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Co-Transduction for Shape Retrieval
Xiang Bai, Bo Wang, Cong Yao, Wenyu Liu, and Zhuowen Tu

Abstract—In this paper, we propose a new shape/object retrieval
algorithm, namely, co-transduction. The performance of a retrieval
system is critically decided by the accuracy of adopted similarity
measures (distances or metrics). In shape/object retrieval, ideally,
intraclass objects should have smaller distances than interclass
objects. However, it is a difficult task to design an ideal metric
to account for the large intraclass variation. Different types of
measures may focus on different aspects of the objects: for ex-
ample, measures computed based on contours and skeletons are
often complementary to each other. Our goal is to develop an
algorithm to fuse different similarity measures for robust shape
retrieval through a semisupervised learning framework. We name
our method co-transduction, which is inspired by the co-training
algorithm. Given two similarity measures and a query shape,
the algorithm iteratively retrieves the most similar shapes using
one measure and assigns them to a pool for the other measure
to do a re-ranking, and vice versa. Using co-transduction, we
achieved an improved result of 97.72% (bull’s-eye measure) on the
MPEG-7 data set over the state-of-the-art performance. We also
present an algorithm called tri-transduction to fuse multiple-input
similarities, and it achieved 99.06% on the MPEG-7 data set. Our
algorithm is general, and it can be directly applied on input simi-
larity measures/metrics; it is not limited to object shape retrieval
and can be applied to other tasks for ranking/retrieval.

Index Terms—Graph transduction, object retrieval, shape re-
trieval, similarity measure.

I. INTRODUCTION

S HAPE-BASED object retrieval is an important task in com-
puter vision. Given a query object, the most similar objects

are retrieved from a database based on a certain similarity/dis-
tance measure, whose choice largely decides the performance
of a retrieval system. Therefore, it is of critical importance to
have a faithful similarity measure to account for the large in-
traclass and instance-level variation in configuration, nonrigid
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Fig. 1. A horse in (a) may look more similar to a dog in (b) than to another
horse in (c).

transformation, and part change. Ideally, such a similarity mea-
sure should result in smaller distances between the variants of
a particular object than this object to any other ones, as well
as smaller distances between intraclass objects than interclass
objects. However, designing such a measure for the general re-
trieval task is challenging. Fig. 1 gives an illustration where a
horse might have a smaller distance to a dog (based on their
contours) than another horse, whereas our human vision sys-
tems can still identify them correctly.

In this paper, we refer to shape as the contour of an object sil-
houette. Building correspondences is often the first step in com-
puting the shape difference, but it is challenging: Two shapes
may not have direct correspondences, regardless of being rep-
resented as sparse points, closed contours, or parametric func-
tions. For example, two shapes with the same contour but dif-
ferent starting points typically are considered as the same one.
Therefore, measuring the similarity between two shapes often
can be done in two ways: 1) by computing the direct difference
in features extracted from shape contours, which are invariant to
the choice of starting points and robust to a certain degree of de-
formation, such as moments [1] and Fourier descriptors [2]; and
2) by performing matching to find the detailed pointwise corre-
spondences to compute the differences [3]–[8]. The latter has re-
cently become dominant due to its ability of capturing intrinsic
properties, thus leading to more accurate similarity measures.

Bai et al. [9] explored the group contextual information on
different shapes to improve the efficiency of shape retrieval on
several standard data sets [10], [11]. The basic idea was to use
shapes as each other’s contexts in propagation to reduce the dis-
tances between intraclass objects. The implementation was done
by a graph-based transduction approach, named label propa-
gation (LP) [12]. Later, several other graph-based transduction
methods were suggested for shape retrieval [13], [14]. In addi-
tion, the method in [14] further improved the results by adding
“ghost points,” which were constructed based on query shape
and its nearest neighbors from the database. Egozi et al. [15]
proposed a contextual similarity function, named meta simi-
larity, which characterizes a given object by its similarity to
its -nearest neighbor ( -NN) objects. An interesting distance
learning method called contextual dissimilarity measure (CDM)

1057-7149/$26.00 © 2011 IEEE
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TABLE I
BULL’S-EYE SCORES ON THE MPEG-7 DATA SET [10] AND TARI’S DATA SET

[37]. THE APPROACHES ABOVE THE SINGLE STRAIGHT LINE ARE PAIRWISE

MATCHING ALGORITHMS, AND THE APPROACHES BELOW THE SINGLE

STRAIGHT LINE ARE CONTEXTS-BASED ALGORITHMS

[16] is motivated by an observation that a good ranking is usu-
ally not symmetrical in image search, which is mainly designed
for the image search problem. CDM significantly improves the
distance measure using bag-of-features; however, its improve-
ment on shape retrieval is not so obvious as the shape distance
measures have different properties than bag-of-features (we will
show the result of CDM on a shape data set in Table I). Recently,
[17] and [18] have achieved the state-of-the-art performance by
using the similarity learning method [14] based on new shape
similarities.

In this paper, we look at the shape retrieval problem from
the “fusion” [19], [20] perspective, which is crucial for making
quick and accurate decisions. Different similarity measures
have different emphasis: For example, similarities computed
on matching the skeletons of two objects may be robust against
nonrigid transformation, but they are hard to capture the rich
variability in part change; similarities computed on matching
the contour parts can capture subtle change, but they may not be
robust against articulation. It would be natural to fuse/combine
different complementary metrics together to achieve better
performance. For high-dimensional data, a direct approach of
distance metric learning [21]–[23] is often used in the context
of supervised learning. In another spirit, co-training style algo-
rithms allow classifiers trained on different views [24], [25] or
different subsets of the training data [26] or by different learning
algorithms or parameter settings [27], [28] to pull out more
samples from unlabeled data to help each other. Theoretical
grounds have been studied in [24] and [29]–[31], and recently,
a sufficient and necessary condition has been given, and the
connection with graph-based approaches has been disclosed
[32]. A straightforward way is to linearly combine a few mea-
sures together. However, this often requires a certain level of
supervision or manual tuning and will not necessarily produce
the best results (we will see a comparison in the experiments).

This paper provides a different way of fusing similarity/dis-
tance measures through a semisupervised learning framework,
namely, co-transduction. The user input is a query shape, and
our system returns the most similar shapes by effectively inte-
grating two distance metrics computed by different algorithms,
e.g., shape contexts (SC) [3] and inner-distance shape contexts
(IDSC) [4]. Our approach is inspired by the co-training algo-
rithm [24]. The difference, however, is that, in co-training, it re-
quires having two conditionally independent views of the data
samples. In our problem, each data only has one view, but dif-
ferent algorithms report measures by exploring different aspects
of the data. Therefore, they may lead to different retrieval re-
sults for the same query, which can be mutual. For example, as
shown in Fig. 2, the retrieval results of SC [3] in the first row
and of IDSC [4] in the second row are very different as their
different shape representations, although they can gain the com-
parable bull’s-eye retrieval rate (SC: 86.8%1; IDSC: 85.4%) in
the MPEG-7 shape data set [10].

A simple example that illustrates the motivation of the pro-
posed method is shown in Fig. 3: In Fig. 3(1), the SC distances
between query shapes A and B/C are not small due to articu-
lation. However, in Fig. 3(2), IDSC reports a different result as
it is more stable than SC for articulation changes (it uses the
inner distance to replace the Euclidean distance in SC’s repre-
sentation). As shown in Fig. 3, the SC distance between B and
C is small as they have the same pose. Although C is thicker
than B, the SC distance still finds a good match between C and
B. We use IDSC to retrieve B first and then put B and query A
together as labeled data a new score based on the SC distance
trained by A and B will give high confidence to C, as shown in
Fig. 3(4). Our algorithm is inspired by co-training [24], which
assumes views (sets of features) with two conditions: 1) Each
view is strong enough to describe the data (a good classifier can
be learned based on enough training samples); and 2) each view
is conditionally independent given the labels. The pseudocode
of co-training is shown in Fig. 5.

However, unlike co-training, in which two independent
views (sets of features) are assumed, our algorithm deals
with single-view but multiple-input similarities; we deal with
the retrieval/ranking, whereas co-training is focused on the
classification problem. Co-transduction is also related to [33]
but with the following differences: 1) [33] tackles a regression
problem; 2) -NN was used in [33]; and 3) we focus on fusing
different metrics for object retrieval. The details about the
co-transduction algorithm and experiments will be given in the
later sections of this paper.

II. CO-TRANSDUCTION ALGORITHM

We first briefly review the graph-based transduction algo-
rithm (LP) [12] applied to shape retrieval [9]. Given a set of
objects and a similarity function

that assigns a positive similarity value to each
pair of objects, assume that is a query object (e.g., a query
shape) and is a set of known database objects(or

1Here, we use dynamic programming (DP) to replace thin-plate spline as
Belongie et al. did in [3] for the matching process and achieve 86.8% on the
MEPG-7 data set. The new distance measure by DP based on the SC descriptor
is used as the input for our retrieval framework.
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Fig. 2. The images in the first column are the query shapes. The remaining ten columns show the most similar shapes retrieved from the MPEG-7 data set. The
first to fourth rows are the retrieval results of SC [3], IDSC [4], SC� LP [9], and IDSC� LP [9], respectively. The fifth row is the result of the proposed method
by integrating two distance metrics computed by SC and IDSC. Note that some retrieval results by the proposed method, such as the eighth and tenth retrievals,
were not retrieved by SC or IDSC since their rankings are too low with the original similarity measures.

Fig. 3. Motivation of the proposed method. The shape similarities of IDSC
and SC can be helpful to each other. In (1), the dissimilarities computed by SC
between query shape A and database shape B/C are not very small. However, in
the case of IDSC, as shown in (2), the dissimilarity between A and B is small.
(3) shows that B is close to C with SC. Thus, for query A, we can use IDSC to
retrieve B first and then use A and B as the query to find C by IDSC, as shown
in (4).

a training set). Then, by sorting the values in de-
creasing order for , we can obtain a ranking for
database objects according to their similarity to the query. A
critical issue is then to learn a faithful . Bai et al. [9] applied
LP to learn a new similarity function that drastically im-
proves the retrieval results of for the given query . They
let , for , be a similarity ma-
trix, then obtain an probabilistic transition matrix as a
row-wise normalized matrix , i.e.,

(1)

where is the probability of transit from node to node .
A new similarity measure is computed based on . Since
is defined as the similarity of other elements to query , we

denote for . A key function is ,
and it satisfies

(2)

Fig. 4. Pseudocode of the LP algorithm when the query includes a group of
objects. � is the iteration number of LP, which is fixed in our experiments.

Thus, the similarity of to query , which is expressed as
, is a weighted average over all other database objects,

where the weights sum to 1 and are proportional to the simi-
larity of the other database objects to . In other words, a func-
tion such that is a weighted average
of , where the weights are based on original similarities

.
Note that LP is not limited to only one query object, which

can be also used for two or more queries as it is a classifi-
cation method (see the case in Fig. 3(4), where there are two
query objects A and B). Assume that is a group of
query objects and is a set of known database ob-
jects. Then, the LP algorithm for computing the new similarity
is shown in Fig. 4.

In a general situation, graph-based transduction can
be viewed as performing manifold regularization [34].

,
which is an approximation to the continuous function space
of based on the labeled (query objects in our case) and
unlabeled data (database objects). is the Laplacian map
computed from similarity measures . measures
the classification error of on the supervised data, and
is a regularized form of . Now, we view LP as a tool for
improving an input similarity function by taking the contextual
information between objects. The key problem we want to
address in this paper is how to build a robust retrieval system
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Fig. 5. Co-training algorithm by Blum and Mitchell [24].

Fig. 6. Co-transduction algorithm.

given two (multiple) input similarity measures. A straightfor-
ward solution is to linearly combine different measures and use
LP to gain further improvement. We will later show that this
yields less encouraging results than the proposed algorithm,
which is co-transduction.

Figs. 5 and 6 give the pseudocodes for co-training [24] and
the proposed co-transduction algorithm, respectively. Same
as in Bai et al. [9], a query object and database objects

are, respectively, considered as labeled and unla-
beled data for graph transduction. In spirit, co-transduction is
in the co-training family; unlike the original co-training algo-
rithm, co-transduction emphasizes single-view but different
metrics. It uses one metric to pull out confident data for the
other metric to refine the performance. In implementation,
the nearest neighbors of the query object are added to the
labeled data set for graph transduction in the next iteration
based on the other shape similarity. The final similarity
of co-transduction is the average of all the similarities, i.e.,

.

When the database of known objects is large, computing all
objects becomes impractical; in practice, we construct similarity
matrix using the first most similar objects to query

according to the original similarity, which is similar to Bai
et al. [9]. Let denote the first similar objects to query . As
different shape similarities often have different , we use and

to represent the first similar objects to according to two
kinds of shape similarity, respectively. Then, the pseudocode of
an efficient version of the co-transduction algorithm is shown in
Fig. 7, which is used in all our experiments. In our experiments,

is always set to 300.

A. Theoretical Justification

Next, we provide a brief theoretical discussion of our algo-
rithm. We borrow the analysis from [31], which mostly fol-
lows the probably approximately correct (PAC) learning theory.
Let and be two classifiers (the two transduction algo-
rithms on different metrics in our case) at round 0. They are,
respectively, bounded by generalization errors and
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Fig. 7. Co-transduction algorithm for a large database.

with a high probability, i.e., , in PAC. Then, se-
lects number of unlabeled data samples (database objects) and
put them into data set , which contains all the examples for
training using transduction, where denotes the learned
classifier based on after the first round in our case. Let be the
number of labeled data and . If ,
then

where is the ideal classifier to retrieve all the correct an-
swers, and measures the difference between learned

and . The new error is then [31]

Here, is the number of labeled examples, and is the number of
unlabeled data. In order to achieve good classifiers whose gen-
eralization errors are less than , sampled sequence must
be sufficient to guarantee that no classifier whose generaliza-
tion error is no smaller than has a lower observed rate of dis-
agreement with than with a probability greater than .
As we can see, the general guidance to achieve a small is to
reduce the errors of the original learners (good input metrics)
and increase the complementariness of the metrics. Our algo-
rithm does not necessarily improve the overall performance if
the input metrics are not so good at the first place and they are
not so different from each other. Analogously, by minimizing
the empirical risk, we can obtain the classifier that has the lowest
observed rate of disagreement with sampled sequence .

From a different perspective, different measures explore dif-
ferent aspects about similarity; the top most similar objects

with respect to each measure are often not all correct; how-
ever, the most similar one (nearest neighbor) is likely be the
case; pulling out the best match by one measure to the other
helps further retrieve similar ones by the other complementary
measures. This intuition explains why co-transduction works.
Our work is also related to the diffusion map [35], which ob-
tains improved similarity measures for clustering by performing
Markov random walks. Our transductive learning component
improves similarity measures just like the diffusion map algo-
rithm, and the fusion of different metrics gives further improve-
ment. By exchanging the improved similarity measures of two
transductive learning algorithms, we gradually achieve a fused
similarity by letting two originally different measures meet with
each other, which realizes a fusion process.

III. EXTEND CO-TRANSDUCTION TO TRI-TRANSDUCTION

In the co-transduction algorithm, we only provide a solution
of combining two kinds of similarities. Here, we proposed an
algorithm called tri-transduction, which can be used for com-
bining three kinds of similarities. We are inspired by [36], which
combines three classifiers for improving the classification accu-
racy. We show the details of the tri-transduction algorithm in
Fig. 8. As shown in Fig. 8, the spirit of tri-transduction is very
similar to co-transduction. Assume that A, B, and C are the input
three kinds of similarities of tri-transduction, tri-transduction re-
trieves the most similar object by similarity A and add them to
the pool of B to do a re-ranking. Meanwhile, the most similar
objects by similarity B is added to C, and the most similar ob-
ject by C is added to A. In such a way, an iterative procedure
can be realized to enhance each input similarity. Same as that
in co-transduction, the final similarity of tri-transduction is the
average of all these similarities.
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Fig. 8. Tri-transduction algorithm.

IV. EXPERIMENTAL RESULTS

Here, we show results on three data sets, namely, MPEG-7
shape [10], Tari’s shape [37], and Wei’s trademark [38]. In ad-
dition, we show that our algorithm can potentially benefit from
bag-of-word-based image search.

A. Results on Shape Data sets

The MPEG-7 shape data set consists of 1400 silhouette im-
ages grouped into 70 classes, with each class having 20 different
shapes. Usually, the retrieval rate for this data set is measured
by the “bull’s-eye test.” Every shape in the database is com-
pared with all other shapes, and the number of shapes from
the same class among the 40 most similar shapes is reported.
The bull’s-eye retrieval rate is the ratio of the total number of
shapes from the same class to the possible number (which is
20 1400). We use the similarities computed by SC [3] and
IDSC [4] as the input distance measures. The new similarity ob-
tained by co-transduction results in 97.72% (bull’s-eyes), which
outperforms existing state-of-the-art algorithms; to further show
our algorithm being a general method, we also use the similarity
computed by Tu and Yuille [39] together with SC and IDSC as
the distance measures for co-transduction and achieve scores of
97.45% and 97.31%, respectively. These improvements show

the effectiveness of our algorithm. Our results and those by sev-
eral state-of-the-art methods on the MPEG-7 data set are shown
in Table I. We observe that co-transduction outperforms the al-
ternatives. This demonstrates that integrating different shape
similarities is an important direction for shape recognition. No-
tice that the state-of-the-art result without LP/diffusion on the
MPEG-7 data set is achieved by articulation-invariant represen-
tation (AIR) [8], and we believe that co-transduction can achieve
a higher score when using the similarity computed by AIR as the
input.

In order to visualize the gain in retrieval rates by our method
compared with SC or IDSC, we plot the percentage of correct
results among the first most similar shapes in Fig. 9(a). For
example, we plot the percentage of the shapes from the same
class among the first -NNs for . Recall that each
class has 20 shapes, and this is the reason for curve .
We observe that not only does the proposed method increase
the bull’s-eye score but also the ranking of the shapes for all

gets improved. In Fig. 9(a), we also plot the
curves of retrieval rates for SC/IDSC with graph transduction
[9] (e.g., SC + LP and IDSC + LP).

Tari’s data set [37] consists of 1000 silhouette images
grouped into 50 classes, with 20 images per class. Tari’s data
set has more articulation changes within each class than the
MPEG-7 data set, as shown in Fig. 10, and consequently, IDSC
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Fig. 9. Curves of retrieval rates for SC, IDSC, SC + LP, IDSC + LP, and co-transduction on the (a) MPEG-7 shape data set and (b) Tari’s data set (b).

Fig. 10. Sample images in Tari’s data set.

achieved better results than SC on this data set (see Table I).
The retrieval performance on this data set is also measured by
the “bull’s-eye test.” Only one error was made when retrieving
all the shapes from the data set, with the nearly perfect retrieval
rate of 99.995%. Table I also lists several results of Tari’s
data set in comparison with other approaches; we observe that
the second highest result by ASC + LCDP [17] is 99.79%,
with 42 errors. Same as in Fig. 9(a), the retrieval curves in
Fig. 9(b) are plotted to clearly show the performance gain by
the co-transduction algorithm.

In addition to shape retrieval, co-transduction can be also used
to improve the performance of shape recognition. The accuracy
of shape recognition is usually measure by 1-nearest neighbor
classification, which means the object is simply assigned to the
class of its nearest neighbor. Table II lists several recent state-of-
the-art methods and their recognition rates on the MPEG-7 data
set. Note that the methods [45]–[47] are tested in a different
manner: Before testing, a multiclass classifier is trained based on
features computed from training shapes. They adopt the leave-
one-out strategy for the supervised training, which means 19
shapes from each class of the MPEG-7 data set are used for
training and the remaining one is used for testing. Our algorithm
significantly outperforms these methods without knowing the
labels of the database objects.

In addition to the MPEG-7 and Tari’s data sets, several other
data sets, such as Kimia’s [11] and Rutgers tool [6], are also very
popular for shape retrieval. Since the sizes of these data sets are
relatively small and graph transduction [9] has achieved nearly
perfect results on these data sets, we do not use them here.

B. Results on Trademark Images

We also tested our method on a trademark data set [38]
consisting of 14 different classes with 1003 trademark images.

TABLE II
SHAPE RECOGNITION RATES ON MPEG-7 DATA SETS

Fig. 11 shows some typical examples from this trademark data
set. We use the precision–recall curve for the evaluation. The

- and -axes represent recall and precision rates, respectively.
Precision is the ratio of the number of relevant images retrieved
to the total number of images retrieved, whereas recall is
ratio of the number of relevant images to the total number of
relevant images stored in the database. For each query image
input to the system, the system returns 11 pages of hits with
descending similarity rankings, with each page containing nine
trademark images. This allows the performance of our system
to be evaluated on a pagewise manner. Since there are only
five classes containing more than 99 images, we only report
the precision–recall graph on these five classes. Each curve
consists of 11 data points, with the th point from the left
corresponding to the performance when the first pages of hits
are taken into consideration. A precision–recall line stretching
longer horizontally and staying high in the graph indicates good
performance. Here, we use two distance measures, namely,
moment invariants [51] and Zernike [52]. In Fig. 12, the data
points shown on the curve for co-transduction are the average
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Fig. 11. Sample images in Wei’s trademark data set.

Fig. 12. Precision–recall curves for trademark images.

Fig. 13. Sample images of the N–S data set [55].

precision and recall rates over the five classes. The curves show
that our method can improve the performance of trademark
retrieval significantly.

C. Improving Bag-of-Features Image Search With
Co-Transduction

Here, we show that co-transduction can be used to improve
the accuracy of image search. Bag-of-features image representa-
tion [53], [54] is widely used in image search. Recently, Jegou et
al. [16] have proposed a distance learning method called CDM.
We compare our method with CDM on the Nistér and Stewénius
(N–S) data set [55]. The N–S data set consists of 2550 objects
or scenes, each of which takes four different viewpoints. Hence,
the data set has 10 200 images in total. A few example images
from the N–S data set are shown in Fig. 13.

We adopt the method in [16] to compute the similarity for
image search. The image descriptor is a combination of the Hes-
sian–Affine region detector [56] and the SIFT descriptor [57].
A visual vocabulary is obtained using the -means algorithm on
the subsampled image descriptors. As co-transduction requires
two input similarity measures, we propose another similarity,
named reverse similarity, based on the one by [16]. Let de-
note the similarity between objects and computed by [16],
reverse similarity , where is the ranking number
of when using as a query for the data set, and is a weight
factor setting with a constant 10. Reverse similarity is motivated
by the phenomenon pointed out by [16]: A good ranking is usu-
ally not symmetrical in image search, which tells us that two

objects can be very likely from the same category when they
both obtain a good ranking position when using each other as a
query. With and , we can apply co-transduction to image
search on the N–S data set, and the measure score is the average
number of correct images among the first four images returned.
Table III lists the results on the N–S data set. We observe that
co-transduction significantly increases the score from 3.26 to
3.66, which is also better than CDM’s result when the number
visual vocabulary is 1 and the vocabulary size is 30 000. Our
result demonstrates that co-transduction can be also applied to
image search for performance enhancement.

D. Improving Shape Retrieval With Tri-Transduction

The retrieval power of co-transduction has been shown by
several experiments in this paper. Here, we test the tri-trans-
duction algorithm on the MPEG-7 shape data set with three
kinds of similarities, namely, SC [3], IDSC [4], and DDGM
[39]. One problem of tri-transduction is that the order of the
input three similarities will impact the final performance, as
the three kinds of similarities have different discriminatory
powers. Thus, we have two kinds of choices for the input order:
SC– IDSC–DDGM and SC–DDGM–IDSC (The other orders,
in fact, are the same with these two). We list the bull’s-eye
scores of tri-transduction on the MPEG-7 data set with the
above input orders in Table IV. We observe that tri-transduction
outperforms co-transduction (see the results in Table I) and
achieves a record-breaking performance.

E. Experiments on the Unbalanced Shape Data Sets

Here, we evaluate the performance of co-transduction on un-
balanced shape data. Since the number of instances is the same
for each class in almost all the shape benchmarks, we randomly
divide the MPEG-7 shape data set into five groups, namely, G1,
G2, G3, G4, and G5, and each group contains 14 classes. We re-
move some shapes from each group to make the data set unbal-
anced in the following manner: For each class from the different
groups, we keep different numbers of instances. Specifically, the
numbers for each class in G G are 20, 16, 12, 8, and 4,
respectively. We generate ten different unbalanced shape data
sets with the above strategy and still adopt bull’s-eye scores to
evaluate the performance of shape retrieval. The results listed
in Table V are the average of retrieval scores on the ten unbal-
anced data sets. These results demonstrate that co-transduction
can still achieve a significant improvement although the shape
data sets are unbalanced.

F. Parameter Setting and Time Complexity Analysis

As introduced in [9], there are two key parameters for LP, i.e.,
and . In addition to and , there are two additional param-

eters for co-transduction, i.e., iteration number and number
of nearest neighbors . For the MPEG-7 and Tari’s data sets,
we use the following parameter settings: , ,
(which are consistent with the settings in [9]), , and

. The parameter settings of tri-transduction (the experi-
ments in Section IV-D) are the same with co-transduction. For
the trademark data set, since the input distance measures are dif-
ferent from the ones for MEPG-7 data set, the parameter setting
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TABLE III
RESULTS ON THE N–S DATA SET

TABLE IV
RESULTS ON THE MPEG-7 SHAPE DATA SET WITH TRI-TRANSDUCTION

TABLE V
RESULTS ON UNBALANCED SHAPE DATA SETS

TABLE VI
BULL’S-EYE SCORES ON THE MEPG-7 DATA SET

WITH DIFFERENT PARAMETER SETTINGS

is , , , and . For the N–S data set,
the parameters are , , , and .
Since [9] has introduced a supervised learning method for de-
termining parameters and in detail, we no longer review it
here. We only need to focus on and . As both and are
integers, their values are very easy to set. Table VI shows the
scores on the MPEG-7 data set when setting and with in-
tegers from 1 to 5. We observe that all these scores are around
97%, which demonstrates the insensitiveness of co-transduction
to parameter tuning.

To further justify the effectiveness of the co-transduction
method, we iteratively run LP on the MPEG-7 data set based on
only one type of similarity with the same parameter setting for
co-transduction (the most similar objects will be added into
the query set for the next iteration), and we get the bull’s-eye
scores of 92.68% and 91.79% based on SC and IDSC, respec-
tively. Compared with LP’s results in Table I, there is not so
much change. Let and denote the similarities
obtained in the above experiments. We obtain a new similarity

by linearly combining and as follows:
, where is a weight

factor. We tuned , and the highest score based on is
92.0% when is 0.9. These scores are much lower than the
ones by co-transduction, and this illustrates that a direct linear
combination is not always desirable.

The time complexity for one iteration of the LP algorithm
is , where is the number of the database objects. As
aforementioned, in our implementation, we use only the first

most similar objects to the query object to construct

the similarity matrix for LP. Thus, the complexity for each iter-
ation of LP is . The whole complexity of LP is ,
where is the iteration number. It is easy to know that the pro-
posed co-transduction/tri-transduction algorithm is ,
as they adopt the LP algorithm with iterations. This com-
plexity is acceptable since only is a large number. (In our
experiments, and , which are both fixed.
is often smaller than 10.) Specifically, for the MPEG-7 data set,
the average time of co-transduction for one retrieval is about 9 s
on a common personal computer with a 2.53-GHz central pro-
cessing unit.

V. LIMITATION OF THE PROPOSED ALGORITHM

Although our algorithm achieves encouraging results on sev-
eral large benchmarks, it may fail in some cases. In particular,
when the input distance measures are quite different from the
truth or the variance of data from the same class is too large, our
algorithm will not lead to any improvement in performance. For
example, our algorithm did not improve the retrieval rates on la-
beled face in the wild (LFW) [58]. LFW is a very challenging
data set for face recognition since it contains 13 233 face im-
ages collected from Yahoo! News in 2002–2003 and the faces
in it show a big variety in lighting, pose, appearance, etc. We
use SIFT [57] and LBP [59] as the input distance measures for
co-transduction, and the result obtained by the learned distance
with the proposed algorithm is almost the same with the ones
by the original distances.

VI. CONCLUSION

We have proposed a shape retrieval framework, named
co-transduction, which combines two different distance met-
rics. With the same spirit as co-transduction, tri-transduction
combines three different distance metrics. The significant
performance improvement on four large data sets has demon-
strated the effectiveness of co-transduction/tri-transduction
for shape/object retrieval. Our future work includes extending
to other problems and providing deeper understanding of the
approach.
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