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ABSTRACT

Probabilistic tractography has emerged as an alternative to classical
deterministic methods to overcome their lack of connectivity infor-
mation between different brain regions. However, it relieson sta-
tistical sampling, which is computationally taxing. In this study, a
well-known, random walk based stochastic tractography method is
discretized by limiting the set of directions that a sampling particle
can follow. This sets up to a framework based on a Markov chain
that can accommodate all the desirable features of stochastic trac-
tography, principally trajectory regularization throughparticle de-
flection. The system produces results that are comparable tothose
by the stochastic algorithm it is based on (ρ = 0.79), though 60
times faster.

Index Terms— HARDI, stochastic, tractography, fast

1. INTRODUCTION

Diffusion weighted magnetic resonance imaging (DW-MRI) isthe
only way of imaging axonal fiber tracts in vivo. Comparing theT2
intensities with and without gradients in the magnetic fieldin dif-
ferent directions, a water diffusion profile can be estimated for each
spatial location. From this data, tractography algorithmsare able to
reconstruct the fibers. Tractography has potential in surgical plan-
ning to avoid damaging tracts with important functionality.

The diffusion profile can be reconstructed from discrete mea-
surements in different ways. The simplest is diffusion tensor imag-
ing (DTI) [1, 2], which fits a zero-mean Gaussian probabilitydistri-
bution function (PDF) to the measurements. To overcome the limi-
tation that a Gaussian is a unimodal distribution and can handle only
one fiber population per voxel, a high number of angles must be
sampled. This is the principle of high angular resolution diffusion
imaging (HARDI) [3]. However, the HARDI data cannot be used
directly in tractography because the minima of the DW-MRI mea-
surements do not correspond directly to fiber orientations when two
or more fibers intersect. To overcome this problem, the orientation
distribution function (ODF) is typically used. The ODF is the PDF
of the water diffusivity on a spherical shell [4].

Stochastic tractography has emerged as an alternative to clas-
sical deterministic methods when the goal is to obtain connectivity
information between different areas of the brain rather than follow-
ing individual tracts. Based on Monte Carlo sampling, probabilistic
tractography simulates the trajectory of a high number of particles
that stem from a seed region and follow a regularized random walk
in the tensor or ODF field. The image that results from comput-
ing the fraction of particles that reaches each voxel in the volume is
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known as a tractogram, and it measures the probability of being con-
nected to the seed. Apart from providing quantitative information on
connectivity, probabilistic tractography also has the advantages of
being more robust against misplacement of the seed than determin-
istic methods and inherently accounting for the uncertainty of the
fiber orientations. However, these advantages come at the expense
of a much higher computational load, because a reliable tractogram
typically requires at least one million particles.

This study presents an approach that can quickly compute the
tractogram analytically at the expense of limiting the directional res-
olution of the HARDI data. The diffusion from a seed region is
modeled as a discrete Markov chain in which the state variable is
a bivector that encodes the probability mass for each position / di-
rection pair. The evolution of the state variable is governed by a
transition tensor which is designed to mimic the behavior ofparti-
cles in a well-known stochastic tractography method presented by
Perrin et al. [5]. Their framework was chosen as a model because
it combines all the desirable features of stochastic tractography in a
simple and clear manner. The main advantage of our approach is its
speed: the tractogram for any seed region can be calculated in a few
seconds, allowing the user to interactively explore the connectivity
of the brain.

There has been previous work on discretizing the movement
of particles to the orientations corresponding to neighboring vox-
els. The image is represented by a graph in which the connectiv-
ity between two voxels is estimated by finding the lowest costpath
between them. The cost is minimized with dynamic programming
in [6], A∗ in [7], and a variant of Dijkstra’s algorithm in [8]. The
weights of the edges depend on the local diffusion properties of the
tissue.

The aforementioned methods focus on calculating the connec-
tivity between two user-defined regions, but they do not provide the
full brain tractogram from a seed region. This feature was present
in a recent study [9] in which the connectivity between two voxels
was defined as the lowest affinity along the strongest path between
them. Still, none of these methods incorporate all the key elements
of stochastic tractography, particularly particle deflection in a high
angular resolution ODF field. Moreover, they do not really evaluate
the impact of limiting the transitions to grid directions onthe final
tractogram. Addressing these two shortcomings is the main contri-
bution of this study. First, we demonstrate how the transition tensor
can be designed to mimic the behavior of sampling particles in the
stochastic method by Perrin et al. Second, the output of our method
is quantitatively evaluated by comparing it with the results provided
by Perrin et al.’s method in the same dataset.

2. MATERIALS

10 HARDI images acquired at the Center for Magnetic Resonance
at the University of Queensland using a 4 Tesla Bruker Medspec
scanner with a transverse electromagnetic headcoil were used in



this study. Diffusion-weighted scans utilized a single-shot echo
planar technique with a twice-refocused spin echo sequenceto
minimize eddy-current induced distortions. The timing of the dif-
fusion sequence was optimized for signal-to-noise ratio (SNR). 94
diffusion-sensitized gradient directions and 11 baselineimages with
no diffusion-sensitization were obtained for every subject. Imaging
parameters were: b-value = 1159s/mm2, TE/TR = 92.3/8,259
ms, voxel size = 1.8 mm 1.8 mm 2.0 mm, image size 128 x 128
x 55 voxels. The acquisition time was approximately 15 minutes.
The 11 baseline images were merged into a single estimate of the
T2 reference volume which was then used to calculate a mask cor-
responding to the brain using the well-known BET algorithm for
skull stripping [10]. The resulting mask was then applied toall the
diffusion images.

3. METHODS

The steps to calculate a tractogram from a HARDI volume are the
following: first, the ODF field is estimated from the HARDI data.
Then it is deconvolved into the fiber ODF (fODF) field, which has
been proven to have a positive impact on the tractography results
[11]. From the fODF, the transition tensor can be calculated. At
this point, the tractogram can be quickly generated from thestate
bivector corresponding to any user-defined seed region.

3.1. Calculation of the fODF

The fODF (henceforthψf (r)) is ideally zero everywhere except for
the directions where the voxel is crossed by fibers. Assumingthat the
ODF (henceforthψ(r)) is the result of smoothing the fODF with
a blurring kernel i.e.ψ(r) ∝ Kψf , it is possible to recover the
fODF using deconvolution. If we defineg(r) as theD × 1 signal
vector at locationr, the fODF can be estimated from the signal using
Tikhonov regularization as follows:
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whereε is the regularization constant,Z(r) andZ′(r) are partition
functions that ensure1tψ = 1

tψf = 1, andA is a matrix that esti-
mates the regularized spherical harmonic coefficients ofg(r), modi-
fies them to obtain the coefficients of the ODF, and evaluates them at
the set ofH directions for which the ODF is to be reconstructed [12].
The matrixA′ is the final signal-to-fODF matrix. Tikhonov regular-
ization has the advantage that it can be easily integrated inthe ma-
trix framework, while performing comparably to more sophisticated,
computationally expensive methods [13]. The blurring matrix K is
estimated non-parametrically as follows: theNan voxels with the
highest anisotropy in the available images are found; theirODFs are
calculated and aligned; their azimuthal components are averaged to
ensure rotational invariance with respect toz; and the average of the
Nan calculated profiles is computed. Each of theH columns ofK
is the result of rotating this estimate to align it with each of theH
directions where the ODF is reconstructed.

3.2. The state bivector and the transition tensor

In the random walk approach to stochastic tractography, a set of par-
ticles is placed in a seed region and allowed to follow a regularized

random walk governed by the ODF at each point until before exit-
ing the brain white matter. Because particles are allowed tomove in
any direction, they mostly travel along non-grid locations, making it
unfeasible to calculate the tractogram analytically. However, if the
particles are constrained to grid locations, the stochastic sampling
process can be replaced by a bivector-valued Markov chain toobtain
the approximate tractogram analytically in a short time.

We define the state bivectorQ = Q
(t)
p,u as the probability mass at

spatial locationrp with directionu for discrete timet. The first index
ranges fromp = 1, . . . , N , the number of voxels, while the second
index ranges fromu = 1, . . . , 98, corresponding to the unique direc-
tions that connect a voxel with the 124 neighbors in the 3-D lattice
corresponding to a 5×5×5 cube. Memorizing the direction makes it
possible to regularize the trajectory of the probability mass. The 98-
neighborhood is a good compromise between the angular resolution,
step length variability and computational cost.

The evolution of the state bivector is characterized byT , a tensor
of type (2, 2) such thatT p,u

q,v represents the transition probability
from position/speed(p, u) to (q, v). Its dimensionality is thus(N ×

98)×(N×98), very large but extremely sparse. The transition from
stept to stept+1 is a tensor contraction:Q(t+1)

q,v =
∑

p,u T
p,u
q,v Q

(t)
p,u.

The elements of the transition tensorT can be designed to simulate
the behavior of a particle in the stochastic tractography method by
Perrin et al. as accurately as possible. In their study, particles move
according to the rule:

d
(t) = γ(r)dfODF (r) + (1 − γ(r))d(t−1) (2)

wheredfODF (r) is the result from sampling the fODF at locationr
restricted to a30◦ half cone defined by the incident directiond(t−1).
The scalar fieldγ(r) corresponds to the standard deviation of the
fODF at each voxel normalized to its maximum across the image.
Particles move in the ODF field until before exiting the brainwhite
matter.

To mimic this behaviour, the non-zero elements of the transition
tensor must satisfy the following conditions: 1) the originvoxel p
must the in the brain white matter (a white matter mask is calcu-
lated by thresholdingγ(r) and smoothing the result with a closing
operator); 2) the origin and destination voxelsp andq must be 98-
neighbors in the lattice; 3) directionv has to be equal (parallel) to
the vectorrq − rp, memorizing the direction of movement; and 4)
directionu is deflected intov by a vectordfODF (see equation 2)
such thatu anddfODF form an angle under a certain threshold (30◦

in Perrin et al.’s study). The last two conditions regularize the trajec-
tory of the probability mass.

If a transition is compatible with these conditions, then itis
assigned a probability proportional to the sum of the valuesof
ψf (rp) in the directionsdfODF that deflect directionu into direc-
tion v according to equation 2. The probabilities are then scaled to
∑

q

∑

v T
p,u
q,v = 1 (unless the sum is zero, representing a dead end).

The algorithm to calculate the elements ofT is detailed in Table 1.

3.3. Calculating the tractogram

Once the transition tensor has been computed, the tractogram is gen-
erated as follows. First, the seed vector is constructed as:

Q(0)
p,u =

{

1
|S|

∑H
h=1 ψf,h(rp)δ[Υ(θh, ϕh) − u], rp ∈ S

0, rp /∈ S

whereS is the set of seed voxels,δ[·] denotes the Kronecker delta
and andΥ(θ, ϕ) is a function that discretizes an arbitrary angle to



· Calculate and normalizeγ(r) ⇐ γ(r)/max
r

[γ(r)]

· Compute white matter mask:γ(r) > γmin, refine with closing
· Initialize all elements ofT p,u

q,v to zero
· FOR each position/speed pair(p, u) such thatrp is in the mask

· SET SUM⇐ 0, PROBS[v] ⇐ 0, for v = 1, . . . , 98
· FOR each direction of the fODFh = 1, . . . , H

· IF ANGLE(u,h)<ANGLE MAX
· SET CDIR⇐ γ(rp)dh + (1 − γ(rp))du

· SET PROBS[Υ(CDIR)] += ψh(r), SUM +=ψh(r)
END
· IF SUM>0

· FOR each directionv = 1, . . . , 98
· SETq ⇐ p+ v (point+vector=point)
· SETT p,u

q,v ⇐ PROBS[v]/SUM
END; END; END; END

Table 1. Pseudocode for calculating the transition tensor.Υ(θ, ϕ)
is a function that downsamples theH directions of the fODF to the
98 directions allowed in our method:Υ(θ,ϕ) = u when the angle
formed by directions(θ, ϕ) andu is smaller than the angle formed
by (θ, ϕ) and any other direction of the 98.

the 98-neighborhood (see caption of Table 1). Then the distribution
at timet isQ(t)

q,v = (T p,u
q,v )(t)Q

(0)
p,u, where(·)(t) denotest successive

contractions. If the contraction is carried out a sufficientnumber of
timestmax, the whole probability mass will have exited the volume
and the tractogramM can be built by marginalizingQ(t)

p,u with re-
spect to direction and time:

M(rp) =
98

∑

u=1

tmax
∑

t=0

Q(t)p,u

Because a 5×5×5 neighborhood is used, the probability mass can
skip some rows of voxels, causing some striation artifacts.To ame-
liorate this problem, the final output is calculated by smoothing
M(r) with a Gaussian kernel and, for visualization purposes, taking
the logarithm of the result to compress its range.

4. EXPERIMENTS AND RESULTS

4.1. Setup of experiments

Since the goal of stochastic tractography is to estimate theconnec-
tivity between regions in the brain, the following experiment was
carried out. First, seeds were placed on well-known tracts in the
brain. Target regions of interest (ROI) which are known to becon-
nected to the seeds were then defined. The ROI was a 10mm diame-
ter sphere in all cases. Finally, the connectivities from both methods
were obtained by summing the tractograms within the target ROIs
and subsequently compared. Four seed / ROI pairs were defined: 1)
seed in the genu of the corpus callosum, two target ROIs (left/right)
at the front of the brain, near the lower part of the superior front
gyrus; 2) seed in the splenium of the corpus callsoum, two target
ROIs (left/right) towards the back of the brain, near the most poste-
rior part of the middle occipital gyrus; 3) seed in the corticospinal
tract near the hippocampus, target ROI between the leg and hand ar-
eas of the motor cortex; and 4) seed in the posterior region ofthe
cingulate gyrus, target ROI in the anterior region.

The system parameters were set as follows. The HARDI data
were modeled by a spherical harmonic expansion of order six to

compute the ODF analytically [12]. The regularization parameter
was set toγ = 0.006, as suggested in the paper. The ODF was
calculated forH = 321 directions corresponding to the7th or-
der, icosahedron-based tessellation of the unit sphere. The ODF
was deconvolved into the ODF usingε = 0.0005 for the regu-
larization (equation 1). The white matter mask was calculated as
γ(r) > γmin = 1/3. The step size used in Perrin et al.’s method
was set to 0.5 mm, and106 particles were sampled. Regarding
the maximum angle,ANGLE MAX = 30◦ was used for Per-
rin et al.’s algorithm, as suggested in their paper. For our algo-
rithm, it is convenient to allow a larger angle for the largerstep size.
ANGLE MAX = 45◦ was found to provide good results in pre-
liminary experiments. Finally, the kernel width for the filter which
smooths the tractogramσs = 1.5mm was also determined from pre-
liminary experiments.

4.2. Results: comparison with Perrin et al.’s method

The scatter plot in Figure 1 compares the connectivity values from
the two methods for the ten images and the four tracts. The outputs
are quite well correlated (ρ = 0.79), indicating that our method is a
good approximation of the stochastic method it is based on, except
when a high precision tractogram is required. Even if that isthe case,
our method can still be used to quickly find a good initialization for
the computationally expensive, sampling-based stochastic tractogra-
phy. A good seed could be interactively localized with our method
and then used as input for the probabilistic algorithm. Thisway the
stochastic tractography will be assuredly successful, as opposed pos-
sibly having to modify the seed location and rerun the slow method
several times. Figure 2 depicts the renderings of the seeds and cor-
responding target ROIs for the genu and the splenium of the corpus
callosum in one of the brains, as well as the output tractogram.
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Fig. 1. Scatter plot of the connectivity measures provided by Perrin
et al.’s method (executed three times per case, hence the ranges dis-
played in the figure rather than points) and ours. The connectivity
was normalized to the maximum value.

4.3. Results: execution speed

Execution speed is the most noteworthy feature of the methodde-
veloped in this study. Both Perrin et al.’s method and ours were
implemented in Java and tested on a desktop with an Intel i7 CPU.
The algorithms were parallelized to take advantage of the multi-core
structure of the computer. Table 2 lists the running times ofthe main
steps of the algorithm for the two methods, averaged over tenexe-
cutions on the same volume. Despite the overhead of calculating the
transition matrix, our method is significantly faster than the stochas-
tic approach. The difference between the two methods is especially



Fig. 2. Rendering of T2 baseline volume, seed (yellow asterisks) and
target regions (colored spheres), and resulting tractogram. The inten-
sity of the tractograms is normalized to [0,1] and thresholded at 0.04
for display. a) Genu (purple spheres) and splenium (red spheres) of
corpus callosum for Perrin et al.’s method. b) Output for ourmethod.

Calculation Perrin et al. [5] FAST
fODF 2.64 ± 0.13 s 2.69 ± 0.10 s

Transition tensor N/A 44.2 ± 2.1 s
Tracking 428 ± 18 s 6.92 ± 0.28 s

Table 2. Execution times for our method and Perrin et al.’s.

large if the seed region is to be moved due to unsatisfactory results.
In this case, recalculating the transition tensor, which isthe most
computationally expensive step of our algorithm, is unnecessary and
the new output can be generated in a few seconds, while the stochas-
tic sampling must be restarted over a period of approximately seven
minutes. It is thus feasible to use our method in an interactive fash-
ion, which is not possible with stochastic methods.

5. DISCUSSION

A computationally efficient probabilistic tractography method has
been presented in this study. Though the method is not stochastic
in nature, it produces a connectivity map from a HARDI volumein
the spirit of stochastic tractography. By discretizing thefODF, the
tractogram can be quickly calculated analytically. The method uses
a bivector to store the position and speed of the probabilitymass
stemming from a seed region. Each step in the random walked is
then represented by a contraction operation with a transition tensor,
which is designed to mimic the behavior of particle in a probabilistic
method by Perrin et al. Our method was compared to an implemen-
tation of this algorithm, and the results demonstrate highly correlated
outputs, with the difference that our method runs approximately 60
times faster. Once the transition tensor has been computed,interac-
tive exploration of the brain connetivity is possible with our method
because the tracking runs in approximately seven second: ifthe user
is not satisfied with the tracking results, he can quickly refine them
by shifting the seed region.

Most fiber bundles can be tracked by the proposed method in
spite of discretization effects. However, tracking very thin bundles
can be difficult if their orientation is not well approximated by any
of the 98 allowed directions. In such cases, it would be possible to
upscale the image only in the region where the user thinks thetrac-
tography might have failed. Generalizing the method to irregular
grids is trivial thanks to the graph structure. In this case,reducing
ANGLE MAX in the ROI might be beneficial to compensate for
the shorter step length. Exploring this possibility, as well as auto-
matically detecting the problematic regions, remains as future work.

Finally, it is important to note that our method requires a large

amount of memory to store the transition tensor. The Java imple-
mentation uses prior knowledge of the tensor structure to minimize
memory usage, but still requires 11 GB. If the image size or reso-
lution were smaller or more memory were available, then it would
be possible to speed up the method by a factor ofn by comput-
ing the tensor

(

T p,u
q,v

)n
and then updating the bivector as:Q(t)

q,v =
((

T p,u
q,v

)n)(t/n)
Q

(0)
p,u. However, this improvement comes at the ex-

pense of largely increasing the memory requirements because the
sparsity ofT decreases cubicly withn.
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