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ABSTRACT

Probabilistic tractography has emerged as an alternatietassical
deterministic methods to overcome their lack of connetgtiiifor-
mation between different brain regions. However, it rebessta-
tistical sampling, which is computationally taxing. Inghstudy, a
well-known, random walk based stochastic tractographyhotets
discretized by limiting the set of directions that a sanplparticle
can follow. This sets up to a framework based on a Markov chai
that can accommodate all the desirable features of stocheest-
tography, principally trajectory regularization throughrticle de-
flection. The system produces results that are comparatifeose
by the stochastic algorithm it is based gn £ 0.79), though 60
times faster.

Index Terms— HARDI, stochastic, tractography, fast

1. INTRODUCTION
Diffusion weighted magnetic resonance imaging (DW-MRI}tie
only way of imaging axonal fiber tracts in vivo. Comparing
intensities with and without gradients in the magnetic fi@ldlif-
ferent directions, a water diffusion profile can be estirddte each
spatial location. From this data, tractography algorittaresable to
reconstruct the fibers. Tractography has potential in satgilan-
ning to avoid damaging tracts with important functionality

The diffusion profile can be reconstructed from discrete -mea
surements in different ways. The simplest is diffusion tenmag-
ing (DTI) [1, 2], which fits a zero-mean Gaussian probabitltgtri-
bution function (PDF) to the measurements. To overcomeitiie |
tation that a Gaussian is a unimodal distribution and cauleaonly

one fiber population per voxel, a high number of angles must be

sampled. This is the principle of high angular resolutioffudion
imaging (HARDI) [3]. However, the HARDI data cannot be used
directly in tractography because the minima of the DW-MRlame
surements do not correspond directly to fiber orientationsmtwo

or more fibers intersect. To overcome this problem, the taiem
distribution function (ODF) is typically used. The ODF itRDF

of the water diffusivity on a spherical shell [4].

Stochastic tractography has emerged as an alternativase cl
sical deterministic methods when the goal is to obtain cotivigy
information between different areas of the brain rathen tio¢low-
ing individual tracts. Based on Monte Carlo sampling, plolistic
tractography simulates the trajectory of a high number ofigias
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known as a tractogram, and it measures the probability oigoein-
nected to the seed. Apart from providing quantitative infation on
connectivity, probabilistic tractography also has theamdages of
being more robust against misplacement of the seed thamuete
istic methods and inherently accounting for the unceryagitthe
fiber orientations. However, these advantages come at {ienes
of a much higher computational load, because a reliabléogeam
typically requires at least one million particles.

This study presents an approach that can quickly compute the
tractogram analytically at the expense of limiting the diienal res-
olution of the HARDI data. The diffusion from a seed region is
modeled as a discrete Markov chain in which the state variabl
a bivector that encodes the probability mass for each positii-
rection pair. The evolution of the state variable is govdrbyg a
transition tensor which is designed to mimic the behaviopanti-
cles in a well-known stochastic tractography method presehy
Perrin et al. [5]. Their framework was chosen as a model sxau
it combines all the desirable features of stochastic traetshy in a
simple and clear manner. The main advantage of our apprseatsh i
speed: the tractogram for any seed region can be calculageteiv
seconds, allowing the user to interactively explore theneativity

of the brain.

There has been previous work on discretizing the movement
of particles to the orientations corresponding to neigimgprox-
els. The image is represented by a graph in which the comnecti
ity between two voxels is estimated by finding the lowest @agh
between them. The cost is minimized with dynamic prograngmin
in [6], A* in [7], and a variant of Dijkstra’s algorithm in [8]. The
weights of the edges depend on the local diffusion propedig¢he
tissue.

The aforementioned methods focus on calculating the cennec
tivity between two user-defined regions, but they do not jpl®@the
full brain tractogram from a seed region. This feature was@nt
in a recent study [9] in which the connectivity between twaels
was defined as the lowest affinity along the strongest pathidsat
them. Still, none of these methods incorporate all the keynehts
of stochastic tractography, particularly particle deftattin a high
angular resolution ODF field. Moreover, they do not reallgleate
the impact of limiting the transitions to grid directions tre final
tractogram. Addressing these two shortcomings is the niitrie
bution of this study. First, we demonstrate how the tramsitensor
can be designed to mimic the behavior of sampling particiebe
stochastic method by Perrin et al. Second, the output of @thoa

that stem from a seed region and follow a regularized randatk w S quantitatively evaluated by comparing it with the resipitovided
in the tensor or ODF field. The image that results from computy Perrin etal.’s method in the same dataset.

ing the fraction of particles that reaches each voxel in thlame is
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2. MATERIALS

10 HARDI images acquired at the Center for Magnetic Resamanc
at the University of Queensland using a 4 Tesla Bruker Mezlspe
scanner with a transverse electromagnetic headcoil wezd irs



this study. Diffusion-weighted scans utilized a singletskcho
planar technique with a twice-refocused spin echo sequémce
minimize eddy-current induced distortions. The timing loé¢ dif-
fusion sequence was optimized for signal-to-noise ratiR} 94
diffusion-sensitized gradient directions and 11 baselimeges with
no diffusion-sensitization were obtained for every subjémaging  process can be replaced by a bivector-valued Markov chaibttin
parameters were: b-value = 1159mm2, TE/TR = 92.3/8,259 the approximate tractogram analytically in a short time.
ms, voxel size = 1.8 mm 1.8 mm 2.0 mm, image size 128 x 128 e define the state bivectqr = Q). as the probability mass at
X 55 voxels. The acquisition time was approximately 15 mésut spatial location-, with directionu for discrete time. The firstindex
The 11 baseline images were merged into a single estimateeof t ranges fronp = 1, ..., N, the number of voxels, while the second
T2 reference volume which was then used to calculate a mask coindex ranges from = 1, . . ., 98, corresponding to the unique direc-
responding to the brain using the well-known BET algorithon f  tions that connect a voxel with the 124 neighbors in the 3ificia
skull stripping [10]. The resulting mask was then applieagfidhe  corresponding to a65x5 cube. Memorizing the direction makes it
diffusion images. possible to regularize the trajectory of the probabilityssalhe 98-
neighborhood is a good compromise between the angulautesgl
step length variability and computational cost.

The evolution of the state bivector is characterizedhg tensor

The steps to calculate a tractogram from a HARDI volume age th Of tyPe (2,2) such that7y,’ represents the transition probability
following: first, the ODF field is estimated from the HARDI dat ~ from position/speedp, u) to (¢, v). Its dimensionality is thugN' x
Then it is deconvolved into the fiber ODF (fODF) field, whichsha 98) X (V x 98), very large but extremely sparse. The transition from
been proven to have a positive impact on the tractographyltses stept to stept+1is a tensor contraction/ 1" = > p Tﬁ’v“Qét,L-
[11]. From the fODF, the transition tensor can be calculatéd  The elements of the transition tensbican be designed to simulate
this point, the tractogram can be quickly generated fromstiage  the behavior of a particle in the stochastic tractographthou by
bivector corresponding to any user-defined seed region. Perrin et al. as accurately as possible. In their studyighestmove
according to the rule:

random walk governed by the ODF at each point until beforé exi
ing the brain white matter. Because particles are alloweddee in
any direction, they mostly travel along non-grid locatiomaking it
unfeasible to calculate the tractogram analytically. Hesveif the
particles are constrained to grid locations, the stochastmpling

3. METHODS

3.1. Calculation of the fODF d® — A(PVdsopr(r) + (1 — 7(r))d(t_l)

@

The fODF (henceforth); (1)) is ideally zero everywhere except for ) . )
the directions where the voxel is crossed by fibers. Assuthiagghe ~ Whered;opr(r) is the result from sampling the fODF at location
ODF (henceforthy(r)) is the result of smoothing the fODF with restricted to 80° half cone defined by the incident directidff ~ .
a blurring kernel i.e.)(r) < K1y, it is possible to recover the The scalar fieldy(r) corresponds to the standard deviation of the
fODF using deconvolution. If we defing(r) as theD x 1 signal fODF at each voxel normalized to its maximum across the image
vector at locationr, the fODF can be estimated from the signal using Particles move in the ODF field until before exiting the brainite
Tikhonov regularization as follows: matter.

To mimic this behaviour, the non-zero elements of the ttarsi

1 t -1 ¢ _ tensor must satisfy the following conditions: 1) the origimxel p
wir) ~ Z(r) [(K Ktel) "K'y (T)L T must the in the brain white matter (a white matter mask isuzalc
lated by thresholding/(r) and smoothing the result with a closing

1 t -1 . _ 1 / operator); 2) the origin and destination voxglandq must be 98-
- Z'(r) [(K K+ EI) K Ag (T)L - Z'(r) [A g (T)]+ neighbors in the lattice; 3) directiomhas to be equal (parallel) to
1) the vectorr, — r,, memorizing the direction of movement; and 4)

wheree is the regularization constarff,(r) and Z’ (r) are partition
functions that ensurg’+ = 1*4p; = 1, and A is a matrix that esti-
mates the regularized spherical harmonic coefficientgsj, modi-

fies them to obtain the coefficients of the ODF, and evaluhies &t

the set of directions for which the ODF is to be reconstructed [12].

The matrixA’ is the final signal-to-fODF matrix. Tikhonov regular-
ization has the advantage that it can be easily integratéteima-
trix framework, while performing comparably to more sopisizted,
computationally expensive methods [13]. The blurring imalf is
estimated non-parametrically as follows: thg,, voxels with the
highest anisotropy in the available images are found; tBBFs are
calculated and aligned; their azimuthal components armgee to
ensure rotational invariance with respectf@nd the average of the
Na», calculated profiles is computed. Each of tHecolumns of K

is the result of rotating this estimate to align it with eadhtree H
directions where the ODF is reconstructed.

3.2. The state bivector and the transition tensor

In the random walk approach to stochastic tractographyt, af gar-
ticles is placed in a seed region and allowed to follow a ragzdd

directionu is deflected inta by a vectordsopr (see equation 2)
such that, andd so p  form an angle under a certain threshad{
in Perrin et al.’s study). The last two conditions regulertize trajec-
tory of the probability mass.

If a transition is compatible with these conditions, thensit
assigned a probability proportional to the sum of the valaks
1 ¢(rp) in the directionad so pr that deflect direction: into direc-
tion v according to equation 2. The probabilities are then scaled t
Eq >, T&y' =1 (unless the sum is zero, representing a dead end).
The algorithm to calculate the elementsiofs detailed in Table 1.

3.3. Calculating the tractogram

Once the transition tensor has been computed, the tractdgrgen-
erated as follows. First, the seed vector is constructed as:
0© — [ 1 Ziia¥rn(re)d[X On,on) —ul, 7, €8
P 0, rp &S

wheresS is the set of seed voxeld]-] denotes the Kronecker delta
and andY' (@, ) is a function that discretizes an arbitrary angle to



- Calculate and normalize(r) < ~(r)/max[y(r)]

- Compute white matter maski(r) > vmin, refine with closing
- Initialize all elements of }" to zero
- FOR each position/speed p&jr, u) such that-, is in the mask
- SET SUM<«<= 0, PROBS]] < 0, forv =1,...,98
- FOR each direction of the fODE = 1,..., H
- IF ANGLE(u,h)<ANGLE_MAX
- SET CDIR<= y(7p)dn + (1 — y(7p))du
- SET PROBST (C DIR)] += (1), SUM +=1/, (1)
END
- IF SUM>0
- FOR each directiom = 1,...,98
- SETq < p + v (point+vector=point)
- SETTP: <= PROBSp])/SUM
END; END; END; END

Table 1. Pseudocode for calculating the transition tensb(9, )

is a function that downsamples tfi€ directions of the fODF to the
98 directions allowed in our method’ (0, ¢) = u when the angle
formed by directiong8, ¢) andw is smaller than the angle formed
by (8, ») and any other direction of the 98.

the 98-neighborhood (see caption of Table 1). Then theiloligion
attimet is Q") = (T2 QY. where(-)®) denoteg successive
contractions. If the contraction is carried out a sufficiemmber of
timest..q., the whole probability mass will have exited the volume
and the tractogram/ can be built by marginalizingj);% with re-

spect to direction and time:

98 tmazx

M) = Y Q),,

u=1 t=0

Because a 55x5 neighborhood is used, the probability mass can

skip some rows of voxels, causing some striation artifabtsame-
liorate this problem, the final output is calculated by srhoay
M (r) with a Gaussian kernel and, for visualization purposesngak
the logarithm of the result to compress its range.

4. EXPERIMENTS AND RESULTS

4.1. Setup of experiments

Since the goal of stochastic tractography is to estimatednaec-
tivity between regions in the brain, the following experithavas
carried out. First, seeds were placed on well-known tractheé
brain. Target regions of interest (ROI) which are known tacbe-

|
nected to the seeds were then defined. The ROl was a 10mm dian%

ter sphere in all cases. Finally, the connectivities frorthboethods
were obtained by summing the tractograms within the targ2tsR
and subsequently compared. Four seed / ROI pairs were defiped
seed in the genu of the corpus callosum, two target ROIgr{gt)
at the front of the brain, near the lower part of the supeniontf
gyrus; 2) seed in the splenium of the corpus callsoum, twgetar
ROIs (left/right) towards the back of the brain, near the npaste-
rior part of the middle occipital gyrus; 3) seed in the cartipinal
tract near the hippocampus, target ROI between the leg ardldra
eas of the motor cortex; and 4) seed in the posterior regighef
cingulate gyrus, target ROI in the anterior region.

compute the ODF analytically [12]. The regularization paeter
was set toy = 0.006, as suggested in the paper. The ODF was
calculated forH = 321 directions corresponding to tH&" or-
der, icosahedron-based tessellation of the unit spheree ODF
was deconvolved into the ODF using = 0.0005 for the regu-
larization (equation 1). The white matter mask was caledlas
v(r) > vymin = 1/3. The step size used in Perrin et al.'s method
was set to 0.5 mm, anti0® particles were sampled. Regarding
the maximum angle ANGLE_MAX = 30° was used for Per-
rin et al.’s algorithm, as suggested in their paper. For dgo-a
rithm, it is convenient to allow a larger angle for the largtep size.
ANGLE_MAX = 45° was found to provide good results in pre-
liminary experiments. Finally, the kernel width for the diltwhich
smooths the tractogram, = 1.5mm was also determined from pre-
liminary experiments.

4.2. Results: comparison with Perrin et al.'s method

The scatter plot in Figure 1 compares the connectivity \safoem
the two methods for the ten images and the four tracts. Thgutait
are quite well correlatedp(= 0.79), indicating that our method is a
good approximation of the stochastic method it is based xoep
when a high precision tractogram is required. Even if thiiécase,
our method can still be used to quickly find a good initializatfor
the computationally expensive, sampling-based stoehtiatitogra-
phy. A good seed could be interactively localized with outthod
and then used as input for the probabilistic algorithm. Tay the
stochastic tractography will be assuredly successfulppesed pos-
sibly having to modify the seed location and rerun the slowhoe
several times. Figure 2 depicts the renderings of the sewtis@-
responding target ROIs for the genu and the splenium of thauso
callosum in one of the brains, as well as the output tractogra
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Fig. 1. Scatter plot of the connectivity measures provided byiRerr
et al.'s method (executed three times per case, hence thegalis-
ayed in the figure rather than points) and ours. The coiwvikyct
as normalized to the maximum value.

4.3. Results: execution speed

Execution speed is the most noteworthy feature of the metead
veloped in this study. Both Perrin et al.'s method and ourgewe
implemented in Java and tested on a desktop with an Intel I3.CP
The algorithms were parallelized to take advantage of thid+tore
structure of the computer. Table 2 lists the running timehefmain
steps of the algorithm for the two methods, averaged oveexen
cutions on the same volume. Despite the overhead of calogltte

The system parameters were set as follows. The HARDI dat&ransition matrix, our method is significantly faster thaa stochas-
were modeled by a spherical harmonic expansion of ordercsix ttic approach. The difference between the two methods iscesdye



Fig. 2. Rendering of T2 baseline volume, seed (yellow asterigkd) a

target regions (colored spheres), and resulting tractogide inten-
sity of the tractograms is normalized to [0,1] and threskdldt 0.04
for display. a) Genu (purple spheres) and splenium (redreghef
corpus callosum for Perrin et al.'s method. b) Output forroethod.

Calculation Perrin et al. [5] FAST
fODF 2.64+0.13s | 2.69+0.10s
Transition tensor N/A 442+ 2.1s
Tracking 428 +18 s 6.92+0.28 s

Table 2. Execution times for our method and Perrin et al.’s.

large if the seed region is to be moved due to unsatisfacesylts.
In this case, recalculating the transition tensor, whickhe most
computationally expensive step of our algorithm, is unssagy and
the new output can be generated in a few seconds, while tblessto
tic sampling must be restarted over a period of approximateven
minutes. It is thus feasible to use our method in an interadtish-
ion, which is not possible with stochastic methods.

5. DISCUSSION

A computationally efficient probabilistic tractography timed has

been presented in this study. Though the method is not stticha

in nature, it produces a connectivity map from a HARDI voluime
the spirit of stochastic tractography. By discretizing to®F, the

tractogram can be quickly calculated analytically. Thehodtuses
a bivector to store the position and speed of the probahitiass

stemming from a seed region. Each step in the random walked is

then represented by a contraction operation with a tramsignsor,
which is designed to mimic the behavior of particle in a piulistic

method by Perrin et al. Our method was compared to an implemen [9] S.N. Sotiropoulos, L. Bai, and C.R. Tench

tation of this algorithm, and the results demonstrate kigbtrelated
outputs, with the difference that our method runs approiegs60
times faster. Once the transition tensor has been compatedac-
tive exploration of the brain connetivity is possible withranethod
because the tracking runs in approximately seven secotite ifser
is not satisfied with the tracking results, he can quicklynesthem
by shifting the seed region.

spite of discretization effects. However, tracking verinthundles
can be difficult if their orientation is not well approximdtéy any
of the 98 allowed directions. In such cases, it would be {besd0
upscale the image only in the region where the user thinktréloe
tography might have failed. Generalizing the method togintar
grids is trivial thanks to the graph structure. In this caselucing

ANGLE_M AX in the ROI might be beneficial to compensate for

the shorter step length. Exploring this possibility, aslvaslauto-
matically detecting the problematic regions, remains agémork.
Finally, it is important to note that our method requires rgéa

amount of memory to store the transition tensor. The Javéeimp
mentation uses prior knowledge of the tensor structure tomize
memory usage, but still requires 11 GB. If the image size so+e
lution were smaller or more memory were available, then itildo
be possible to speed up the method by a facton dfy comput-

ing the tenso(77,*)" and then updating the bivector ) =

(T2 ™)™ Q). However, this improvement comes at the ex-
pense of largely increasing the memory requirements bectnes
sparsity ofl" decreases cubicly with.

[10]
[11]
Most fiber bundles can be tracked by the proposed method in

(12]

[13
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