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Abstract

The use of a single labeled volume (“atlas”) is limited in

registration-based segmentation because it is hard for one

atlas to represent the whole data population, especially if

input images observe large variation. Moreover, the choice

of volume to label biases the algorithm. Multi-atlas seg-

mentation has emerged as an alternative but it has a sim-

ilar drawback due to combinatory combinations of differ-

ent anatomical structures; and in addition, the computa-

tion time grows linearly with the number of atlases. In this

paper, a pictorial-structure-based approach to achieving

both the high performance and the efficiency of registration-

based segmentation is proposed. Our method performs seg-

mentation via registering each structure of the atlas in an

exemplar-based graphical model. We compared the pro-

posed approach with multi-atlas segmentation and show

the advantage of our method in both effectiveness and ef-

ficiency.

1. Introduction

Atlas-based registration has been ubiquitous in medical

image analysis in the last decade [15, 2, 8]. Given a la-

beled three-dimensional scan (henceforth an “atlas”) and a

test volume, the spatial correspondence between the two can

be obtained with a registration process. Registration is typ-

ically cast as an optimization problem in which a prede-

fined transform is adjusted to maximize a similarity mea-

sure. Once the transform has been determined, it can be

used to transfer the labels in the atlas to the test scan and ob-

tain its segmentation, which can be used for further clinical

analysis e.g. identifying the pathological changes of struc-

tures, or comparing the condition of a subject with control

cohorts.

In practice, the use of single-atlas segmentation is lim-

ited for two reasons: (1) the choice of atlas biases the re-

sults; and (2) a single atlas cannot in general represent a

whole population, especially on datasets with large varia-

tion. Multi-atlas registration (MAR) [12, 7, 11, 13] has been

widely used to ameliorate these problems. In MAR, a set of

atlases are registered to the target image. By decision rules

such as averaging, the final segmentation can be computed

from the transferred labels. The main disadvantage of MAR

is the heavy computational burden of registering a number

of atlases to the test case.

To reduce the computational cost of MAR, several stud-

ies have attempted to predict which atlases will yield the

most accurate segmentation for each region when registered

to the test case. In [15], van Rikxoort et al. proposed an

adaptive selection procedure based on the amount of infor-

mation gained from registering each candidate atlas. An-

other way of decreasing the processing time of atlas-based

registration is carrying out the analysis at a structural (as

opposed to global) level. Wu et al. [16] used a criterion

based on mutual information to choose the best atlas for

each structure.

In this paper, we propose a method inspired by Picto-

rial Structures [6] for multi-atlas 3D brain image segmenta-

tion. Pictorials structures were originally proposed for ob-

ject recognition; our application differs in model and im-

plementation. In our framework, a collection of anatom-

ical structures are arranged in a deformable configuration

such that each structure is modeled separately and the global

configuration is represented by spring-like connections be-

tween pairs of structures. Each individual structure is mod-

eled by local registration (exemplar-based) and the global

configuration is captured through the overlap of the prop-

agated labels. Our algorithm is also related to [4], but is

not restricted to just two neighboring structures of interest.

The proposed method is evaluated through the segmentation

of 12 subcortical brain structures (left and right thalamus

proper, L/R caudate, L/R putamen, L/R pallidum, L/R hip-

pocampus, and L/R amygdala) in a publicly available MRI

dataset.

2. Method

Registration-based segmentation of brain subcortical

structures is intrinsically inefficient because a whole MRI

volume is registered when only small parts of the deforma-
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tion field will be used. To segment the structures of inter-

est in a target scan efficiently and precisely, our method

exploits the advantages of MAR and pictorial structures

throughout the process:

• MAR: using a set of atlases helps capture the variabil-

ity of the population in both appearance and shape.

Another advantage is that the output is probabilistic,

i.e., each voxel is assigned a probability of belonging

to the structure of interest.

• Pictorial structures: the target scan is decomposed into

smaller structures. Matching the model to the target

is formulated as the optimization of a composite met-

ric that combines individual similarity terms for each

structure and a global configuration term.
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Figure 1. Process of pictorial multi-atlas structural registration.

Ii’s and Ai’s are the intensity and label images from the atlas set.

I
T is the target image. After the global image transform, the fol-

lowing processes are performed on structures. All structures are

assigned some level numbers to indicate their processing orders,

which forms the pictorial atlas selection-registration loop.

Fig. (1) gives an overview of our pictorial multi-atlas

segmentation. After a global affine transform, each struc-

ture in the target image will be roughly localized. This en-

ables further local atlas selection and registration. The final

stage is to integrate all the local MAR results, into the final

segmentation in the global image space.

2.1. Pictorial atlas localization and selection

Our algorithm assumes the availability of N atlases with

annotations of J structures: {{In, An}, n = 1..N}, where

In’s and An’s denote the intensity and label images, re-

spectively. For an atlas image In, the sub-image (bounding

box) containing the complete jth structure is a pictorial at-

las and denoted as Inj . In order to capture the context and

reduce the boundary effect, Inj is defined such that its size

is slightly larger (4mm extension from the structural bound-

ary) than the structure itself.

Given a target image IT , a global affine transform is

first optimized between IT and each In. The sub-image

in IT corresponding to Inj is then roughly located; we de-

note it as ITnj . However, the disparity between the two sub-

images is still large and the initialization of the structures

can affect the performance of the following registration-

based segmentation [16]. Hence, we apply a local affine

transform between each Inj and ITnj to refine the alignment.

This local affine transform is driven by jointly minimizing

the following energy functions:

Ej =

N
∑

n=1

[

S(ITnj , anj(Inj)) + λ

N
∑

i=1

‖cnj − cij‖
]

(1)

where S is an energy function based on some similarity

measure between the target patch and the pictorial atlas,

anj(·) is the objective affine transform, which can be ap-

plied to both Inj and Anj , and cij is the centroid of struc-

ture j in aij(Aij) (mapped to the global image space). The

second term of Eqn. 1 provides a localization constraint for

the N affine-transformed pictorial structures so that they do

not drift away from one another. λ is a weight to combine

the two terms. The total engergy,
∑

j Ej , can be jointly

minimized through the coordinate descent algorithm.

It has been shown that increasing the number of atlases

in MAR does not always improve (and sometimes even

decreases) the segmentation accuracy [2]. Therefore, be-

fore applying the local registration, we select a set of best

matching local components (structures) in the pictorial at-

lases for structure j, i.e., Rj atlases among Inj , n = 1..N
and Rj ≤ N . The target measure µnj for the pictorial atlas

selection can be directly made based on Eqn. 1:

µnj = S(ITnj , anj(Inj)) + λ

N
∑

i=1

‖cnj − cij‖ (2)

Applying Eqn. 2 allows us to select the best Rj number of

structures from N atlases. Note that these structures may

come from different sets of Rj atlases for different structure

j. Please note that both Eqn. 1 and. 2 utilize the information

from MAR. This reduces the bias from each pictorial atlas

at the initialization stage.

2.2. Pictorial multi­atlas registration

The selected pictorial atlases will be refined by trans-

forms more complex than affine at the local (structural)

level. The goal is to jointly optimize the following energy

function:

E =

J
∑

j=1

Rj
∑

l=1

[

S(ITlj , tlj(Ilj))− β

J
∑

k 6=j,k=1

P (lj, k)
]

. (3)
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where β is a constant. To simplify the notation, we use

image index l to denote the index in the selected pictorial

atlases ranging from 1 to Rj . The transform tlj(·) is not

restricted to any specific type; it can be a single non-linear

transform or a cascade thereof. In our experiments, tlj(·)
is a cascade of an affine transform followed by a diffeo-

morphic transform (SyN [3]). P is a pairwise energy func-

tion to model the relation between the different structures in

the pictorial structure framework; for example, we can sim-

ply define P (lj, k) ∝ exp{−||d(lj, k) − d̂(j, k)||}, where

d(j, k) is the average distance between structure j and k.

Instead of registering all the pictorial structures at once

in Eqn. 3, we employ a hierarchical processing approach

similar to Wu [16] to decompose the objective function.

The structures of interest are divided into several levels; the

easier a structure is to segment, the earlier it is processed

(low level number). Meanwhile, its less stable neighbors

will be assigned larger level numbers. Such information

can be obtained from the set of atlases, and the detailed al-

gorithm is shown in Fig. (2) which automatically assigns a

level number to each structure. The hierarchical levels of

structures form the iterative selection-registration cycle in

Fig. (1) which registers one level of structures per iteration.

Level zero corresponds to the ventricles, which are full of

cerebrospinal fluid (CSF) and therefore dark in the image

and easy to segment. The ventricles help guide the segmen-

tation of the surrounding structures[16, 8]. The levels of

the remaining structures are listed in Table. 1, and Fig. (3)

shows part of the structural connections in our method.

Level 0 Left/Right inferior horn of the lateral ventricle,

Left/Right lateral ventricles, 3rd ventricle,

4th ventricle

Level 1 Left/Right caudate nuclei, Left/Right putamens,

Left/Right thalami

Level 2 Left/Right pallida, Left/Right hippocampi

Level 3 Left/Right amygdalum

Table 1. Levels of subcortical structures for pictorial segmentation.

At the beginning of each iteration, Eqn. 2 is used to select

Rj candidate local atlases in the pictorial model. At the end

of each iteration, Rj segmentations corresponding to struc-

ture j will be mapped back to the global image space for

generating a joint MAR segmentation. The probability of

a voxel belonging to structure j is computed by combining

the propagated labels and the segmentation s∗j is obtained

by thresholding at 0.5.

The merging of all s∗j ’s in the global image space follows

the level ordering. Therefore, structures with a larger level

number will be rendered later and have less probability to be

occluded by other structures. In addition, thanks to the use

of P (lj, k) in Eqn, 3, serious overlapping (i.e., large change

of centroid distance) can be avoided in our method.

1: Given: N atlas images with K labeled structures:

s1..sK .

2: Initialize: Struct = {s1..sK}, Assigned = ∅, L(i) =
0, i = 1..K.

3: Determine the set of neighboring structures for each

structure i : N(si).
4: Perform cross-registration between each image , i.e.,

N × (N − 1) whole image registrations. Calculate the

average DICE coefficients of the K structures from all

the registration results: D =
{

d(i); i = 1..K
}

.

5: Sort the structures in Struct according to D in a de-

scending order.

6: for i = 1 to K do

7: if structure i ∈ CSF then

8: Struct = Struct− {si}
9: Assigned = Assigned+ {si}

10: end if

11: end for

12: while Struct 6= ∅ do

13: Pick the first si from Struct

14: if N(si) 6= ∅ then

15: L(i) = 1+argmax
L(j)

(j; sj ∈ (Assigned ∩N(si)))

16: else

17: L(i) = 1
18: end if

19: Struct = Struct− {i}
20: Assigned = Assigned+ {i}
21: end while

Figure 2. Structural level assignment algorithm. The CSF struc-

tures are always assigned to level 0. The other structures are as-

signed according to their neighboring structures with higher aver-

age DICE coefficients, which can be determined by the N atlases.

3. Experimental Results

3.1. Datasets

The proposed algorithm was tested on the 18 scans from

the Internet Brain Segmentation Repository (IBSR) [9],

which have 84 manually annotated structures. All the scans

were first skull-stripped by BET [14] and then cropped and

rotated to 160x192x160 with 1mm spacing in each direc-

tion, preserving the whole brain. We chose 18 structures

as listed in Table. 1, but the ventricles were only used for

identifying the CSF regions and not for evaluation.

3.2. Experimental Setup

To implement our method, we used ITK 3.16 [10] to per-

form the affine optimization in Eqn. 1. Different methods

can be used as the underlying pictorial registration algo-

rithm in Eqn. 3 (this will be detailed in Section 3.3). When

the number of atlases was large enough (N >= 10), we

performed the selection in Section 2.1 with all Rj = 0.8N
and λ = 0.2, to exclude inappropriate atlases. For small
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Figure 3. A graph of the pictorial structures in our method. Each node represents a structure, and the spring-like connections maintain the

relations between neighboring structures. We omit the 3rd and 4th ventricles from the graph for clarity. Details of the energy terms, S(·)
and P (·), are described in Section 2.2.

number of atlases (N < 10), all atlases will be included.

β in Eqn. 3 was empirically set to 0.2 to balance the ap-

pearance similarity and the forces from other structures. In

the following comparisons, we use the DICE overlap [5] as

performance measure, and PMS stands for “pictorial multi-

atlas segmentation.” A postfix number after the name of a

method indicates the number of atlases included.

3.3. Improvement with Respect to Registration
Methods

To show the improvement of our algorithm to typical reg-

istration methods, we included two non-linear methods in

our comparisons. One is the B-spline nonrigid registration

implemented in ITK 3.16 and the other is a diffeomorphic

method, SyN, in ANTS 1.9 [3]. SyN compares favorably

with other state-of-the-art algorithms [1].

For ITK, the spline order was 3 with 8 grid nodes

in each dimension and the metric was Mattes mutual in-

formation. For SyN, we used cross correlation (CC) as

the similarity metric and the radius of region was 5mm.

The more sophisticated metric in SyN, probability map-

ping (PR), was not chosen because it performed similar

to CC in our preliminary experiments but required more

computation time. The deformation fields are regularized

by Gaussian with sigma=2. Based on these configurations,

we performed two tests with different number of iterations:

(1) 3-level multi-resolution with 30x50x5 as the number

of iterations, which can be executed fast and denoted as

MAR SyN; (2) 5-level multi-resolution with the number of

iterations as 10x10x100x100x100, which provides excel-

lent performance in whole image registration and is denoted

as MAR SyN*.

SyN was also the non-linear transform of pictorial regis-

tration in our implementation. It was part of the transform

tlj in Eqn. 3. The setting of SyN was the same as above and

the number of iterations was set as MAR SyN, 30x50x5,

which was sufficient for registering the small structural im-

ages.

The test dataset was also IBSR. To avoid biased mea-

sures of PMS and MAR, the 18 images were randomly sep-

arated into three folds for cross-validation. For each fold,

the test set consists of 6 scans, whereas the remaining 12

played the role of atlases. Each measure of the baseline

single-atlas registration method is an average of 12 tests.

We list the detailed DICE overlaps of MAR SyN,

MAR SyN*, and PMS in Table. 3 and their curves in

Fig. (4). The computation times of each method respective

to the number of atlases were listed in Table. 2. PMS outper-

forms MAR SyN which has the same registration parame-

ters. PMS with four atlases (PMS4) was already compara-

ble to MAR SyN with ten or twelve atlases (MAR SyN10,

MAR SyN12). However, to achieve the same performance,

PMS4 used only 1.4 hours while MAR SyN10 needed 3.1

hours to process. When both methods used 12 atlases, PMS

was significantly better than MAR SyN on putamens and

pallida. Besides, Fig. (4) shows that MAR SyN required

more than five atlases to reach stable results, which implied

a fixed cost of 1.6 hours. Table. 2 also shows that based on

the setting of 18 structures, PMS and MAR SyN had similar

execution time respective to the same number of atlases.

Number of atlases 3 4 5 6 8 10 12

MAR SyN 0.9 1.2 1.6 1.9 2.5 3.1 3.7

MAR SyN* 4.9 6.5 8.2 9.8 13 16.3 19.5

PMS 1.0 1.4 1.7 2.0 2.7 3.1 3.7

Table 2. Computation time of MAR SyN, MAR SyN*, and PMS

for different number of atlases (in hours). Both the atlases and

the target images were 160x192x160 voxels. The test machine

was Intel R© Xeon R© 2.80GHz with 16GB RAM, and the code was

single threaded.
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Table 3. (a) DICE overlaps of fast SyN-based multi-atlas (MAR SyN), precise SyN-based multi-atlas (MAR SyN*), and our method (PMS)

on 18 IBSR images, which are shown in three blocks. A postfix number after the name of each method indicates the number of atlases

included. The values are the averages of the left and right structures. In each block, the improvement due to the increased number of atlases

for a single method is observed. Across the blocks, comparisons between these methods using different numbers of atlases can be made.

(b) p-values between MAR SyN, MAR SyN*, and PMS, for #atlases=3 and 12.

Method & #Atlases Thalamus Caudate Putamen Pallidum Hippocampus Amygdala Average

MAR SyN3 0.847 0.701 0.792 0.674 0.669 0.573 0.709

MAR SyN4 0.835 0.694 0.771 0.657 0.670 0.568 0.699

MAR SyN5 0.857 0.737 0.812 0.716 0.714 0.650 0.748

MAR SyN6 0.863 0.762 0.814 0.720 0.729 0.661 0.758

MAR SyN8 0.872 0.788 0.839 0.757 0.751 0.692 0.783

MAR SyN10 0.875 0.796 0.852 0.766 0.770 0.709 0.794

MAR SyN12 0.874 0.793 0.849 0.759 0.762 0.703 0.790

MAR SyN3* 0.862 0.741 0.846 0.764 0.752 0.670 0.772

MAR SyN4* 0.865 0.733 0.840 0.761 0.749 0.676 0.770

MAR SyN5* 0.874 0.779 0.857 0.787 0.769 0.710 0.796

MAR SyN6* 0.873 0.772 0.853 0.780 0.768 0.715 0.793

MAR SyN8* 0.876 0.788 0.868 0.789 0.773 0.714 0.799

MAR SyN10* 0.879 0.792 0.863 0.790 0.783 0.721 0.804

MAR SyN12* 0.882 0.795 0.866 0.795 0.786 0.723 0.808

PMS3 0.867 0.795 0.850 0.748 0.716 0.687 0.777

PMS4 0.872 0.796 0.848 0.782 0.744 0.714 0.794

PMS5 0.879 0.798 0.857 0.781 0.759 0.719 0.799

PMS6 0.880 0.810 0.859 0.793 0.771 0.730 0.807

PMS8 0.884 0.818 0.860 0.790 0.771 0.720 0.808

PMS10 0.882 0.816 0.860 0.793 0.776 0.721 0.808

PMS12 0.884 0.817 0.863 0.797 0.778 0.724 0.810

(a) DICE overlaps

Label Name Thalamus Caudate Putamen Pallidum Hippocampus Amygdala

MAR SyN3 v.s. MAR SyN3* 0.01849 0.06631 0.00170 0.00171 0.00241 0.00133

MAR SyN3 v.s. PMS3 0.00497 0.00010 0.00081 0.00700 0.04815 0.00016

MAR SyN3* v.s. PMS3 0.21768 0.00723 0.04197 0.05428 0.00017 0.16101

MAR SyN12 v.s. MAR SyN12* 0.10777 0.45051 0.00694 0.01401 0.02534 0.17580

MAR SyN12 v.s. PMS12 0.06224 0.06457 0.01915 0.00871 0.08770 0.16412

MAR SyN12* v.s. PMS12 0.37644 0.09107 0.16478 0.37520 0.20543 0.48401

(b) One-sided p-values between MAR SyN, MAR SyN*, and PMS, with #atlases=3 and 12, respective to each structure

MAR SyN* required longer time to execute and pro-

duced better results than MAR SyN. In Table. 3, if the num-

ber of atlases was small (3 ∼ 6 atlases) the improvement of

DICE overlaps by PMS were larger than MAR SyN*. As

the number of atlases reached 12, PMS performed better

on the caudate nuclei and worse on the hippocampi than

MAR SyN*. The average DICE of PMS12 (N = 12,

R = 10) was 0.810 and the highest in Table. 3, which

was equivalent to MAR SyN12* (0.808). The one-sided

p-values also suggested that PMS3 performed significantly

better than MAR SyN3* on caudate nuclei, putamens, and

hippocampi, while MAR SyN12* and PMS12 had no sig-

nificant differences. The obvious difference between PMS

and MAR SyN* was their computation time. Table. 2

shows that our method required under four hours to com-

pleted a PMS12 process, which was 19% as MAR SyN12*

and more favored in applications.

We also showed the curves of ITK-based MAR

(MAR ITK) at the right of Fig. (4). Although the

MAR ITK required more execution time than MAR SyN*,

its performance was worse than MAR SyN* in all struc-

tures. Comparing ITK with our method, using four atlases

in PMS already had all structures better than ITK12.

4. Conclusions

A method of efficient atlas-based segmentation has been

presented in this paper. The method benefits from the unbi-

ased statistics of multi-atlas segmentation and the structural

analysis of pictorial structures. No tailored rules were used

for specific structures so this framework is general and ap-

plicable to other multi-part segmentation problems. These

advantages make our method more applicable in practical

segmentation scenarios.

As shown in our experiments, the performance of PMS is

comparable to multi-atlas registration but its computational

burden is much smaller. We directly used the energy term of

registration for atlas selection; more sophisticate methods,

such as information gain in [15], may further reduce the

number of atlases without drop in performance. The com-

putational advantage then can be kept for larger number of

structures.
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Figure 4. Comparison between fast SyN-based multi-atlas (MAR SyN), precise SyN-based multi-atlas (MAR SyN*), PMS, and ITK-based

multi-atlas (MAR ITK). We also show SyN-based single-atlas registration (Pure SyN) as the common registration baseline. Pure SyN can

be considered as MAR SyN1* as it used the same parameters and iterations as MAR SyN*. The test data were 18 IBSR images.
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