

� R + Br(� ′) for all � ′ ∈ [�̂1, �̄] if r ≥ R. Consequently,
the � r are bounded away from zero, and there exists a �

such that (1 − �)V∗
N|r (� ′) > � + Br(� ′) for all � ′ ∈ [�̂1, �̄]

and r ≥ 0.
Having defined ε, return to the claim that R


r (� ′) =
W∗

N|r (� ′) for all � ′ ≤ max{�
¯
, �̂2} where �̂2 = �̂1 + ε. The

first step in verifying this claim is showing R

r (� ′) ≥

W∗
N|r (� ′). To this end, let{y∗

m}∞
m=0 be a solution to M∗

r (� ′)
and type �∗

0 = 
−1
N|r (y∗

0) be the state induced by the first
offer y∗

0. The construction of ε ensures that the distance
between states is greater than ε, so �∗

0 is strictly less than
� ′ − ε. Consequently, �∗

0 < �̂1, and y∗
0 ≥ 


¯ N|r+1
(�∗

0 ) >



¯ N|r+1

(�̂1). Furthermore, S can obtain at least M∗
r (� ′)

in equilibrium by offering y∗
0 because this offer induces

state �∗
0 as (�̂1, 


¯ N|0(�)) is a reservation-offer strategy and

�∗
0 < �̂1. Hence, R


r (� ′) ≥ M∗
r (� ′) = W∗

N|r (� ′).

To establish that M∗
r (� ′) ≥ R


r (� ′) and, conse-
quently, that R


r (� ′) = M∗
r (� ′) = W∗

N|r (� ′) observe that
S would never induce a state (� ′′, r + 1) with � ′′ ≥ �̂1

in equilibrium 
. Arguing by contradiction to show
this, suppose that � ′′ ≥ �̂1. Then, R


r (� ′) is bounded
above by [1 − x̃(� ′)][	r (� ′) − 	r (�̂1)] + [(1 − �)(1 −
q − s ) + �(1 − qkS)]	r (� ′) − �(1 − qkS)	r+1(� ′) +
�(1 − kS)M∗

r+1(�̂1). The first term in this expression is
an upper bound on S’s payoff if � ∈ [�̂1, � ′] weighted by
the probability that � is in this interval. The latter terms
are an upper bound on S ’s continuation payoff given
� ≤ � ′ and that at least one of S’s offers has been rejected.
(At least one offer must have been rejected in order to
have screened out the � > �̂1.) Observe further that the
latter three terms are bounded above by Br(� ′)	r (� ′)
since M∗

r+1(�̂1) ≤ M∗
r+1(� ′). Hence, R


r (� ′) ≤ [1 −
x̃(� ′)][	r (� ′) − 	r (�̂1)] + Br (� ′)	r (� ′). This inequal-
ity along with the fact that M∗

r (� ′) = W∗
N|r (� ′) = (1 −

�)V∗
N|r (� ′)	r (� ′) > � 	r (� ′) + Br(� ′)	r (� ′) leads to

the contradiction R

r (� ′) < M∗

r (� ′) if the definition of
ε ensures that �	r (� ′) > [1 − x̃(� ′)][	r (� ′) − 	r (�̂1)].
And, this contradiction will leave � ′′ < �̂1.

To see that ε yields this contradiction, it is enough
to show that � > [1 − x̃(� ′)][1 − �r (�̂1)/�r (� ′)]. Ob-
serve first that �r (�∗)/�r (� ′) is nondecreasing in
r for any �∗ ≤ � ′ since the distribution shifts to
the left as the number of realizations rises. More
precisely,
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�r+1(�∗)

�r+1(� ′)
− �r (�∗)

�r (� ′)
=

�r (�∗) − ∫ �∗

�
¯

�(1 − �)r d�

�r (� ′) − ∫ � ′
�
¯

�(1 − �)r d�
− �r (�∗)

�r (� ′)

≥
∫ �∗

�
¯

(1 − �)r d�
∫ � ′

�∗ �(1 − �)r d� − ∫ � ′

�∗(1 − �)r d�
∫ �∗

�
¯

�(1 − �)r d�

�r (� ′)
[
�r (� ′) − ∫ � ′

�
¯

�(1 − �)r d�
] .

The expression on the right of the inequality is non-

negative because �∗ ∫ �∗

�
¯

(1 − �)r d�
∫ � ′

�∗ (1 − �)r d� is no

larger than the first term in the numerator and no smaller
than the second.

That �r (�∗)/�r (� ′) is nondecreasing implies
[1 − x̃(� ′)][1 − �r (�̂1)/�r (� ′)] ≤ [1 − x̃(�̄)][1 − �(�̂1)/
�(� ′)] ≤ [1 − x̃(�̄)]�̄(� ′ − �̂1)/�(�̂1)]. So, [1 − x̃(� ′)]×
[	r (� ′) − 	r (�̂1)] < �	r (� ′) since, by construction,
� ′ − �̂1 ≤ ε and ε ≤ ��(�̂1)/[2�̄(1 − x̃(�̄))]. Hence, S
would never induce a state (� ′′, r + 1) with � ′′ ≥ �̂1 in 
.

Combining the facts that S’s offer in state � ′, say y ′,
induces a subsequent state, � ′′, strictly less than �̂1 and
that (�̂1, 


¯ N|0(�)) is a reservation-offer strategy implies

that S’s payoff to proposing y ′ is

R

r (� ′) = (1 − y ′)[	r (� ′) − 	r (� ′′)]

+ [(1 − �)(1 − q − s ) + �(1 − qkS)]	r (� ′′)

− �(1 − qkS)	r+1(� ′′) + �(1 − kS)M∗
r+1(� ′′)

(A2)

These facts also imply that if y ′′ is S’s possibly mixed
equilibrium offer in state (� ′′, r + 1), then the support
of y ′′ are elements of 	N|r+1(� ′′) since all PBE paths of
games in states (� ′′, r + 1) with � ′′ < �̂1 must be solutions
to W∗

N|r+1(� ′′). Thus, y ′′ ≥ 	
¯ N|r+1(� ′′). It must also be

that y ′ ≥ 

¯ N|r+1

(� ′′). Otherwise a neighborhood of types

slightly greater than � ′′ would have preferred fighting for
y ′′ to accepting y ′. But this would contradict the fact that
y induces � ′′.

Now consider S’s payoff to offering 

¯ N|r+1

(� ′′) in

the program Mr(� ′, {yi}∞
i=0) and then playing optimally

thereafter. Since 

¯ N|r+1

(� ′′) may not be an optimal of-

fer in state (� ′, r ), M∗
r (� ′) is at least as large S’s payoff

to proposing 

¯ N|r+1

(� ′′). Using the Bellman equation to

express the latter payoff gives:

M∗
r (� ′) ≥ [1 − 


¯ N|r (� ′′)]
[
	r (� ′) − 	r

(

−1

N|r (

¯ N|r (� ′′))

)]
+ [(1 − �)(1 − q − s )

+ �(1 − qkS)]	r
(

−1

N|r (

¯ N|r (� ′′))

)
− �(1 − qkS)	r+1

(

−1

N|r (

¯ N|r (� ′′))

)
+ �(1 − kS)M∗

r+1

(

−1

N|r (

¯ N|r (� ′′))

)

Since 
−1
N|r (


¯ N|r (� ′′)) = � ′′ and y ′ ≥ 

¯ N|r+1

(� ′′), the

expression on the right of the previous inequality is at
least as large as R


r (� ′) (see equation A2 above). Hence,
W∗

N|r (� ′) = M∗
r (� ′) ≥ R


r (� ′) which leaves R

r (� ′) =

M∗
r (� ′) = W∗

N|r (� ′).
It follows that (�̂2, 


¯ N|0(�)) is a reservation-offer

strategy. To see that (i) holds, suppose S offers y in
state (� i , r ), and consider any �̂ ∈ [�̂1, �̂2) for which
y > 


¯ N|r+1
(�̂). (If �̂ < �̂1, there is nothing to show as

(�̂1, 

¯ N|0(�)) is a reservation-offer strategy and conse-

quently y > 

¯ N|r+1

(�̂) implies �i+1 ≤ �̂ .) Suppose fur-

ther that the next state, � i+1, is weakly bounded above by
�̂2. Then the definition of �̂2 ensures that the next state � i+2

is strictly bounded above by �̂1. Arguing now by contradic-
tion, assume �i+1 > �̂ . Then, �i+2 < �̂1 ≤ �̂ < �i+1 ≤ �̂2.
Hence, �̂ accepts in period i + 1.

Now let y ′ be in the support of S’s possibly mixed offer
e ′ made in state (� i+1, r + 1). Then y ′ ∈ 	N|r+1(� i+1) as
R


r+1(� i+1) = M∗
r+1(� i+1) since �i+1 ≤ �̂2. This implies

e ′ is an element of 	̂N|r+1(�i+1) and bounded above by
	̄N|r+1(�i+1).

A contradiction follows as y > 

¯ N|r+1

(�̂) = [1 −
�(1 − k(�̂))]x̃(�̂) + �(1 − k(�̂))	

¯ N|r+1(�̂). But 	
¯ N|r+1

(�̂) ≥ 	̄N|r+1(�i+1) since �i+1 > �̂ and 	̂N|r+1 is
nonincreasing. This gives y > [1 − �(1 − k(�̂))]x̃(�̂) +
�(1 − k(�̂))	̄N|r+1(�i+1) ≥ [1 − �(1 − k(�̂))]x̃(�̂) + �(1−
k(�̂))e ′. Type �̂ , therefore, strictly prefers accepting y
in period i to fighting for e ′ in period i + 1, and this
contradicts the fact that �̂ accepts in period i + 1. Thus,
(i) holds if �i+1 ≤ �̂2.

Now suppose �i+1 > �̂2, and consider that case in
which S offers y j+1 in state � j where � j > �̂2 and � j+1 ≤
�̂2. (Such an offer must exist as S only makes finitely many
proposals before offering x̃(�

¯
).) Since � j > � j+1, y j+1 is

accepted with positive probability. Hence, y j+1 > y where,
recall, y is what S offered in state � i . Repeating the argu-
ment above again yields a contradiction. Hence, (i) holds
for (�̂2, 


¯ N|r+1
(�)).

Turning to (ii), let � i and � i+1 be the current
and subsequent cut points. Take a �̂ and y such that
�̂ < min{�̂2, �i } and y < 


¯ N|r+1
(�̂). To see that �i+1 >

�̂ , assume the contrary. That �i+1 ≤ �̂ < �̂2 implies
R


r+1(� i+1) = M∗
r+1(� i+1) and, therefore, that S offers a
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y ′ ∈ 	N|r+1(� i+1) in state � i+1. Hence, S’s expected offer
in state � i+1, e ′, satisfies 	

¯ N|r+1(�̂) ≤ 	
¯ N|r+1(�i+1) ≤ e ′.

This leaves y < 

¯ N|r+1

(�̂) < [1 − �(1 − k(�̂))]x̃(�̂) +
�(1 − k(�̂))e ′. Since this inequality is strict, there exists a
� > 0 such that �̂ + � < �i and all � ∈ (�̂ , �̂ + � ) strictly
prefer fighting for e ′ to accepting y. But, this contradicts
the assumption that � i+1 is the state in period i + 1 be-
cause �i+1 ≤ �̂ < �̂ + � < �i implies that � ∈ (�̂ , �̂ + �)
are still in the game in period i and prefer not to settle in
period i. This contradiction means (ii) holds.

Thus, (�̂2, 

¯ N|0(�)) is a reservation-offer strategy.

Repeating the argument shows that (�̂n, 

¯ N|0(�)) is a

reservation-offer strategy where �̂n = min{�̂n−1 + ε, �̄}.
Since ε > 0, further repetition eventually ensures that
(�̄ , 


¯ N|0(�)) is a reservation-offer strategy. �

In sum, Lemmas 10 and 11 show that a set of offers
and states is a PBE path of the game if and only if it solves
WN|0(�̄). Lemmas 5, 6, and 8 ensure that S’s offers are
finite, strictly decreasing, and deterministic. This yields
the stronger version of Proposition 2:

Proposition 2a. Suppose that S is satisfied, D is dissatis-
fied, and that S’s beliefs about D’s probability of collapse sat-
isfy the technical assumptions discussed above. Then, there
exists a smallest N ≥ 0 such that 	N|0(�) = 	N+ j |0(�) for
all j ≥ 0 and � ∈ [�

¯
, �̄]. N defines the set of PBEs: S’s initial

offer in any PBE is an element of 	N|0(�̄). S’s subsequent
offers are a function of S’s initial offer, strictly decreasing,
and deterministic.

Multiple Offers Per Battle

Turning to the m-offer-per-battle game, define FD
m(i) for

1 ≤ i ≤ m to be D’s expected payoff to fighting to the
finish given i offers to go before the first battle. Then
D’s payoff to fighting to the finish from the outset of
the game when there are m offers before the first bat-
tle is F D

m (m) = ∑∞
n=1(1 − k(�))n−1k(�)[

∑nm−1
j=0 (qm −

dm)�
j
m + �nm

m [kS(1 − �)vm + kS�qm]/[(1 − �m)[1 − (1 −
�)(1 − kS)]]. If there are fewer than m offers until the first
battle ( i < m), then D rejects i offers before fighting and
then rejects m offers before fighting again. Consequently,
D’s expected payoff is F D

m (i) = ∑i−1
j=0(qm − dm)� j

m +
�i

mk(
)p(�)vm/(1 − �m) + (1 − k(�))�i
m F D

m (m).
A type is dissatisfied in the m-offer game as in the

1-offer game, if its expected payoff to fighting to the finish
from the outset is strictly larger than the payoff to living
with the status quo. Thus, dm is dissatisfied if FD

m(m) >

qm/(1 − �m). Rewriting this expression in terms of q , d ,

and � shows that D is dissatisfied in the m-offer game
if and only if it is dissatisfied in the 1-offer game, i.e.,
if and only if �k(p − q) − d(1 − �) > 0. Note that the
closer a dissatisfied type is to fighting, the higher its payoff
to fighting to the finish: FD

m(i ′) > FD
m(i) for 1 ≤ i ′ <

i ≤ m.
Now consider an m-offer game in which S is uncer-

tain of D’s cost but believes it to be distributed accord-
ing to Gm(dm) ≡ G(dm(1 − �)/(1 − �m)). If m is suf-
ficiently large, agreement is reached almost immediately
with no fighting and Proposition 3 as stated above holds.
The proof is a very tedious extension of a standard ar-
gument. (See Fudenberg and Tirole (1999, 411-12) for a
discussion.) The basic idea is to show that if Proposition
3 does not hold, then S can increase its payoff by skipping
an offer and speeding up the bargaining.

Proposition 4 shows that if S is uncertain of the dis-
tribution of power, then there is a positive probability of
fighting whenever there is any bargaining. The proposi-
tion also establishes a condition sufficient to ensure that
there is some delay.

Proposition 4. Suppose that S is uncertain about the
distribution of power in the m-offer-per-battle game. In
equilibrium, either S initially offers x̃(�

¯
) and the game

ends immediately, or �
¯

strictly prefers to wait until after
the first battle to accept an offer in which case there is a
positive probability that the states fight at least one battle.
Suppose, further, that x∗ ∈ 	1|0(�̄); that �̃(x∗) is the type
that is indifferent between accepting x∗ and fighting one
battle for x̃(�

¯
) in the one-offer-per-battle game; and that

[(x̃(�
¯
) − x∗)/(1 − �)](1 − �(�̃(x∗)) > s + d for any

x∗ ∈ 	1|0(�̄). Then there is always delay in equilibrium.

Proof: The argument for the first claim is sketched above
in the text. The key to the second claim is to consider an xm

that if offered on the eve of battle in the m-offer game in-
duces the same cut point that x∗ ∈ arg max V1|0(�̄) would
induce in a one-offer-per-battle game. �
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