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Unsupervised Object Class Discovery via
Saliency-Guided Multiple Class Learning

Jun-Yan Zhu, Jiajun Wu, Yan Xu, Eric Chang, and Zhuowen Tu,

Abstract—In this paper, we tackle the problem of common object (multiple classes) discovery from a set of input images, where we
assume the presence of one object class in each image. This problem is, loosely speaking, unsupervised since we do not know a
priori about the object type, location, and scale in each image. We observe that the general task of object class discovery in a fully
unsupervised manner is intrinsically ambiguous; here we adopt saliency detection to propose candidate image windows/patches to turn
an unsupervised learning problem into a weakly-supervised learning problem. In the paper, we propose an algorithm for simultaneously
localizing objects and discovering object classes via bottom-up (saliency-guided) multiple class learning (bMCL). Our contributions are
three-fold: (1) we adopt saliency detection to convert unsupervised learning into multiple instance learning, formulated as bottom-up
multiple class learning (bMCL); (2) we propose an integrated framework that simultaneously performs object localization, object class
discovery, and object detector training; (3) we demonstrate that our framework yields significant improvements over existing methods
for multi-class object discovery and possess evident advantages over competing methods in computer vision. In addition, although
saliency detection has recently attracted much attention, its practical usage for high-level vision tasks has yet to be justified. Our
method validates the usefulness of saliency detection to output “noisy input” for a top-down method to extract common patterns.

Index Terms—Unsupervised object discovery, object detection, multiple instance learning, weakly supervised learning, saliency.
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1 INTRODUCTION

THE computer vision field has witnessed milestone
achievements in building real-world object detection

systems [20], [47], [53]. However, these methods all
require a large amount of labeled training data to build
practically applicable systems. Recently, many unsuper-
vised approaches have been proposed to perform object
localization and categorization [27], [30], [43], [50], [61].
While many of these approaches report encouraging
results on datasets like Caltech-101 [19], most of these
existing approaches work under restrictive conditions
such as large and centered foreground objects with clean
backgrounds. However, in practice foreground objects
often have large scale differences and are not centered;
the background is also frequently cluttered, as indicated
by unsupervised scene discovery research [35].

In this paper, we design a system for the discovery
of unknown but common objects of multiple classes
from a given set of images. This problem is known as
unsupervised object class discovery [50] in which the input
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includes a set of unlabeled images. Due to differences in
respective final goals and forms of outputs, the specific
approaches to the unsupervised object discovery task
can be very different. Figure 1 gives an illustration of
some possible alternative paths for algorithm design.
In particular, we consider three (nested) approaches for
the object discovery task in which the input is a set of
unlabeled images.

Approach I. Output: image-level cluster labels. The goal
in this approach is to cluster the input images, with
the desire that all the images of the same object class
would be placed in a pure cluster corresponding to that
class. The pro is that existing unsupervised clustering
algorithms can be utilized. The con is that the object
in each image is not localized, which can contribute to
clustering error and limit the subsequent usefulness of
the output. See [50] for a review of work along this line.

Approach II. Output: localized objects. The goal in this
approach is to localize the object (of unknown class) in
each image; image-level cluster label is then naturally
determined from that image’s localized object. The pro
is that objects are detected and identified, outcomes that
can then be used as the input for subsequent tasks.
The con is that object class models are not explicitly
learned within the framework, which reduces the scope
of application of, for example, the object detection, due to
the lack of a corresponding integrated object class model.
A typical example of this approach is [42].

Approach III. Output: learned object class models. The
goal in this approach is to automatically learn object
models, which can then be naturally used to detect the
object in each image. The pro is that object localization,
object class discovery, and object detector training are all
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Fig. 1: An overview of the unsupervised object class discovery problem. The input is the same for different types of algorithms:
a set of unlabeled images. On the other hand, since different algorithms have different purposes, the outputs of the algorithms
will vary according to those purposes.

performed in an integrated framework. The con is that
the complexity of the system might be high. We take this
approach here.

Approach I, II, and III belong to a nested family shown
in Figure 1. As we can see, if we can successfully localize
and differentiate the objects (approach II), the image-
level cluster label (approach I) can be obtained easily; if
we can learn the explicit object models (approach III),
then object localization can be directly performed by
applying the object models to the images (approach II).
Figure 1 gives an overview of the unsupervised object
class discovery problem and Figure 2 illustrates the
specific strategy of the method proposed in the present
paper, discussed in much more detail later.

Before continuing, we observe that the general task of
fully unsupervised object class discovery is intrinsically
ambiguous. This is due to large variations, corruptions,
foreground object outliers, as well as to the inherent am-
biguity between complex objects and background clutter.
Despite this ambiguity, it is nevertheless desirable to
build an unsupervised object discovery system with rel-
atively loose constraints due to its much lighter human
labeling requirements and its general adaptability. With
the assumption that the common objects across multiple
images live in an intrinsically lower-dimensional space,
we extract many local image region windows from each
image, pick “correct” image windows that contain the
objects of interest, and then naturally perform clustering.
As described above, this problem is evidently highly

combinatorial and high-dimensional. Here we show how
to tackle this daunting task using our proposed bottom-
up Multiple Class Learning (bMCL) approach.

In this paper, we adopt saliency detection to place the
original unsupervised problem into a multiple instance
learning context [12]. Our framework has the following
new aspects: (1) Unlike the direct top-down discovery of
object classes [57], [58] or the use of specifically trained
classifiers [11], we utilize bottom-up saliency detection to
guide top-down learning in unsupervised object discov-
ery. We create negative training examples (bags) contain-
ing the least salient windows for each particular image,
which is a unique property of our method. (2) Object
localization, object class discovery, and object detector
training are performed simultaneously in an integrated
framework, named bottom-up Multiple Class Learning
(bMCL). (3) Our algorithm demonstrates significant im-
provements over existing systems on challenging bench-
mark datasets. Figure 2 illustrates our bMCL approach.

We now briefly discuss the general concepts underly-
ing our learning framework. Multiple instance learning
(MIL) [12] occupies a middle ground between com-
pletely unsupervised learning and completely super-
vised learning; in MIL, we are provided with weak
supervision in the form of image (bag) level labels rather
than the full supervision of detailed annotation of object
locations. MIL thus significantly reduces the manual
effort in order to build object detection systems [3],
[14], [54]. Furthermore, when multiple object classes are
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present, it is desirable to automatically discover them
simultaneously in the MIL scheme.

In the machine learning literature, several multiple
instance clustering (MIC) algorithms [57], [58] have been
designed to perform localized content-based image clus-
tering. These methods introduce the multiple instance
concept into standard clustering methods such as K-
means or maximum margin clustering [55]. However,
most of the existing MIC solutions report discouraging
cluster purity results (e.g., 37.1%) [57], [58] in the SIVAL
benchmark dataset [41]; just as discouraging is the fact
that they do not perform simultaneous object localiza-
tion. In comparison, while state-of-the-art unsupervised
object discovery methods [27], [30] perform well in
Caltech-101 (98% in purity), when applied to SIVAL,
their cluster purity [30] declines to 28.3%.

The use of saliency scoring to generate positive and
negative bags is an important aspect of our method.
Saliency detection has become an active research area [8],
[21], [25] where objects of interest are assumed to be
“salient” in images. Recently, a related idea called “ob-
jectness” has appeared [1], [16]; “objectness” is similar
to the concept of saliency but is more specific to high-
level knowledge. Another related method [11] uses a
classifier trained on several classes of objects as “meta
information” that is then used to learn other object
types. Such learned “objectness” detectors have been
adopted in systems, e.g. in [6] for the PASCAL object
segmentation task. Although saliency detection is an
active research area, there has remained uncertainty
about the effectiveness of saliency detection in high-level
vision tasks; we demonstrate that in the unsupervised
object discovery task, the notion of saliency guidance
can indeed be of great help.

2 RELATED WORK

For unsupervised object class discovery, there are several
alternative approaches one can take (see Figure 1). In-
deed, even within the same pipeline, one can select from
several different component choices. Related work can
thus be viewed from several angles: one immediate view
would be based on the overall approach for the task;
alternately, if one takes Approach II or III as discussed
in the previous section, related work could then be
discussed with respect to the choice of core learning
method and the candidate window extraction method.
Related work in unsupervised object discovery
For recent unsupervised object learning methods, Tuyte-
laars et al. [50] give a comprehensive survey, albeit with a
focus on probabilistic latent models. Earlier references on
unsupervised object learning are mostly clustering-based
approaches in which the concept of object is rather weak
(Approach I). For example, [23] adopts the EM algorithm
to cluster faces under translations and small variations.
Although the unsupervised learning concept in [23] is
insightful, it is unclear how to generalize methods like
[23], [29] to deal with challenging real-world images [17].
Several unsupervised approaches have recently been

proposed for object localization and categorization [23],
[30], [32], [43], [50], [61]. Zhu et al. [61] learn a probabilis-
tic grammar for object classes but report their results on
a restricted subset of the Caltech dataset [19] — namely,
images in which the foreground objects are mostly cen-
tered and often occupy a significant portion of the image.
Lee and Grauman [30] group edge/contour fragments
into objects without supervision, but require the objects
to have well-defined strong shape cues. In contrast to
work such as [24], [31] in which researchers use known
categories as the context information, Deselaers et al. [11]
encourage the new objects to fit the “meta information”
learned on other objects.

The recent literature on cosegmentation [5], [26], [38],
[42], [51] is also related to our method. However, most
work on cosegmentation proceeds via “Approach II”, in
which the goal is not to automatically learn an object
model for detection. These cosegmentation algorithms
typically focus on large objects without significant scale
differences and, moreover, are only applied to modest
numbers of images, e.g. 2 ∼ 40 images. Recently, Vi-
cente et al. [51] learn a category-independent pairwise
regression model between two segmentation proposals
extracted by [6]. Foreground regions containing multi-
ple objects are represented as sparse subspace structure
in [38]. Neither of these methods demonstrate object
detection in unseen images due to lack of explicitly
trained category model. In Section 6, we apply a scalable
cosegmentation method [28] to multi-class object discov-
ery but its results are not fully satisfactory.
Related work in multiple instance learning
There have also been previous attempts to use multiple
instance learning (MIL) for unsupervised object discov-
ery [57], [58]. However, these existing MIL approaches
are mostly used as alternatives to the unsupervised clus-
tering method in “Approach I”. That is, [57], [58] provide
image-level cluster labels but provide no localization of
the specific objects. We focus on the scenario in which
true positive objects of the same but unknown class
exist within each bag, which separates our method from
most of the existing clustering-based MIL approaches.
In addition, one particular novel aspect of our paper
is the use of an effective bottom-up process to convert
unsupervised learning into multiple instance learning,
which leads to significant performance gain. Next, we
provide more background discussion.

In the machine learning literature, Dietterich et al. [12]
introduced multiple instance learning (MIL) for drug ac-
tivity prediction. Since then, researchers have proposed
a large number of algorithms for tasks of MIL type.
For example, Andrews et al. [2] developed mi-SVM and
MI-SVM for instance-level and bag-level classification,
respectively. There are also numerous computer vision
applications that naturally fit into the MIL framework.
Examples include object and face detection [3], [14], [54],
visual categorization [52], and robust object tracking [4].

Multiple instance clustering (MIC) algorithms [57],
[58] perform clustering in an MIL setting, and can also
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be used to learn multiple object classes in unsupervised
object discovery. Zhou et al. [58] view bags as atomic
items with respect to which they define three types of
inter-bag distance; they then apply K-means to cluster
the bags in question. Zhang et al. [57] introduce the
concept of maximum margin clustering (MMC) [55]
into MIC, and then propose M3IC. Because there are
no “negative” images nor any specific prior informa-
tion about the foreground objects in these formulations,
they both reported discouraging results on challenging
datasets like SIVAL [41]. Some other semi-supervised
learning approaches have also appeared [60], but with
an emphasis on clustering rather than object discovery.
MIForests [33] also works on the multi-label case but it
requires the image-level class labels to be given while
in our case, these cluster labels are unknown since we
are dealing with an unsupervised learning problem. Due
to their assumption of the presence of one positive
cluster within each positive bag, the previous multi-
class/multi-label MIL methods [14], [33], [57], [58] do
not directly apply to our case here. Our multiple class
learning (MCL) algorithm is motivated by the multiple
pose learning and multiple instance learning (MPL-MIL)
idea [3], and can be viewed as a general and formal
formulation to MPL-MIL. Here we explicitly study the
hidden class variable and instance label, and provide a
general learning strategy under an EM-like framework.

Existing work in saliency detection
The pipeline of “Approach III” utilizes windows ex-
tracted from each image. Our approach uses saliency
detection for two purposes: (1) reducing the search space
by extracting candidate windows of highest salience, and
(2) differentiating object from background by creating
negative bags of the least salient windows. Next, we
discuss some recent work in saliency detection.

Impressive results have been reported using mostly
data-driven bottom-up processes [8], [21], [25]. In ad-
dition to measuring the saliency of individual pix-
els [8], [25], Feng et al. propose and compute window
saliency [21]. Chang et al. [7] utilize multiple images to
perform co-saliency, but they primarily focus on single-
class unsupervised cosegmentation rather than object lo-
calization or multiple object model learning . Despite no-
table interest in computer vision, saliency detection has
received relatively less attention in the object discovery
community. A recently proposed concept “objectness”
[1], [16] is similar to the saliency concept, but more
specific to objects.

Other related work
We view saliency as generic prior knowledge that may
be of use in various high-level vision tasks. We adopt the
bottom-up saliency process into an integrated learning
framework for simultaneous object localization, object
class discovery, and discriminative object model training,
which differs from previous approaches [11], [32], [57].

Other references using bottom-up cues focus on multi-
ple segmentations [43] or on self-paced discovery, which

Fig. 2: The pipeline of the proposed bMCL algorithm: (a)
saliency-scored windows, (b) high-salience “probably positive”
bags (in which we expect the object to be present), (c) low-
salience “probably negative” bags (in which we expect only
background to be present), (d) Bottom-up Multiple Cluster
Learning algorithm: different colors represent positive bags
that belong to different classes, and (e) object clustering and
detection results.

refers to progressive model accumulation [32]. In [44],
the most “salient” regions are selected to update the
models based on a fixed matching threshold. Moosmann
et al. [37] redefine the concept of “saliency” in their
supervised object classification scheme. However, their
work differs from ours in problem setting, goal, and
algorithm design. Recently, Deselaers et al. [11] attempt
to use “meta information” to aid object detection in the
weakly supervised setting. The “meta information” in
question comes in the form of a classifier trained on
several selected object classes. Our work differs from [11]
because we perform simultaneous localization, cluster-
ing, and object detector training, whereas [11] train
object detectors separate from their main formulation.
Also, we extract least-salient regions in each image to
compose negative bags, a particular advantage of our
method over [11], [57], [58] that leads to significant
performance gains. In addition, our work sheds light
onto an emerging line of approaches [13], [34] which
exploit visual concepts or object models from a large-
scale of unlabeled/weakly-labeled image data.

3 BOTTOM-UP MULTIPLE CLASS LEARNING

In this section we provide a brief overview of our
framework, bottom-up Multiple Class Learning (bMCL).

As shown in Figure 2 and Algorithm 1, the pipeline
of our method consists of three steps. First, we use
saliency scores to construct “probably positive” and
“probably negative” bags from input images, thereby
converting our original unsupervised learning problem
into a weakly supervised learning problem — namely,
a multiple instance learning problem. We discuss the
details of this saliency scoring step in Section 4. Second,
we collect the S most salient windows from each image
and derive initial class labels using K-means. We then
formulate the problem as a weakly supervised multiple
class learning task with two kinds of hidden labels:
HK containing unobserved bag-level cluster labels and
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Algorithm 1 Bottom-up Multiple Class Learning (bMCL)

Input: N input images. K classes.
Output: K object models: g1, . . . , gK . Predicted class labels
for images: {k̂1, . . . , k̂n}. Bounding boxes of detected objects
{b̂1, . . . , b̂n}.

Saliency-Guided Bag Construction
for i = 1→ N do

Extract the most salient windows to construct a positive
bag (xi, yi = 1).
Extract the least salient windows from random samples
to construct a negative bag (xi+N , yi+N = −1).

end for
Multiple Class learning

Initialization
Apply K-means to the S most salient windows of each image
to obtain K centroids {c1, . . . , cK}.
Compute evaluation score qkij = [1 + exp(−σ||xi − ck||2)]−1.
Initialize class labels H0

K ∝ Pr(yi = 1, ki = k|xi, θ).
MCL Algorithm
Assign X = {x1, ..., xN , ..., x2N} , Y = {y1, ..., yN , ..., y2N}.
Call Algorithm 2: [g1, . . . , gK ] = MCL(X,Y,K,H0

K)
Object Clustering and Detection

for i = 1→ N do
Compute k̂i = argmaxk Pr(ki = k|yi = 1, xi; θr) ∝
Pr(yi = 1, ki = k|xi; θr), where θr = {g1, . . . , gK}.
Detect b̂i = xiĵ , where ĵ = argmaxj Pr(kij = k̂i|xij ; gk̂i

).
end for

(a) (b)

Fig. 3: (a) Localized objects from SIVAL [41]. (b) Original
images from SIVAL [41].

HY as unobserved instance-level cluster labels. We then
solve the problem using an EM-like optimization ap-
proach that we refer to as Discriminative EM (DiscEM).
We discuss the details of our formulation in Section 5.
The third step is to use the K learned object models to
perform object detection and to assign class labels. Note
that because our framework learns multiple discrimina-
tive object models, it is natural to apply them to detect
objects in novel images. Please see Section 6 for detailed
discussions of our experiments.

4 SALIENCY GUIDANCE

In this section, we demonstrate that the problem of
unsupervised object discovery is, in general, ambiguous.
Utilizing bottom-up saliency detection helps to guide the
learning process by turning unsupervised learning into
weakly supervised learning.

4.1 General unsupervised object discovery is am-
biguous

In an empirical study, we asked ten human participants
to divide two groups of images from the SIVAL dataset
[41] into three categories. While all the participants
divided the first group of object-centered images (Figure
3a) into three object classes spontaneously, they felt
confused and spent much more time on the second
group of images in which the object was not empha-
sized by centering (Figure 3b). In addition, while seven
of the participants divided the non-centered group of
images into object classes (apples, toys, and books),
the three remaining participants categorized the images
by scene type (indicating that their attention was on
the background of chair, newspaper, or room). That
even human performance does not always immediately
focus on the object in the images indicates the strong
ambiguity in unsupervised object discovery, especially
when localizing objects in complex backgrounds. Direct
clustering based algorithms [15], [55], [57], [58] may fail
to separate the objects from the background clutter.

4.2 Window-based saliency detection

Saliency detection, usually considered as a bottom-up
process, can guide the object discovery task because
objects of interest often appear to be salient in many
real-world images. Feng et al. [21] show that the win-
dows with the highest saliency scores have a large
overlap with the windows that contain objects in popular
datasets such as the PASCAL dataset [17]. This observa-
tion also holds for images retrieved from Internet image
search engines. In the light of the previous observation,
Feng et al. propose window composition [21] to measure
how likely it is that a given image window contains a
salient object. This window composition method com-
putes saliency scores for windows of different scales and
at different locations. Although complex backgrounds
sometimes lead to high saliency scores even for back-
ground windows, essentially almost every object in the
SIVAL dataset is covered by some window with a high
saliency score; cf. Section 4.3 and Figure 4.

4.3 From unsupervised object discovery to weakly
supervised learning

To validate the object saliency property in the SIVAL
dataset [41], we conducted an experiment and found that
the 70 most salient windows extracted by [21] cover 98%
of objects. This allows us to define positive and negative
bags based on window saliency scores; these bags can
then be used in a multiple instance learning formulation.
Specifically, for each image we define a “probably posi-
tive” bag (in which we expect the object to be present)
consisting of the most salient windows and a “probably
negative” bag (in which we expect only background to
be present) consisting of the least salient windows from
a large set of randomly sampled windows, as illustrated
in Figure 4. In this way, we convert unsupervised object
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Fig. 4: Example of bags and instances. On the first row, red
rectangles: the most salient windows as instances in the posi-
tive bag; yellow rectangles: the most salient window obtained
by [21]. On the second row, green rectangles: the least salient
windows from a large set of randomly sampled windows as
instances in the negative bag; blue rectangles: the desired object
window.

discovery into a weakly supervised learning problem.
Note that using the least salient windows to construct
the negative bags is a particularly interesting step that
has never appeared in existing methods.

5 FORMULATION

Standard MIL solutions [2], [54] cannot be directly ap-
plied to unsupervised object discovery due to the lack
of the concept of multiple classes. Recent multi-class
multi-instance methods like MIForests [33] need image-
level class labels for training, which also does not fit
our setting. While multiple instance clustering (MIC)
approaches [57], [58] are designed to explore hidden
patterns in multiple classes, their performance is unsatis-
factory because they treat every image as a positive bag
without incorporating any notion of negative bags. In the
present paper we propose a model named Multiple Class
Learning (MCL) that tackles multiple classes among pos-
itive bags, explores unknown class labels, learns instance
labels, and utilizes negative bags. The learning process
is performed by a process we refer to as Discriminative
EM (DiscEM), in which MIL-Boost is a component for
learning instance-level labels.

In what follows, we first review the MIL-Boost al-
gorithm, then introduce our formulation for Multiple
Class Learning (MCL) problem and a derivation of our
optimization algorithm for the learning process.

5.1 MIL-Boost
Multiple instance learning (MIL) is a major topic in
weakly supervised learning. Here we give a brief
overview with a focus on boosting-based MIL ap-
proaches [3], [54]. In MIL, each bag xi ∈ Xni consists of a
set of instances {xi1, . . . , xini}(xij ∈ X ) . Each bag xi has
a given class label yi ∈ Y = {−1, 1}, and instance labels
yij ∈ Y are unknown and treated as hidden variables. A

bag is regarded as positive if at least one of its instances
is positive and a bag is regarded as negative when all
of its instances are negative, i.e. yi = maxj (yij). For
notational simplicity, we assume that each bag contains
the same number of instances, i.e. ni = m (i = 1, . . . , n).

Standard boosting methods [22], [36] assume an ad-
ditive model of instance-level decisions: gij = g(xij)
where g(xij) =

∑
t λtgt(xij) is a weighted vote of weak

classifiers gt : X → Y . Assuming that yij ∈ Y is the
hidden instance-level label, the associated probability of
being positive is given by

pij = Pr(yij = 1|xij ; g) =
1

1 + exp (−gij)
. (1)

The bag-level probability is computed via a Noisy-OR
(NOR) model, which gives

pi = Pr(yi = 1|xi; g) = 1−
m∏
j=1

(1− pij). (2)

Because the bag labels are given in the training set, we
can optimize the negative log-likelihood function:

LMIL = −
n∑
i=1

[1(yi = 1) log pi + 1(yi = −1) log (1− pi)],

where 1(·) is an indicator function. The algorithm greed-
ily searches for gt over a weak classifier candidate pool,
followed by a line search for λt. According to the Any-
Boost [36] framework, the weight wij on each instance
xij is updated as

wij = −∂LMIL

∂gij
=


− 1

1− pij
∂pij
∂gij

if yi = −1;

1− pi
pi(1− pij)

∂pij
∂gij

if yi = 1.

(3)

5.2 Multiple Class Learning

We now introduce our formulation, multiple class learn-
ing (MCL), for the task of learning multiple discrimi-
native models with weak labels and hidden variables.
The overall formulation of MCL tries to (1) discriminate
the positive instances (in which an object is present)
from the negative instances (in which only background
is present); (2) learn the differences between different
object classes in the positive bags.

Given K object classes and N unlabeled images, we
obtain N positive bags and N negative bags based
on bottom-up saliency detection. We denote the total
number of all the bags by n = 2N . There are two kinds
of hidden variables in MCL: 1) the instance-level label
yij ∈ {−1, 1} for each instance xij in bag xi and 2)
the class latent label kij ∈ K = {0, 1, . . . ,K} for the
instance xij that belongs to the kth class. Note that we
use kij = 0 and ki = 0 to represent a negative instance
and a negative bag, respectively. Here, we assume the
existence of only one foreground object class in each
positive bag; that is, we regard each image as containing
only one class of object. Thus, the class label ki for each
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positive bag of class k is defined based on the class labels
of its instances as

ki = k ⇐⇒ ∀j, kij ∈ {0, k} and ∃j0, kij0 = k, (4)

where k ∈ {1, ...,K}. Throughout the paper, we denote
H = (HK , HY ) as hidden variables where HK = {ki |
i = 1, .., n} and HY = {yij | i = 1, .., n, j = 1, ..,m}. Note
that we purposely define yij ∈ {−1, 1} so that kij =
(yij+1)

2 · ki.
For bags X = {x1, . . . , xn}with labels Y = {y1, . . . , yn}

(yi ∈ {−1, 1}), we define the overall negative log-
likelihood function L(θ;Y,X) as

L(θ;Y,X) = − log Pr(Y |X; θ) = − log
∑
HK

Pr(Y,HK |X; θ)

= − log
∑
HK

∑
HY

Pr(Y,H|X; θ), (5)

where the model parameter θ = {g1, . . . , gk, . . . , gK} and
gk is the appearance model for the kth object class. The
evaluation score for xij to the k-th class is computed as
qkij ≡ qk(xij) = [1 + exp (−gkij)]−1 where gkij ≡ gk(xij).
The instance-level probability is thus

pkij = Pr(kij = k|xij ; θ) ∝
K∏
t=1

(qtij)
1(t=k)(1−qtij)1(t 6=k). (6)

Next, we derive the probability Pr(Y,HK |X; θ). As-
suming that all bags are conditionally independent, we
have

Pr(Y,HK |X; θ) =

n∏
i=1

Pr(yi, ki|xi; θ) =

n∏
i=1

[Pr(ki|xi; θ) · si],

(7)
where si = 1((yi = −1 ∧ ki = 0) ∨ (yi = 1 ∧ ki 6= 0)).

For each positive or negative bag, we denote the prob-
ability pki = Pr(ki = k|xi; θ). Because the full derivation
is combinatorial, we approximate the probability as

pki ≈
K∏
t=1

[
(qti)

1(t=k)(1− qti)1(t 6=k)
]

(8)

where qti = Pr(∃j, kij = t|xi; θ) = 1 −
∏m
j=1 (1− ptij)

denotes the measure for at least one instance xij in
bag xi belonging to the tth class. Details of the above
approximation are discussed in Section 7.

Then Pr(Y,HK |X; θ) can be written in a class-wise
manner as

Pr(Y,HK |X; θ) ∝
K∏
t=1

n∏
i=1

[
(qti)

1(t=ki)(1− qti)1(t6=ki) · si
]
.

(9)

We could further explicitly use the instance-level hid-
den variables HY to expand Pr(Y,H|X; θ). Similar to the
overall loss function L(θ;Y,X), we also define the bag-
level loss function L(θ;Y,X,HK) = − log Pr(Y,HK |X; θ)
and the instance-level loss function L(θ;Y,X,H) =
− log Pr(Y,H|X; θ), which will be later used in our Dis-
criminative EM (DiscEM) algorithm (See Section 5.3).

In MCL, if the expectation of H = {HK , HY } is
estimated, we could subsequently decompose the min-
imization of the overall loss function d

dθL(θ;Y,X) into
d
dθL(θ;Y,X,H) and optimize K standard boosting ad-
ditive models on instance-level decisions: gkij = gk(xij),
where gk(xij) =

∑
t λtg

k
t (xij) is a weighted vote of weak

classifiers gkt : X → Y . To this end, in the following
subsection we derive an EM-style optimization method
to estimate the collected hidden variables H .

5.3 Optimization
The optimization of Eqn. (5) involves the collected hid-
den variables H . To solve this problem, we employ
a general formulation of Discriminative EM (DiscEM)
that performs discriminative learning in the presence of
hidden variables. We directly apply DiscEM to explore
the hidden variables H in MCL. We also observe that
under the MIL assumption, MIL-Boost [54] is equivalent
to DiscEM in tackling instance-level hidden labels, as
shown in Section 7. Based on this observation, a stan-
dard MIL-Boost approach is naturally able to handle the
instance-level hidden variables HY and we only need to
tackle the class labels HK explicitly. Further, in contrast
to other multi-class MIL formulations like MIForests [33],
DiscEM can be applied to other situations with various
forms of hidden variables.

Our DiscEM approach is similar in spirit to standard
EM [10]. The primary difference is that in our model,
labels Y = {y1, . . . , yn} are given in addition to observa-
tions X = {x1, . . . , xn}, and the goal is to estimate the
parameter θ that minimizes the negative log-likelihood
function L(θ;Y,X).

We iteratively update an initial estimate θ0 with suc-
cessively better estimates θ1, θ2, . . . , until convergence.
The update from θr to θr+1 consists of two steps:

E step: Compute Pr(H|Y,X; θ) via previous estimate θr.
M step: Update θr+1 by minimizing L(θ;Y,X).

Note that in the above formulation, the parameter θ
can be purely discriminative, i.e., it can be a parameter
of classifiers. In this way, DiscEM takes advantage of
discriminative learning algorithms. This distinguishes
DiscEM from other conditional EM frameworks [45], in
which the task is to learn a generative parameter through
a discriminative objective. Compared with standard su-
pervised algorithms, DiscEM is thus better able to handle
hidden variables and to embrace the weakly supervised
learning setting.

DiscEM is particularly suitable for MCL because MCL
forms an optimization problem with a discriminative
cost function L(θ;Y,X) and complex hidden variables
H = (HK , HY ) in Eqn. (5), which makes the other MIL
approaches not directly applicable. Because of the equiv-
alence between DiscEM and MIL-Boost in dealing with
instance-level hidden labels (See section 7 for details), we
could further replace the EM steps for the instance labels
HY with standard MIL-Boost [54], or in other words, it
is only necessary to integrate HK out.
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Algorithm 2 Multiple Class Learning (MCL)

Input: Bags {x1, . . . , xn}, {y1, . . . , yn}. Number of classes K.
Initial labels H0

K .
Output: K discriminative classifiers: g1, . . . , gK .

r ← 0
repeat
r ← r + 1
for k = 1→ K do {M Step}

Given class variables Hr−1
K , group terms

Lk(gkr ;Y,X,H
r−1
K ) by class indices.

Train a strong MIL classifier gkr to minimize
Lk(gkr ;Y,X,H

r−1
K ) via MIL-Boost. T is the number of

weak classifiers in MIL-Boost.
end for
for i = 1→ n do {E Step}

Compute Pr(yi = 1, ki = k|xi; θr) using the estimated
model θr = {g1r , . . . , gKr }. Sample ki via Pr(ki = k|yi =
1, xi; θr) ∝ Pr(yi = 1, ki = k|xi; θr).

end for
until Hr

K = Hr−1
K

We rewrite d
dθL(θ;Y,X) as

d

dθ
L(θ;Y,X) = EHK∼Pr(HK |Y,X,θ)

[
d

dθ
L(θ;Y,X,HK)

]
.

(10)
The loss function can be decomposed in a class-wise

manner, i.e.,L(θ;Y,X,HK) =
∑K
k=1 Lk(gk;Y,X,HK).

Using Eqn. (9), Lk(gk;Y,X,HK) can be computed as

Lk(gk;Y,X,HK) = −
n∑
i=1

[1(k = ki) log qki

+ 1(k 6= ki) log (1− qki )],

(11)

which is valid when all the (yi, ki) in (Y,Hk) satisfy the
condition si = 1[(yi = −1 ∧ ki = 0) ∨ (yi = 1 ∧ ki 6= 0)],
as shown in Eqn. (9). Note that the normalization term
in Eqn. (9) is ignored here for computational simplicity
as it is close to 1.

Eqn. (11) essentially builds K classifiers, among which
each classifier gk takes bags with class label k as positive
ones and all the rest as negative ones, and minimizes
Lk(gk;Y,X,HK) separately.

For each Lk(gk;Y,X,HK), hidden instance variables
HY could be further integrated out as

d

dθ
Lk(gk;Y,X,HK) =

EHY ∼Pr(HY |Y,HK ,X;θ)

[
d

dθ
Lk(gk;Y,X,H)

]
.

(12)

Rather than integrating HY out, we use standard MIL-
Boost [54] to minimize the function based on the equiv-
alence between DiscEM and MIL-Boost for the instance-
level labels (section 7). Algorithm 2 summarizes the
DiscEM optimization. To initialize H0

K in Algorithm 2,
we perform K-means on top S salient windows. Details
of K-means initialization could be found in Algorithm 1.

6 EXPERIMENTS
Datasets: Our goal is to build effective systems that can
perform unsupervised object discovery in practice. To
compare our algorithm with previous approaches, we
use a number of challenging benchmarks from machine
learning and computer vision, briefly described below.

The SIVAL dataset [41] is frequently used in MIL,
semi-supervised learning, and image retrieval. It is a
difficult dataset because the scenes are highly diverse
and often complex; moreover the objects may occur
anywhere spatially in the image and may also be
photographed with different orientations. We follow
the same setting as [57], [58] and randomly partition
the twenty-five object classes into five groups, named
SIVAL1 to SIVAL5.

The CMU-Cornell iCoseg dataset [5] is designed for
cosegmentation with 38 object classes. We construct a
subset, named CC, containing five classes with certain
similarities in object appearances and backgrounds: he-
licopter, kite, hot balloon, and two kinds of planes.

The 3D object category dataset [46] contains ten object
classes, where each class contains ten different object
instances imaged under different viewpoints and dis-
tances. We randomly select one object instance from each
class and partition the ten set of images of selected
instances into two datasets, named 3D1 and 3D2. To
increase the difficulty, only images of the smallest object
scale are included.

Parameters and features: In this paper, each positive bag
contains the 70 most salient windows returned by [21],
and each negative bag contains the 40 least salient win-
dows from a large set of randomly sampled windows.
Note that our algorithm is not sensitive to the numbers
of windows in the bags. The other parameters are fixed
at K = 5, S = 3, σ = 0.1. We represent our appearance
model as a Boosting classifier [36] trained on Color
Moment [49], Edge Histogram, and GIST [39] extracted
from image windows. For MIL-Boost, a decision stump
is used as a weak classifier and we set the number of
weak classifiers to be 100 throughout our experiment.

Measures and metrics: We adopt following metrics for
a fair comparison of all the methods.

Purity has been widely used in previous clustering
and unsupervised object discovery work [30], [55], [59]
as an evaluation metric that measures the extent to which
a cluster contains images of a single class. Specifically,
let Ω = {ω1, . . . , ωK} be the set of K discovered clusters,
and C = {c1, . . . , cK} be the set of ground truth classes.
Purity is then computed as P = 1

N

∑K
i=1 maxj |ωi ∩ cj |,

where N is the number of images.
Clustering accuracy has been used in previous mul-

tiple instance clustering methods [57], [58] to evaluate
clustering algorithms. Specifically, we first take a set of
labeled bags, remove the labels of these bags and run
the clustering algorithms, then we relabel these bags
using the clustering assignment returned by algorithms.
Finally, the accuracy is measured as Acc = 1

N

∑K
i=1 |ωi ∩
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bMCL SD M3IC BAMIC UnSL MFC

SIVAL1 95.3 80.4 39.3 38.0 27.0 45.0
SIVAL2 84.0 71.7 40.0 33.3 35.3 33.3
SIVAL3 74.7 62.7 37.3 38.7 26.7 41.3
SIVAL4 94.0 86.0 33.0 37.7 27.3 53.0
SIVAL5 75.3 70.3 35.3 37.7 25.0 48.3
CC 80.0 73.9 46.1 47.8 60.0 50.4
3D1 81.1 64.0 46.9 43.2 37.3 51.4
3D2 85.6 82.9 52.3 51.4 37.5 48.7

(a) measured in terms of purity

bMCL SD M3IC BAMIC UnSL MFC

SIVAL1 95.3 78.7 39.3 37.7 25.3 45.0
SIVAL2 84.0 65.7 38.7 33.3 34.0 33.3
SIVAL3 74.7 62.7 37.0 38.7 26.0 39.0
SIVAL4 94.0 86.0 33.0 37.7 26.3 53.0
SIVAL5 75.3 70.3 35.3 36.7 23.3 48.3
CC 73.9 63.5 38.2 46.1 53.3 42.6
3D1 81.1 64.0 46.0 43.2 34.7 51.4
3D2 78.4 76.6 52.3 51.4 35.0 48.7

(b) measured in terms of clustering accuracy

bMCL SD M3IC BAMIC UnSL MFC

SIVAL1 89.9 72.7 11.4 12.4 10.8 19.2
SIVAL2 73.2 57.3 10.1 5.8 19.1 7.3
SIVAL3 64.9 42.4 8.7 11.3 6.1 17.0
SIVAL4 87.2 75.4 7.4 13.3 10.6 26.0
SIVAL5 61.4 52.3 8.3 9.1 11.1 17.2
CC 77.3 59.7 15.8 23.0 59.7 32.3
3D1 69.7 52.3 20.3 15.4 23.6 32.9
3D2 87.9 75.8 22.4 25.9 29.4 29.6

(c) measured in terms of NMI

TABLE 1: Object categorization performance is measured
in terms of (a) purity, (b) clustering accuracy, and (c) NMI.
We compare bMCL with recent MIC approaches (M3IC [56],
BAMIC [58]), a state-of-the-art unsupervised discovery method
(UnSL [27]), the multiple foreground cosegmentation algorithm
(MFC [28]), and the saliency detection baseline (SD).

map(ci)|, where map(·) is the function that maps each
cluster to a class, given by the Hungarian algorithm, and
1(·) is an indicator function. We note that Acc considers
the one-to-one relationship between clusters.

Normalized Mutual Information (NMI) is a symmet-
ric metric to quantify statistical information shared be-
tween two distributions [48]. It has been previously used
in [56], [58] to evaluate the clustering performance of
multiple instance clustering methods. To calculate NMI,
we use NMI(Ω, C) = I(Ω,C)

[H(Ω)+H(C)]/2 where I and H refer
to mutual information and entropy.

6.1 Simultaneous Categorization and Localization

We demonstrate bMCL’s superior performance relative
to two recent multiple instance clustering (MIC) ap-
proaches BAMIC [58] (with the best distance metric)
and M3IC [56], one state-of-the-art unsupervised object
discovery approach [27] (UnSL), that achieves top per-
formance (about 98% measured in purity) on a subset
of Caltech-101 [19], and one foreground cosegmentation

(a) experiment results of SIVAL (b) experiment results of CC

Fig. 5: Object categorization results with varying number of
clusters K are measured by purity. We compare bMCL with
saliency detection baseline (SD) and random guess (RAND).

method [28] (MFC). We use their implementations and
the same parameter settings used in the original work.
The same feature space for bMCL is provided to BAMIC
and to M3IC. Note that for MFC [28], we assign each
image the class label of segments whose area is the
largest in the image.

There has been little work on exploiting saliency for
the task, except [44]. We implement a clustering algo-
rithm by selecting the most “salient” window obtained
by [21] in each image and cluster those windows by
K-means. This algorithm serves as a more reasonable
saliency detection baseline (SD) than the straightforward
greedy method in [44]. The SD algorithm is different
from the initialization used in bMCL because it considers
only one salient window for each image, and gives hard
assignments of labels to windows without sampling.

In bMCL, we use learned object detectors to evalu-
ate the densely sampled (multi-scale, multi-size) image
windows and output the class label ki and the instance
(window) xij with the highest probability pkij for each
bag (image) xi.

As stated above, purity, clustering accuracy and NMI
are used as the evaluation metrics for the categorization
problem. Table 1 reports the average results from ten
runs for each method. We see that using SD only already
provides a significant performance increase because the
saliency information helps to distinguish foreground
objects from background clutter. Further, bMCL outper-
forms all the other methods under all criteria by a large
margin (50% ∼ 200%).

The performance gap can be well explained by the
illustrative results shown in Figure 6. Without us-
ing negative bags, the MIC approaches (BAMIC [58]
and M3IC [56]) cannot explicitly differentiate objects
from background or distinguish between similar back-
grounds, nor can they perform object localization. The
keypoint-based UnSL [27] approach lacks a spatial con-
straint on key points, which causes the found object
key points to be scattered over the entire image. The
cosegmentation method MFC [28], while taking the
foreground knowledge into account, cannot effectively
maximize the distance between multiple clusters, nor
can it perform object detection on unseen images. In
contrast, bMCL finds object classes (top-down models)
across different images in noisy input from bottom-up
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(a) experiment results of SIVAL2 (b) experiment results of 3D1

Fig. 6: Illustrative categorization results of four methods in the experiments, the left from SIVAL2 [41] and the right from
3D1 [46]. From top to bottom: bMCL, M3IC [56], BAMIC [58] and UnSL [27]. In bMCL, the yellow rectangle is the localized
object and the white rectangle is the most salient window given by [21]. In UnSL, the learned object key points are overlayed
(red points). See Section 6.1 for detailed discussion.

methods. Note that as shown in the first row in Figure 6,
merely using saliency detection is not enough to get
convincing levels of performance, which demonstrates
the power and necessity of the overall bMCL framework.
Number of clusters: We further perform experiments
with different number of clusters (K = 2 ∼ 10) on
SIVAL and CC datasets. We measure results by purity;
for comparison, we also run 500, 000 Monte Carlo ex-
periments to estimate the clustering purity of randomly
assigned class labels (RAND). Figure 5 demonstrates that
bMCL repeatedly outperforms the saliency detection
baseline (SD) for each K; moreover, as K increases, the
performance of bMCL degrades more slowly than the
performance of RAND. Also, please note that even with
K = 10 (58.7%), the performance of bMCL is still higher
than that of competing systems with K = 5, among
which the highest value is 53.0% from MFC.
Running time: After saliency detection and feature ex-
traction, our MCL algorithm takes less than half an hour
to discover five object classes in 300 images, on a PC with
Intel Core 2 Duo P7450 @ 2.13GHz.

6.2 Object Detection

Previous unsupervised object discovery methods do not
obtain discriminative object models in an integrated
manner. Some are restricted to object categorization and
therefore cannot perform object localization [27], [61];
some have to resort to a separate detector training
process with localization results [32]; others obtain spe-
cialized detectors such as Chamfer-distance-based shape
templates [30]. By contrast, bMCL integrates the detector
training into the framework for generic object classes.

To validate the generalization ability of detectors
learned by bMCL, we randomly pick five images from
each object class, train bMCL models using the remain-

ing images, and detect the objects in the selected im-
ages under the same conditions as previously described.
We further use non-maximum suppression to eliminate
overlapping detections for each object. An object is
considered to be correctly detected if we have both a
correctly reported class label and an intersection between
the algorithm-derived bounding box and the ground-
truth area that is larger than 50% of the union. The de-
tection accuracies for SIVAL (averaged over five SIVAL
datasets), CC and 3D (averaged over 3D1 and 3D2) are
74.4%, 72.0% and 76.0%, respectively. Note that as shown
in Table 1, the average clustering purities on the three
datasets are 84.7%, 80.0% and 83.4%, respectively. The
detection accuracies are satisfactory because the detec-
tors are trained on a smaller training set. Figure 7 shows
some detection results. Notice that in each image, bMCL
can detect multiple objects of the same class, e.g. planes,
as shown in Figure 7b.

6.3 Weakly Supervised Single Class Recognition
Previous work [9], [11], [40], [43] addresses the problem
of localizing objects of a single class and learning a
corresponding detector. Because bMCL performs multi-
class object discovery in an integrated framework, our
framework can naturally handle single class recognition
by setting K = 1. Also, there are no hidden class labels
in this single class recognition task, and therefore we
employ MIForests [33], in addition to MIL-Boost, as the
discriminative classifier in bMCL.

We follow the same experimental setting as [11] and
directly cite the results reported in [9], [11], [43] and [40].
Please refer to [11] for datasets, features, measurements,
and other specific aspects of the experiment. We also
tested the performance of one state-of-the-art coseg-
mentation method [26]. For [26], we set the number
of classes K = 4 for each image category, and the
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(a) experiment results of SIVAL3

(b) experiment results of CC

(c) experiment results of 3D1

Fig. 7: Object detection results for novel images: the top from
SIVAL3 [41], the middle from CC [5], and the lower from
3D1 [46]. The rectangles are the localization results given by
bMCL. Different colors represent the class labels returned by
the algorithm.

bMCL [33] [11] [9] [43] [40] [26]

PASCAL 06 45 36 49 34 27 N/A 43
PASCAL 07 31 25 28 19 14 30 30

TABLE 2: Results for the single class recognition experiment.
We compare our approach bMCL to MIForests [33], previous
weakly supervised learning methods [9], [11], [40], [43] and
one cosegmentation approach [26], measured in CorLoc [11].
To be consistent, the datasets used are identical to those in [11],
which, although referred to by the names PASCAL 06 and
PASCAL 07, are actually subsets of the classes in the PASCAL
VOC datasets. For details, please refer to [11].

segments whose bounding boxes have the highest score
in CorLoc are considered to be detected objects. Pandey
and Lazebnik [40] applied the deformable part-based
models (DPM’s) with latent SVM training [20] to weakly
supervised single class learning and recognition. They
reported their results only on PASCAL VOC 2007 [17].

Table 2 shows that bMCL outperforms [9], [26], [40],
[43] and is comparable with [11] on the challenging PAS-
CAL datasets [17], [18]. MIForests [33] performs slightly
worse than bMCL as it may require some special tuning
to produce good results. Note that the method in [11]
trains varying meta-information classifiers for differ-
ent datasets whereas bMCL adopts bottom-up saliency
detection to discover multi-class objects; this is more
general, more efficient, and more convenient in practice.
In [40], the method begins by learning root filter weights
from the features of the entire training images. Our
notion of saliency guidance is complementary to DPM
because, when comparing with the entire image, we
find it more reasonable to use salient windows as the

Fig. 8: Red rectangles: bMCL object localization results with
a single object class (from top to bottom: aeroplane, cow, and
motorbike) on the challenging PASCAL VOC 07.

bMCL SD M3IC BAMIC UnSL MFC

Purity 96.25 88.75 66.25 75.00 56.25 54.43

TABLE 3: Clustering results of images returned by image
search engines.

apple bean bolt bow football

Purity 95.00 88.33 85.00 85.00 91.67

TABLE 4: Clustering results of Internet images associated with
double meaning queries.

initialization for LSVM training [20]. Figure 8 illustrates
exemplar object localization results on PASCAL 07.

6.4 Learning Object Classes from Internet Images

6.4.1 Clustering Internet images

To further demonstrate the effectiveness of bMCL on
images with significant variability, we apply bMCL on
Internet images retrieved from Google and Bing image
search engines. We crawl 40 images from image search
engines for each of the keywords “monkey” and “train”.
The images retrieved are highly diverse, differing in illu-
minations, poses, backgrounds, and types (photograph,
line drawing, clip art, etc.). We then test all clustering
methods described in Section 6.1 under the same setting.
We can see from Table 3 that, again, bMCL consistently
outperforms all other methods by a large margin. This
proves that even when input images are complex and
somewhat noisy, bMCL still have good performance.

6.4.2 Finding Visual Subcategories
Here we further evaluate our method on the task of clus-
tering Internet images associated with keywords with
double meanings. We use five queries: apple (brand vs.
fruit), bean (vegetable vs. actor), bolt (movie vs. athlete),
bow (weapon vs. bow tie), and football (American foot-
ball vs. soccer). We crawl 30 images for each meaning,
resulting in 60 images per query. We then test whether
bMCL can cluster these 60 images into two clusters
with one cluster per meaning. As shown in Table 4
and Figure 9, bMCL performs consistently well in these
highly diverse cases and effectively distinguishes differ-
ent visual subcategories of images within each category.
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Fig. 9: Illustrative clustering and localization results on Inter-
net images with keywords “bean” and “bow”

Fig. 10: Object detection results for novel images returned by
image search engines. The first two rows illustrate exemplar
successful detection results and the last row illustrates exem-
plar failure cases.

6.4.3 Learning an object model under weak supervision

We also apply bMCL in learning a generic single class
concept under weak supervision. To do this, we crawl
500 images returned by image search engines with key-
word “monkey”. We use 450 images for training and 50
images for evaluation. With the same setting described
in Section 6.3, bMCL achieves a detection rate of 37.4%.
As shown in Figure 10, some of the failures are due to
irrelevant images and/or largely occluded objects.

7 VERIFICATION FOR REMARKS

Verification for Eqn. (8) Now we check the Eqn. (8) that
the probability pki = Pr(ki = k|xi; θ) can be approxi-
mated as

pki ≈
K∏
t=1

[
(qti)

1(t=k)(1− qti)1(t 6=k)
]
, (13)

where qti = Pr(∃j, kij = t|xi; θ) = 1 −
∏m
j=1 (1− ptij) and

ptij = Pr(kij = t|xij ; θ) (Eqn. (6)).
For each positive bag, the probability pkij (k 6= 0) can

be computed as

pki = Pr(ki = k|xi; θ) ∝
m∏
j=1

(p0
ij + pkij)−

m∏
j=1

p0
ij , (14)

and for each negative bag,

p0
i = Pr(ki = 0|xi; θ) ∝

m∏
j=1

p0
ij . (15)

Since Pr(ki = k|xi; θ) is the form of combinational
explosion, we use 1 −

∑K
k=1 p

k
ij ≈

∏K
k=1(1 − pkij) to

approximate the pki as qki . For each positive bag, we have

pki ∝
m∏

j=1

(p0ij + pkij)−
m∏

j=1

p0ij

=

m∏
j=1

(1−
K∑
t=1

(ptij)
1(t6=k))−

m∏
j=1

(1−
K∑
t=1

ptij)

≈
m∏

j=1

K∏
t=1

[
(1− ptij)1(t 6=k)]− m∏

j=1

K∏
t=1

(1− ptij)

=

K∏
t=1

(1− qti)1(t 6=k) −
K∏
t=1

(1− qti) =
K∏
t=1

[
(qti)

1(t=k)(1− qti)1(t 6=k)].
For each negative bag, we have

p0
i ∝

m∏
j=1

p0
ij =

m∏
j=1

(1−
K∑
t=1

ptij) ≈
m∏
j=1

K∏
t=1

(1− ptij)1(t 6=0)

=

K∏
t=1

[
(qti)

1(t=0)(1− qti)1(t 6=0)
]
.

Thus we could model the pki , k ∈ {0, 1, . . . ,K}, as∏K
t=1

[
(qti)

1(t=k)(1− qti)1(t6=k)
]
.

The equivalence between DiscEM and MIL-Boost

Claim: Assuming all bags are conditionally independent
i.e.,Pr(Y |X; θ) =

∏n
i=1 Pr(yi|xi; θ), we have

d

dθ
L(θ;Y,X) = − d

dθ

n∑
i=1

log Pr(yi|xi; θ) (16)

When the instance-level model Eqn. (1) and the bag-level
model Eqn. (2) are used, MIL-Boost’s update rule Eqn.
(3) is equivalent to DiscEM, which reads as

d

dθ
log Pr(yi|xi; θ) =



m∑
j=1

−1

1− pij
d

dθ
pij if yi = −1;

m∑
j=1

1− pi
pi(1− pij)

d

dθ
pij if yi = 1.

(17)
Proof: Recall that the data is a set of bags X =
{x1, . . . , xn}, where each bag Xi contains a set of in-
stances {xi1, . . . , xim}. Label yi is given for bag xi while
yij is a hidden variable associated with instance xij . We
denote Hi = {yi1, . . . , yim} as the hidden variables for
bag xi and HY = {H1, . . . ,Hn} as the set of all the
hidden variables. Under the MIL setting, each instance
xij in a negative bag is known to be negative, and at least
one instance in each positive bag is positive. In other
words, given yi = −1, we know yij = −1 for every j.
Assuming that instances in each bag are independent,
then for negative bags Eqn. (16) becomes
d

dθ
log Pr(yi = −1|xi; θ) =

∑
j

d

dθ
log Pr(yij = −1|xij ; θ)

=
∑
j

d

dθ
log(1− pij) =

∑
j

− d
dθpij

1− pij
,

where p(yij) = Pr(yij |xij ; θ) and pij = p(yij = 1).
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Next we derive the expression for each positive bag.
The hidden variables Hi are conditionally dependent
given yi, but within each bag we assume they are
independent, i.e.,Pr(Hi|xi; θ) =

∏
j Pr(yij |xi; θ). We ob-

serve that Pr(Hi = −1, yi = 1|xi; θ) = 0 (the event is
impossible) and Pr(Hi, yi = 1|xi; θ) = Pr(Hi|xi; θ) for all
Hi 6= −1 (If Hi 6= −1 then yi = 1). This leads to

Pr(HY |yi = 1, xi; θ) =

{
0 if Hi = −1;∏
j p(yij)/pi otherwise.

(18)

In the above we use the Noisy-OR model shown in Eqn.
(2), which gives pi = Pr(yi = 1|xi; θ) = 1 −

∏
j(1 − pij).

We now expand Eqn. (16) for positive bags as

d

dθ
log Pr(yi = 1|xi; θ) (19)

=
∑
Hi

Pr(Hi|yi = 1, xi; θ)
d

dθ
log Pr(yi = 1, Hi|xi; θ)

=
∑

Hi 6=−1

∏
k

p(yik)

pi

d

dθ
log
∏
j

p(yij)

=
1

pi

∑
j

[∑
Hi

∏
k

p(yik)
d

dθ
log p(yij)−

∑
Hi=−1

∏
k

p(yik)
d

dθ
log p(yij)

]
=

1

pi

∑
j

[∑
yij

p(yij)
d

dθ
log p(yij)−

∏
k

(1− pik)
d

dθ
log (1− pij)

]
=

1

pi

∑
j

[
pij

d

dθ
log(pij) + (1− pij)

d

dθ
log (1− pij)

− (1− pi)
d

dθ
log 1− pij

]
=

1

pi

∑
j

[ d
dθ
pij −

d

dθ
pij − (1− pij)

d

dθ
log (1− pij)

]
=
∑
j

1− pi
pi(1− pij)

d

dθ
pij . (20)

Based on Eqn. (18) and Eqn. (19), we have proved the
claim for both negative bags and positive bags. �

8 CONCLUSION

In this paper, we have introduced a new learning algo-
rithm, bottom-up multiple class learning (bMCL), which
performs object localization, object class discovery, and
object detector training in an integrated framework. We
show the great advantage of the proposed method on
a variety of benchmark datasets. We also demonstrate
that our method performs comparably to state-of-the-
art weakly supervised single class object recognition
systems. Moreover, our proposed method can handle
diverse and noisy Internet images for both clustering and
detection tasks. Because we have illustrated the use of
saliency as a generic prior knowledge source in a variety
of vision tasks, our notion of saliency guidance may
spark further interest in utilizing saliency measures in
the context of high-level vision applications in the future.

The limitations of our method include: (1) difficulty
of dealing with objects undergoing non-rigid transfor-
mation or articulation; (2) inability to handle multiple
object categories in a single image; (3) sensitivity to ini-
tialization associated with being an EM-like algorithm;

and (4) general difficultly associated with the intrinsic
ambiguity between objects and common object parts.
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