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SUMMARY

The last 30 years have seen the development of credit scoring techniques for assessing the creditworthiness of
consumer loan applicants. Traditional credit scoring methodology has involved the use of techniques such as
discriminant analysis, linear or logistic regression, linear programming and decision trees. In this paper we look at the
application of the k-nearest-neighbour (&-NN}) method, a standard technique in pattemn recognition and nonparametric
statistics, to the credit scoring problem. We propose an adjusted version of the Fuclidean distance metric which
attempts ta incorporate knowledge of class separation contained in the data. Our £-NN methodology is applied to a
real data set and we discuss the selection of optimal values of the parameters % and D included in the method. To
assess the potential of the method we make comparisons with linear and logistic regression and decision trees and
graphs. We end by discussing a practical implementation of the proposed &NN classifier.

Kevwords: Classification rale; Credit risk; Nearest neighbour methods

1. Introduction

Consumer credit is granted by banks, building societies, retailers, mail order companies and various
aother lending institutions and is a sector of the economy that has seen rapid growth over the last 30
years. Traditional methods of credit sk assessment involved the use of human judgment, based on
experience of previous decisions, to determine whether to grant credit to a particular individual. The
economic pressures resulting from the increased demand for credit and the emergence of new
computer technology have led to the development of sophisticated statistical models to aid the eredit
granting decision, Credit scoring is the name used to describe the process of determining how likely
an applicant is to default with repayments. In this paper we look at the application of the k-nearest-
neighbour (k-NN) method, a standard technique in pattern recognition and nonparametric statistics,
ta the credit scoring problem.

Traditional credit scoring methodology has focused on using techniques such as discriminant
analysis and linear regression to discriminate between applicants who are assumed to belong to one
of two classes, namely good and bad credit risks. Previous papers which include the application of
these methods to credit scoring include Durand (1941), Myers and Forgy (1963), Apilado et al.
(1974), Eisenbeis (1978), Grablowsky and Talley (1981), Reichert et al. (1983) and Srinivasan and
Kim (1987). Despite the fact that both these techniques can provide good discrimination between
the good and bad classes, they are subject to the conceptual problems outlined by Eisenbeis (1978)
and Reichert ef al. (1983). Logistic regression is a more appropriate technique for credit scoring and
has been applied with success by Wiginton (1980), Gilbert et al. (1990) and Leonard (1993).
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However, as we shall see later in this paper, it has given similar predictive accuracy to linear
Tegression in comparisons and, like that method, suffers from the disadvantages of assuming a
parametric model form. This provides our motivation for looking for altemative classification
techniques for credit scoring. Other techniques which are commonly used in practice are linear
programming and decision trees. (Both are discussed in Srinivasan and Kim (1987) and Henley
(1995}.)

The kNN methad is a standard nonparametric technique used for probability density function
estimation and classification and was originally proposed by Fix and Hodges (1952) and Cover and
Hart (1967). It was chosen as a suitable method for applying to consumer credit data for several
reasons:

(a) the nonparametric nature of the method enables modelling of irregularities in the risk
function over the feature space;

(b) the &-NN method has been found to perform better than other nonparametric techniques such
as kernel methods when the data are multidimensional (see Terrell and Scott (1992));

(¢) the kNN method is a fairly intuitive procedure and as such could be easily explained to
business managers who would need to approve its implementation and it can be used
dynamically.

A simple NN classifier was applied to credit scoring data in Fogarty and Ireson (1993) in a general
comparison of techniques. The results were promising despite the simplicity of the NN classifier
used.

The #NN method involves estimating the good or bad risk probabilities for an applicant to be
classified by the proportions good and bad among the k ‘most similar’ points in a training sample.
The similarity of points is assessed by using a suitable distance metric. An important part of our
analysis will be the selection of suitable distance metrics for the &-NN method. An adjusted version
of the Euclidean metric which incorporates knowledge of underlying equiprobability contours for
class membership is proposed in Section 2. These contours are estimated by using regression
weights, calculated from the data, with the intention of incorporating into the metric knowledge of
class separation in the sample. A general transformation of the data which has the same property is
defined in Henley (1995). This allows us to transform the data before using any standard metric,
thus providing a general framework for selecting a data-dependent metric,

The aim of this research is to provide a practical classification model that can improve on
traditional credit scoring techniques. In Section 3 we apply our ~-NN methodology to a data set
supplied by a large mail order company. Attention is given to the nature of the data and the criterion
for assessing performance. We include a discussion of several interesting features of the &-NN
results and consider the selection of optitnal values of the parameters included in the method. The
performance of the NN classification rule is compared with a range of other discrimination
techniques including linear regression, logistic regression and decision trees. The sensitivity of the
&-NN method to changes in the population priors is considered in Section 3.5. Issues relating to the
practicality of implementation are discussed in Section 3.6.

2. Selection of metrics

The selection of an appropriate distance measure is an important part of the &~-NN method but
one that has not received proportional attention in the literature. The aim in choosing a metric is to
improve classification performance according to some specified criterion. The work that has been
published on metric selection has concentrated on the NN rule and has used minimization of the
difference between the finite sample misclassification rate and the asymptotic misclassification rate
as the performance criterion.

A standard distance measure is the Euclidean metric given by

di(x, y) = (x —y)"x— y)'”
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where x and y are points in the feature space. Myles (1991) gave two simple examples to show why
d; may not always be the maost sensible distance measure to use. Fukanaga and Flick (1984) and
Short and Fukanaga (1982) have considered the problem of selecting data-dependent versions of
the Buclidean metric in the NN case. Fukanaga and Flick introduced a general approach to
incorporating knowledge from the data through the metric

dy(x, y) = {(x —y) A =y}

where A can be any p x p symmetric positive definite matrix and p is the dimension of the feature
space. There are two possible approaches to selecting A: local metrics are defined to be those for
which A can vary with x and global metrics are defined to be those for which A is independent of x.
In the global case the distance between two points depends only on their relative position. in
Euclidean space. Fukanaga and Flick (1984) proposed to use a global metric that is optimized with
respect to the mean-squared error between the asymptotic and finite sample NN risk. They
presented a simulation experiment which showed that a global metric can be a practical way of
improving aver the standard Euclidean metric.

The danger of using a local metric approach is that the metric will incorporate local features of
the training set that are not representative of the population from which it is drawn. It is also difficult
to determine the metric accurately since for each x the metric must be determined from a small
region around x. We choose to adopt the global approach to metric selection based on the Euclidean
metric described above. Our approach differs in two ways from that adopted by Fukanaga and Flick
(1984): first, we deal with the general case of & NNs and, secondly, we use a different assessment
criterion (the minimization of the bad risk rate among accepted applicants: see Section 3.2 for more
details).

We define the distance between two points as being the separation between them in the direction
orthogonal to equiprobability contours for P(g|x), the probability of belonging to class g (e.g. the
class of good credit applicants in our problem) given x, with allowance for random variation. If we
did know the equation of the true equiprobability contours then the best metric to use would be the
distance in the orthogonal direction. The squared distance between two points x and y in this
direction (denoted by w) is given by

WE-yW = -9'wwx-y. 2.1
In practice we estimate the equiprobability contours from the data via a regression model and so our
metric needs to take into account random variation in the estimates. Moreover the true contours are
unlikely to be exactly linear in practice. For these reasons our proposed metric includes a contri-
bution from the squared Euclidean distance between x and y given by

E-PE-y=x-y»Tx-y. (2.2)
Combining terms (2.1) and (2.2) gives the metric
di(x, y) = ((x — )" (T + Dww")(x — y)}'/2.

Our metric is in the form of the generalization of the Euclidean metric d, proposed by Fukanaga and
Flick (1984), with the matrix A given by

Ap w = (I + DwwT).

The metric d; includes the distance parameter D, and the selection of a suitable value for this
parameter will be an important part of the implementation of the methodology.

In this paper we concentrate on the use of linear regression weights to give the direction
orthogonal to assumed equiprobability contours. Logistic regression weights may be a more natural
choice, because of their direct relationship with the predicted probabilities of class membership, but
in our experiments they produced results that were barely distinguishable from those produced by
the linear weights. This is probably because the probabilities of being good lie within the range 0.2
0.8 for most parts of the measurement space. Detailed comparisons are considered by Henley
(1995).
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3. Empirical study of the k-nearest-neighbour method with data-dependent metrics

3.1, Consumer credit data

The data used in our analysis consist of a sample from the full population of applicants for credit
from a large mail order company. All the applicants in the sample, including applicants who would
normally have been rejected, were given credit and observed over a period of a year. A standard
procedure was used to define creditworthiness. Applicants who defaulted for three consecutive
months were classified as bad and the remaining applicants in our data set were classified as good.
This allows us to treat creditworthiness as a two-state problem and to use techniques for dealing
with binary response data. In particular we chose not to consider creditworthiness as a continuous
property. Alternative definitions of credit default are considered by Crook et al. (1992).

The predictor variables used for constructing credit scoring models were extracted from the
application form and other sources, such as a historical database. These variables, which we call
characteristics, are usually nominal or ordinal in nature. The values that they take are referred to as
attributes. An example of a suitable characteristic “time on electoral roll’ is described in Table I.

Because of the categorical nature of the data and the fact that the characteristics are often
measured on different scales, the data were transformed before carrying out the analysis. The
selected transformation is widely used in the credit industry and is deseribed in Crook et al. (1992),
The values of the predictor variables are replaced by weights of evidence where the weight of
evidence of the jth attribute of the ith characteristic is given by

wy = In(py/gy)

where p;; is the proportion of those classified good in attribute j of characteristic i and g, is the
proportion of those classified bad in attribute j of characteristic 7.

By using the above transformation we put the data into a ratio form allowing us to exploit
techniques such as logistic regression. This is also beneficial to the &~NN method because its
petformance deteriorates rapidly as the number of dimensions increases and the alternative of using
indicator variables would lead to a very high dimensionality.

Variables were selected for inclusion in the analysis by considering the information value

V=3 (py—apwy
L4

where py;, g;; and wy; are defined above. This is a common measure of the discriminatory power of a
characteristic and is used by many score-card developers in the credit industry. 16 characteristics
were chosen on the basis of high information values and expert knowledge of the data. The
suitability of this set of characteristics was checked by building linear regression models with extra
characteristics added. A factor in the selection of characteristics was the need to justify the chosen
subset on business grounds.

TABLE |
Description of the characteristic ‘time on electoral
roll’
Artvibute Description
1 Not on electoral rale
2 1 year ar less
3 2 years
4 3 years
5 4 years
6 5+ years
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TABLE 2
Description of the data set used for assessing the performance of the kNN classifier
No. of variables Na. of classes Na. of cases % bad in full sample
Design set 16 2 15054 54.49
Test set 16 2 4132 54.70

A decision tree combining several of the other available characteristics was included in the
analysis as a characteristic. The aim of doing this was to help the linear and logistic regression
methods to take account of interactions between variables. This approach is similar to the hybrid
classifier of discriminant analysis and decision trees proposed by Boyle et al. (1992). We would
expect that by adopting this approach we would remove one of the advantages of the k&-NN method
and thus set a more difficult base-line for it to beat.

A summary of the data set is given in Table 2,

To obtain a more robust estimate of the performance of the k&-NN method our analysis involves
taking five random design—test sample splits from the combined design and test samples mentioned
above (using the same ratio between sample sizes). The method is then applied to each of the design
sets in turn and the results are assessed by using the corresponding test set. If the results are then
averaged our assessment procedure becomes similar to that adopted by Leonard (1993).

3.2, Criterion for assessing performance

The criterion used in this study is rather unusual and deserves some discussion. Whereas most
applications of assignment procedures work with ervor rates (perhaps appropriately weighted by a
loss function), for commercial reasons in this application the proportion to be accepted is pre-
specified and the aim is to minimize the number of bad risk applicants accepted. This criterion is
thus involved with only half of the misclassification space. This has some interesting consequences
for the assignment rule.

One immediate consequence is that it imposes bounds on the best and worst performances that
can be achieved. Suppose that a proportion a of applicants must be accepted and that the population
containsg a proportion p of good rigk applicants, The best bound for the bad risk rate among those
accepted is given by

_|l—-p/a a>p,
bestBR—IO i<p

It is obtained by accepting all good applicants and making up the rest of the [00p% acceptances
from the bad risk applicants (note that it does not depend on the number of applicants in the
sample). The worst bound for the bad risk rate among the acceptances is given by

_ | —p)a a>1-p,
WorstBR_[1 a<l—p.

It comes; from accepting all the bad applicants and making up the rest of the acceptances from good
applicants.

Corresponding bounds on the best and worst good risk rates for the rejects and error rates can
also be found:

az=>p,

best GR = IO
w-a)(l -a) a<p;
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_J1 a>1-p,
warst GR_Ip;’(l—a) a<1—p:
bestER:Ia_p a>p

p—a aspy
_ 2—(a+p) a=1-p,
womtER_[a+p a<1-p.

Our particular problem has p = 45.3% and a = 0.70. Using the above expressions yields the
following hounds on the bad risk rate: best, 35.3%, worst, 78.1%. The expected bad risk rate of a
rule which classifies points randomly is 54.7%. These results allow us to put the performance of the
classification methods that we consider into perspective. For example, whereas in general a bad risk
rate of 36% might cepresent a disappointingly poor performance, in this context it is only just abave
the theoretical best.

3.3, Estimation of k and D

The k-NN method with metric d; was implemented by using a C routine (see Henley (1995)). To
apply the method to future samples it is necessary to choose values for the two parameters k and D.
We propose a procedure for doing this which uses the design sample and assess performance by
using an independent test sample from the same population.

In principle the estimation of suitable k and D is straightforward, requiring a simple bivariate
optimization (e.g. by using a steepest descent algorithm) of the criterion. In what follows we present
a more detailed discussion of the properties of this criterion for various choices of £ and D so that
better understanding is gained.

Figs 1-3 show plots of bad risk rate against & for three of the five randomly selected design—test
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Fig. 1. &-NN method using data set | and D = 0.00: , design set; «« - , best set; - - - - - , lingar regressian
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Bad rate at 70% accaptance rata
0.44 0.45 D48

0.43

D.42

4] 500 1000 1500 2000 2500 030
k

Fig. 2. NN method using data set 3 and [ = 1.40: , design set; .- - , test set; - - - - - , lingar regression

sets using various choices of D. The figures were chosen to illustrate the subtle variations in the bad
risk rate curves across various samples and values of D. For each curve the bad risk rate among the
accepted applicants is shown using both the design and the test samples, The design sample curve
comes from classifying each design set point using its k nearest design set points (excluding itself).
The design set curve could be used to select the appropriate value of £ to consider for the corres-
ponding test set. The resulting & are shown by the vertical lines joining the lowest points on the
design set curves with the appropriate test curves (we consider alternative ways of selecting k after a
discussion of properties of these curves). The horizontal broken lines represent the performance of a
classifier using linear regression.

Fig. 4 shows the averaged bad risk rate curve for the five samples, using, in each case, the
optimal value of D as estimated from the design set.

3.3.1. Properties of bad risk rate curves. Several observations may be made about Figs 1-4.

(2} There is a difference in level between the bad risk rate curves for the design and test samples
in Figs 1-4. This is explained by the difference in bad risk rates among the full design and
test samples in these cases, For example, sample | had a bad risk rate of 54.24% in the
design sample and 55.59% in the test sample. We chose not to fix the proportion of good
applicants in each randomly selected test sample because we were interested in predicting
the performance of future applicants and the proportion of bad applicants in such a sample
will vary.

(b) The curves appear very jagged. In fact, the bad risk rate criterion was evaluated for
k=10, 20, 30, ... up to the indicated maximum values. If it had been evaluated for every
value of & the curves would have an even greater fractal nature. Marked jaggedness clearly
has implications for choosing a value of %, since it implies that slight differences will
produce large consequences. However, an examination of the vertical axis shows that even
the largest jumps in the body of the curve are produced by no more than about 10 data
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#NN method using data set 4 and 3 = 1.80: , design set; ... , test sef; - - - - - , linear regression

points, i.e., although the curve appears irregular, the consequences are fairly small. Despite
this, we propose a smoothed version of the k-NN estimator as outlined later.

(c) The early parts of the curves are more jagged—even less regular—than the later parts. These

@

curves are the end product of two averaging processes: first, the averaging inherent in using
the & NN to estimate probabilities and, second, the averaging over test set points to produce
an overall estimate of performance at each particular value of & For the test set this second
part is always an average of 4132 estimated probabilities but the first part involves averaging
over samples of size £ Since eatly parts of the curve are based on smaller k-values the
associated probability estimates will be expectcd to have large variances (the variance of the
estimated probabilities from the &-NN rule is given by var(P(i|x)} = pg/k where i is the
class, p is the true probability of belonging to class i and ¢ = 1 — p). There may also be a
dependence effect since, the larger the value of %, the more design set points each classifi-
cation is likely to have in common. (With & equal to the entire design set all classifications
would be hased on the same data set and so the curve would rise to the full sample bad risk
rate.)

We found that for samples 25 there were values of D and ranges of & for which the test
sample curves drop below the line representing the performance of a classifier using linear
regression. This indicates that our method has the potential to lead to improved discrim-
ination. Furthermore, as we shall consider later, the adjusted Euclidean metric appears to
give improved performance over the standard Euclidean metric for a range of D-values.

(¢) The k-NN curves remain below the linear regression line for a considerable range of values

of k and, in general, the range of ‘best’ values of % is large—the curves have broad fiat
valleys. The breadth of these valleys came as a surprise to us. We might reasonably expect
that as & is increased the rising bias of the probability estimates will overcome any
improvement in the variance of the estimates, resulting in a consequent loss of classification
accuracy.
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Fig. 4. A&NN methad averaged aver samples: ————, design set; - - - - -, test set; - - - - - , lingar regressian

To explore this we considered plots of P(g|x, ki) against f-’(g]x, k) for the points in the
original test set, using different values of &, and k,. Fig. 5 shows such a plot when &, = 100
and k; = 1000. The increased variation in the ordering of points in the middle of the range is
due to the higher variance of the probability estimates in this region.

Fig. 5 shows that, although there is variation in the ordering of the test set points for the /-
NN method with the two k-values, most points are placed in the same class by the two
clasgifiers. This means that the points accepted by using both k-values swamp the points only
accepted by using one.

Table 3 shows the numbers of good and bad applicants aceepted by the #-NN classifier
using either one or both of & = 100 and /% = 1000. The proportions of bad applicants
among those accepted in the first and second rows are very similar, indicating the similar
creditworthiness of the swap sets. This, combined with the ‘swamping’ effect of the points
accepted under both classifiers helps to explain the ‘flat valley® phenomenon,

(f} Fig. 6 shows what happens when a very large value (100) is taken for D. Such a large D
means that the distance is effectively being measured orthogonally to the equiprobability
contours of P(g|x), i.e. we would expect the results to be almost identical with those obtained
by imposing a threshold on the linear regression. Fig, 6 shows that the prediction is correct.
Another feature of this curve is the large fluctuations in the bad risk rate for high k. From (c)
we know that the bad risk rate curve must reach the sample bad risk rate as % tends to the
number of points in the design set. Owing to the criterion in this problem the convergence
does not begin until very high values of k are reached. See Henley (1995) for a further
discussion of this issue.

To complement the above plots of £, Fig. 7 shows a curve of bad risk rate against D for
the original test sample. This curve shows a global minimum, as we hoped, although the
differences in bad risk rate are quite small. We conclude that the bad risk rate is fairly
insensitive to the choice of D.
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Fig. 5. P(glx) platted for two values of &

To bring the discussion of the raw data results together, Fig. § shows the bad risk rate
values for the range of & and D-values together (using the original test sample). This
highlights the insensitivity of the minimum to the choice of both &k and D.

3.3.2. Smoothing of bad risk vate curves. As has already been suggested, we could simply use
the values of k and D which give the lowest bad risk rate for the design set. (We abviously cannot
pick k and D from the test set because we are assuming that it is a future sample for which the true
classes are not available at the time of classification.) However, this approach is risky because of the
fluctuations in the bad risk rate curves for small & described in (b) in Section 3.3.1. The result that
we have observed for the design set may be due to random variation and not attributable to a feature
of the underlying population. To try to obtain a more robust chaoice of k we propose to smooth the
bad risk rate curves for the design set. To find the estimated bad risk rate for a particular value of &
we average the raw bad risk rates for a range of values of & around the value in question. To

TABLE 3
Number of good and bad applicants accepted by using the &=NN
method with # = 100 and/or £ = 1000

Gaod Bad
Accepted (£ = 100 anly) 49 123
Accepted (& = 1000 anly} 33 119
Accepted (k = 100 and k = 1000) 1594 1127
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Bad rate
0.48 0.50 052 D.54

0.45

.44

o] 5000 10000 15000
k

Fig. & &NN method with D = 100: ———, &NN; -~ , Jinear regression

formalize the procedure we choose a smoothing parameter & and estimate the bad risk rate for
k= /(O by

1tk
N RG for h 3000 — h
Stho) = 1 2 + 1f=§_,, @ orh <k < ’
R(ko) otherwise,

where R(i} is the raw bad risk rate for k = 7.

Smoothing was not performed for very low and high values of k because we are only interested
in finding estimates of the optimum values, which can be seen from Figs 1-4 to occur for
100 < k < 2000. We choose to use this smoothing function because of its intuitive appeal and
simplicity.

This approach to selecting k and the choice of a suitable smoothing parameter 4 is analogous to
keme] density estimation (see for example Hand (1982)). In choosing & we wish to balance the
conflicting aims of ironing out anomalies in the design set and preserving the structure of the data.
For example, Fig. 1 shows a sharp minimum in the design and test sets for k = 100 when 1} = 0.
Because this k-value is close to values giving much higher bad risk rates, the minimum is smoothed
out by the above function.

Fig. 9 shows an example of a smoothed bad risk rate curve for the design set from sample 5. The
raw curves for the design and test set have been added. The vertical lines represent the selected
values of k using the smoothed and raw design curves.

By the same reasoning as above we could choose to use an average of the predictions from a
range of values of k to predict the true class for the test sets. This is equivalent to considering
smoothed versions of the test set curves. More complex weighted averages could be adopted. (This
would be like working out a kernel density estimate based on the value of the smoothing parameter
selected from the design set.)
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Fig. 7. Lowest bad risk rate against D for the original test set

34. k-nearest-neighbour results

We now bring together the results of applying the various methods of selecting & and D discussed
in the previous section. For each sample we begin by selecting the value of D which gives the lowest
overall bad risk rate in the design set (we choose to use smoothed results), Having focused on a
particular value of D, we select a value (or range of values) of & from the design set {with or without
smoothing) and use this value to classify the test set. The results for the test set could then be
smoathed as explained in the previous section.

Table 4 shows the bad risk rates at a 70% acceptance rate for each sample for the four com-
binations of smoothing or non-smoothing of the design and test set curves. The selected values of &
are shown and it can be seen that the choice of k is highly sensitive to the sample and whether
smoothing is employed. However, since the bad risk rate curves are fairly flat over a wide range of k-
and D-values, a large change in & does not give rise to much change in performance.

TABLE 4
Bad risk rates and selected values of k using smoothing or no smoothing of the design and test set eurves for each sample

Sample Rates for the following combinations and values of k: D
Design (smoothing) Desigm (o smoathing)
] Test Test k Test Test k
fsmioothing) (ho smoothing) {smoothing) fro smoathing)
1 44.02 43.96 1260 44.01 44,01 1160 1.6
2 43.66 43.63 690 43.90 43.90 340 1.8
3 4338 431,45 200 43.42 43.46 150 1.4
4 4]1.55 41.55 150 41.85 41.85 100 1.4
5 42.86 42.84 220 4285 42.83 780 1.4
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Bad rate
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Fig. 8. Bad risk rate against & and D for the original test set

Although the method of smoothing employed is fairly crude it does lead to more consistent
results than when no smoothing is used. It is clear from the results that smoothing of the design set
curves is more effective than smoothing of the test set curves. In particular, for samples 2 and 4 the
results are between 0.24% and 0.3% better when the value of & is chosen from the smoothed design
set results, For the other samples there is little difference in the results whether smaoothing is
employed or not. This indicates that if the raw curve minimum represents a real feature of the
population then smoothing the bad risk rates will not lead to a significant change in performance;
however, smoothing will help to reduce the chance of selecting a k-value which is only a minimum
in one sample {owing to random variation}.

We could consider more complex smoothing functions and this might lead to improvements in
the overall performance of the method. However, we chose not to do this because the shallow nature
of the bad risk rate curves means that the performance of the method is not particularly sensitive to
the choice of k. In the rest of this paper we focus on using a smoothed version of the design set
curves to select £, but we do not perform smoothing on the test set curves when assessing
performance.

To provide a base-line against which to compare our %-NN predictions Table 5 shows the bad risk
rates for each sample from linear regression models (and from the &NN method with % selected
from the smoothed design set curve). The kNN classifier with adjusted Euclidean metrics performs
better for samples 2—5 and linear regression performs slightly better for sample 1. The result for
sample 1 gives grounds for being cautious in our interpretation of the results (although the differ-
ence in this case is unlikely to be significant).

The averaged bad risk rates for linear regression, the &-NN method with the standard Euclidean
metric (i.e. D = 0) and the adjusted Euclidean metric are 43.36, 43.25 and 43.09 respectively.
These results indicate that the use of the &-NN method with adjusted Euclidean metrics can lead to
improvements over the use of the standard Euclidean metric and linear regression. Although the
difference in bad risk rates is quite small, if it represents a real difference then it could result in large
savings for the credit grantor.
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We note that removing the decision tree characteristic does not lead to a significant change in
relative performance of the #-NN and linear regression methods. For example, if we repeat the
analysis on sample 4 without the decision tree characteristic, the linear regression gives a bad risk
rate of 42.64 (among the 70% accepted) and the k-NN method gives a bad risk rate of 41.94. The
difference of 0.70 is only slightly higher than the difference of 0.61 in Table 5. This result was
found to be consistent for other samples. We conclude that including the decision tree characteristic
in the analysis gives similar exira benefit to the two classification methods. In the rest of this paper it
will be included.

To assess further the potential of the /NN method with adjusted Euclidean metrics for credit
scoring, we extended the comparisons to include logistic regression, decision trees (e.g. Breiman et
al. (1984)) and decision graphs. Decision graphs are an extension of decision trees which permit
paths to merge and are described by Oliver (1992).

Table 6 shows the bad risk rates averaged over samples for the range of classification techniques
considered. The results show that the &NN method with adjusted Euclidean metrics gives the
lowest bad risk rate. For a more detailed discussion of the comparisons see Henley (1995).

3.5. Sensitivity of k-nearest-neighbour method to changes in population priors

In the comparisons described in this paper the sample proportion of bad accounts is approx-
imately 50%. This is typical of the design sample bad risk rates used in many previous studies, such
as Myers and Forgy (1963), Orgler (1976), Apilado ef al. (1974) and Chandler and Coffiman (1983).
We can justify this approach, independently of the true population bad risk rate, because it enables
the most accurate estimation of the ratio of class conditional probabilities for a fixed total sample
size. In practice the proportion of bad risks in the full population will vary according to the credit
product and will commonly be less than 20%. To try to maximize the range of validity of our results
we undertook some further analysis to investigate the relative performance of the £&~-NN method and
linear regression for various population priors.
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TABLE 5
Bad. risk rates for linear regression and 4NN models for
samples 1-5

Sample Rates for the following methods:

Linear regression kNN

1 43.87 43.96

2 44.03 43.63

3 43.54 43.45

4 42.16 41.55

5 4320 4284

In this paper we restrict attention to the results obtained when the full population bad risk rate is
assumed to be 20%. To simulate this scenario, we applied weights of 4 and 1 respectively to the
good and bad applicants in the original test sample and classified the reweighted test sample by
using the original design sample. This approach was adopted for both the 2~-NN method and linear
regression. (The unweighted design sample was used to maximize the number of applicants from
each class available for estimating P(g| x), as argued above. Furthermore, the 2-NN parameters
were estimated from the unweighted design sample. In fact, using a weighted design sample gave
inferior performances for both methods.)

Table 7 shows the bad risk rates at a 70% acceptance rate for each of the five reweighted test
samples by using linear regression and the &-NN method. The bad risk rate curves for the design
sets (but not the test sets) were smoothed as before. The results shown in Table 7 are consistent with
the conclusions of Section 3.4. In particular, we note than the £Z-NN method gives lower bad risk
rates than does linear regression for four of the five samples. As we found previously the differences
are fairly small in each case but may be sufficiently large to have commercial implications. The
averaged bad risk rates for the &-NN method and linear regression are 12.57 and 12.74 respectively.

It was also found that the curves of bad risk rate against k and D exhibited similar properties to
the curves shown in Figs 1-4. For example, Fig. 10 shows design and test curves of the bad risk rate
against k for sample 4 by using the weighted test sample. (The values of the design curve have been
translated to fit on the graph.) In particular we note that the test set curve has a broad flat valley,
indicating that this property does not result from a high population bad risk rate.

To conclude, our sensitiviéy analysis has indicated that the &-NN method can give a consistently
good performance for a wide range of values of the population bad risk rate. Furthermore, we assert
that, regardless of the population priors, the Z-NN design set should consist of equal proportions
of good and bad applicants. The =-NN parameters k£ and D should also be estimated from this
data set.

TABLE 6
Summary of the averaged bad risk rate results for
variaus classification techniques

Methad Bad risk rate
A-NN {any D) 43.09
&NN (D = 0) 4325
Logistic regression 4330
Linear regression 431.36
Decision graphs ar trees 4377
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TABLE 7
Bad risk rates far linear regression and &NN models when the
population bad risk rate is 20%

Sample Rates for the following methods:

Linear regression NN
1 13.18 12.95
2 1313 12.84
3 12.47 12.44
4 12.27 11.78
5 12.65 12.82

3.6. Practicality of implementation

In this paper we have shown that the NN method with adjusted Euclidean metrics can give
slightly improved prediction of consumer credit risk than traditional techniques such as linear and
logistic regression. However, for this result to be useful to credit grantors, it needs to be established
that the methodology can be implemented in practice. We consider this issue below with reference
to four specific points.

3.6.1. Time taken to scove or classify new applicant for credit. Although assessing an applicant
by using the NN method requires considerably more computations than linear or logistic
regression (because it requires the calculation of the distance to all points in the design set), given
the power of 2 modern 486 personal computer there is little practical difference. If the design set is

Bad rate at 70% accapiance rate
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0125

0.120
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Fig. 10. #NN methad using weighed data set 4 and D = 1.40
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available on line then the &~-NN method (with or without design set smoothing) can classify an
applicant in less than 1.5 s for any value of & up to 3000. Furthermore, we have not optimized the
time efficiency of our algorithm, so it is potentially possible to reduce this value further.

If an applicant’s predicted class membership probabilities are averaged for a range of k values
(equivalent to smoothing the test set) then this makes a negligible difference to the time to classify
an applicant. This is because, having worked out the k¥ + A NNs, the k +h—1 ... k— h NNs are
automatically available in our algorithm.

There are variants of the standard &-NN methodology which enable processing time to be cut still
further by reducing the number of distances which need to be recalculated for each new applicant.
For example, consider the simple case of one NN. By storing all the pairwise differences between
points in the design sample we can significantly reduce the number of points for which distances
need to be recalculated. This is because, given a distance d between the new applicant and a point in
the design sample, any point more than distance 2d from this design set point cannot be the NN,
Fukanaga and Narenda (1975} presented a method of searching for the &-NNs by using the branch-
and-bound algorithm (see Hand (1981)). Further reductions in the number of computations required
can be achieved by using an edited or condensed k-NN approach (see Gates (1972} and Hand and
Batchelor (1978)).

3.6.2.  Automatic updating of classification rule. One potential attraction of the &NN method is
that dynamic updating of the design set is easy. As (recently) accepted customers reach the point
where their performance is assessed as good or bad, they can be added to the design set to replace
the oldest surviving observation.

3.6.3. Reasons for refusal of credii. The &NN method with adjusted Euclidean metrics could
provide a reason for refusal of credit by exploiting the information about class separation in the data
provided by the regression weights. To do this we could calculate the (standardized) distance
between a new applicant and the mean for the design set bad applicants for each characteristic in the
model. This gives an approximation to the contribution of each characteristic to the decision.
Characteristics with low values of this distance are the characteristics which identify the applicant
with previous bad applicants and, thus, ensure that the applicant is rejected. Of course, with any
multivatiate classification technique {(including linear or logistic regression) it is not possible to
reduce a decision explicitly to the value of a single variable.

3.6.4. Red lining of applicants. A charge sometimes levelled at credit grantors is that their
methods of screening applicants red line people (refuse credit on the basis of one characteristic
regardless of all other attributes). We believe that the NN method is less susceptible to this
criticism than linear or Jogistic regression because our proposed distance metric takes into account
random variation as well as the distance along the equiprobability contours {(estimated from the
regression). However, as the value of D increases, the &-NN decision becomes increasingly
dependent on characteristics with large weights w; from the regression. One way to reduce this
problem would be to put a limit on the ratio of the regression weights w;. This constraint would be
likely to reduce the classification accuracy of the regression score-card by more than that of the k-
NN classifier.

4. Conchusions

In this paper we have considered the problem of choosing an appropriate technique for
discriminating between a population of good and bad credit risks. The criterion used for assessing
- performance, the minimization of the bad risk rate among those accepted, is rather unusual for a
classification prablem and so was discussed in detail. In particular, it places bounds on the level of
success that can be achieved.
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We proposed on application of the &-INN method using an original distance measure, an adjusted
version of the standard Euclidean metrie, and set out a strategy for selecting values of the param-
eters k and 1. We have seen that, in fact, our NN classification rule is fairly insensitive to the
choice of these parameters and, in particular, the curves of bad risk rate against k have surprisingly
flat valleys. Other interesting features of the results have been discussed.

A comparison was made between the performance of the &~-NN method and a range of ather
classification techniques. Linear and logistic regression and decision trees were selected to represent
the accepted credit scoring techniques and decision graphs were included to represent a recent
development in the classification literature. It was found that the &~NN method performed well,
achieving the lowest expected bad risk rate. It was also found that the adjusted Euclidean metric led
to an improvement over the standard Euclidean metric. In Section 3.5 we confirmed the validity of
our results for populations with lower proportions of bad risks in the full population. It was argued
that a design set with equal proportions of good and bad risks should be used to classify future
applicants regardless of the population bad risk rate.

Finally, in Section 3.6 we asserted that it is practical to implement a k-NN classification rule for
credit scoring new applicants in realtime, It was found that, given the power of modern computers, it
is feasible to classify an applicant within seconds and that the NN method can provide reasons for
refusing credit, thus satisfying future legal requirements. Furthermore, the 4NN method has the
advantage over traditional score-card approaches that the classification rule can be dynamically
updated to reflect changes in the nature of the population.
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