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ABSTRACT

It is an important task to automatically segment brain anatom-
ical structures from 3D MRI images. One major challenge
in this problem is to learn/design effective models, for both
intensity appearances and shapes, accounting for the large
image variation due to the acquisition processes by differ-
ent machines, at different parameters, and for different sub-
jects. Generative models study the explicit parameters forthe
generation process, and thus are robust against the global in-
tensity changes; discriminative models are able to combine
many of the local statistics, which are insensitive to complex
and inhomogeneous texture patterns. In this paper, we pro-
pose a robust brain image segmentation algorithm by fusing
an adaptive atlas (generative) and informative features (dis-
criminative). We tested our algorithm on several datasets and
obtained improved results over state-of-the-art systems.

Index Terms— MRI, segmentation, generative, discrimi-
native

1. INTRODUCTION

We aim to build a robust system that automatically segments
brain MRI images of large variation. FreeSurfer [1] is such
a system and has been widely used in the field. However,
the segmentation results by FreeSurfer are still far from be-
ing fully satisfactory. The main difficulty is caused by: (1)
the variability in the image acquisition processes due to using
different machines at different parameters; (2) the variability
of the anatomical structures within the population, even for
the same subject but at different times.

In this paper, we look at the 3D brain image segmenta-
tion problem from a statistical modeling perspective. Gener-
ative models [2] can explicitly model the generation process
(in statistical sense) of the images. They are able to capture
the global intensity variability but often have simplified as-
sumptions limiting their ability to model inhomogeneous pat-
terns; discriminative models [3, 4] are able to efficiently fuse
together many features but have difficulty in taking the re-
gional information into account. Studies to combine the two
modalities can be found in [5, 3, 6]. However, these systems
have not been thoroughly tested on a large number of images,

with large data variations, and for large number of anatomical
structures. It is not clear how robust they are for processing
general clinical data without parameter tuning.

We seek to combine the advantages of the two above as-
pects by fusing an adaptive atlas (generative) and informative
features (discriminative). We demonstrate improved results
over state-of-the-art algorithms on different datasets ofa large
number of images.

2. METHODS

In this section, we give the problem formulation and the de-
tails of our algorithm.

2.1. Problem formulation

Our task is to segment a given 3D image (volume)V into K

anatomical structures,K is fixed. A segmentation solution is
denoted as

W = {(Ri,Θi), i = 0...K}, (1)

whereR0 refers to the background region, and eachRi is a
set containing all the voxels of structurei. These regions are
disjoint and they cover the entire volume. Assuming all the
regions to be independent, the optimal solutionW ∗ can be
obtained by a Bayesian framework,

W ∗ = arg maxW p(V|W )p(W )

= arg maxW

K
∏

i=0

p(V(Ri)|Ri,Θi)p(Ri)p(Θi),(2)

wherep(V(Ri)|Ri,Θi) defines the image likelihood of re-
gionRi with model parameterΘi on the voxelsV(Ri). p(Ri)
is a shape prior andp(Θi) puts prior on the parameters.

For a discriminative approach, there is no explicit appear-
ance model parameter to estimate for the input volumeV, and
the solution vector becomes

WR = {Ri, i = 0...K}, (3)

In this sense, the solution denoted as regionsRi can be equiv-
alently represented as the label for each voxel. A discrimina-
tive classifier is learned to directly compute the posteriorof



each voxelj,

W ∗
R ≡ (l∗j , j = 1..|V|) = arg maxWR

|Λ|
∏

j

p(lj |V(Nj)),

(4)
wherelj is the label of voxelj, and the posterior is decided
by a sub-volumeV(Nj) centered atj. If we compare so-
lution vectorW in eqn. (1) and eqn. (2) in the generative
model, withWR in eqn. (3) and eqn. (4), we make sev-
eral observations: generative models have the explicit model
parameters and thus are more adaptive; discriminative mod-
els can capture complex local image statistics by combining
many features together; generative models are often eithertoo
simplistic or too computationally demanding to estimate; the
quality of discriminative models heavily depends on the fea-
ture set and they cannot capture the regional properties. Here,
our baseline algorithm is according to eqn. (4) and we seek to
improve it by fusing it with an estimated adaptive atlas.

2.2. Adaptive atlas

Let Θ = {Θi, i = 0...K}, we use a Gaussian model param-
eterized byΘi for modeling the appearance of each region.
That is,Θ = {(v̄Ri

, σRi
), i = 0...K}, wherev̄Ri

andσRi

are the mean and standard deviation of intensity in regionRi.
We seek to minimize an energy function under the Bayesian
formulation:

E (WR,Θ,V) ∝

K
∑

i=0

− log p(V(Ri)|Ri,Θi) − log p(Ri)

=

K
∑

i=0

∑

j∈Ri

− log G(vj ; v̄Ri
, σRi

)

+α
∑

j1 6=j2,j1∈N(j2)

1 − δ(l(j1) = l(j2)), (5)

where the first term assumes an i.i.d. Gaussian model,
G(vj ; v̄Ri

, σRi
), on the intensity and the second term en-

courages smooth region boundaries/surfaces.l(j1) andl(j2)
are the region labels ofWR for neighboring voxelsj1 and
j2; δ(·) is an indicator function imposing a Potts model;α

provides the weighting of smoothness. We assumep(Θi) to
be a uniform distributed and thus can be omitted. An estimate
of WR andΘ can be obtained by minimizingE(WR,Θ,V):

Ŵ = (ŴR, Θ̂) = arg minWR
E(WR,Θ,V), (6)

This can be achieved by using a variational approach, the
region competition method [7, 3]. Given a set of training im-
ages, we choose a typical one as our atlas (template) and de-
note its corresponding manual segmentation asWa. Given an
input MRI image,V, we apply region competition to min-
imize energyE(WR,Θ,V), starting fromWa as the initial
solution. We call the resultant̂WR an adaptive atlas which
is an approximation to the true solution due to the simplistic

assumption about the underlying models.Θ̂ is also part of
the estimation describing the intensity formulation for each
region.

2.3. Fusion under a discriminative framework

In [3], around5, 000 features were used to train a discrimina-
tive classifierp(lj |V(Nj)), including location, intensity, gra-
dient, derivative, and different types of Haar-like responses.
Let the total number of these features beP , the feature vector
Fd(j) of some voxelj can be expressed as:

Fd(j) ≡ [fd,1(V(Nj)), · · · , fd,P (V(Nj))] (7)

wherefd,k denotes thekth feature computed on imageV.
The basic idea is to augment the feature vector by adding

the adaptive atlasŴR. Moreover, features computed directly
from V(Nj) are sensitive to either geometrical or intensity
variation. Θ̂ can then be used to normalizeV and we denote
the normalized image asVΘ̂. Let the segmentation label of
each voxelj in ŴR be l̂j , the new feature vectorF(j) be-
comes:

F(j) ≡
[

ŴR, fd,1(VΘ̂(Nj)), · · · , fd,P (VΘ̂(Nj))
]

,

wherefd,k(VΘ̂(Nj)) is thekth robust feature computed on
the normalized imageVΘ̂, and the normalization is done by
intensity correction based on the matched regions in the adap-
tive atlas to the template image [8]. Given a set of training
MRI images with their corresponding manual annotations, we
estimate the adaptive atlas for each training image and com-
puteF(j) for each voxelj. A classifier,p(l|F), can be trained
on the training set{(lj ,F(j)), ...} wherelj is the ground truth
label of voxelj. We applied auto-context algorithm [9] to per-
form feature selection and fusion among the large number of
features and the huge sample space. Table 1 shows the in-
creased importance of atlas information if the adaptive atlas
is applied:

Table 1. Distributions of the first selected 120 features given
atlasWa or adaptive atlasŴR in the augmented feature vec-
tor. These features are most useful and dominate the classifi-
cation. The first row indicates the proportion of that feature
in the whole feature pool. The column ’Others’ includes in-
tensity, gradient, and curvature.

Atlas Harr Location Derivative Others
0.02% > 99.4% 0.2% 0.3% 0.04%

Wa < 3% > 48% 31% 18% 0%
ŴR 6% 46% 29% 18% 1%

Once a classifier is trained, we simply assign each voxel
in a test image with the label maximizing the discriminative
probability:

l∗j = arg max
l

p(l|F(j)).



3. RESULTS

3.1. Experimental configurations

In the following experiments, auto-context with pure dis-
criminative features is the discriminative approach [9] and
the adaptive atlas is the result of the generative approach.
To demonstrate the effectiveness of the proposed algorithm,
we designed two experiments on a total of five datasets of
different scales. It is worth to mention that in the follow-
ing experiments, our system used theidentical algorithm
without any parameter tuning, and two models were trained
for outside-test other than using testing data from the same
dataset. To avoid the bias introduced by human selection,
the template image was automatically selected based on the
Jacobians of the 12-parameter affine registration described in
[10].

3.2. Segmentation

We first evaluate our algorithm on two public datasets, IBSR
of 18 subjects and LPB40 [11] of 40 subjects, both have man-
ually delineated labels for each T1-weighted image and large
number of annotated structures (56 for LPB40, 84 for IBSR).
To give a meaningful comparison of different methods on
the two datasets, we chose 3 types of subcortical structures
as the targets because (1) their commonality among most
datasets and automatic segmentation methods, and (2) their
clinical importance in neuro-image studies. The 28 training
images for our method, other than the two testing sets, were
28 SPGR T1-weighted MR images acquired on a GE Signa
1.5T scanner along with the corresponding annotations by
neuroanatomists. During the testing phase, our algorithm
performed brain segmentation by a sequence of steps: (1)
skull stripping [12], (2) global affine registration [10], (3)
B-spline non-linear registration [13], (4) and segmentation.

(a)GM (b)DM (c)Our Algorithm

Fig. 1. Segmentation results on a typical slice view by three
different algorithms. Take the left caudate for example, our
algorithm gives both detailed boundary and the most com-
plete region. GM is the generative method and DM is the
discriminative method

Table 2. Accuracy measures (DICE coefficients) on the IBSR
test images for extracting the three types of structures

GM DM FreeSurfer Our Algorithm
Caudate 0.72 0.72 0.82 0.79
Putamen 0.65 0.75 0.81 0.79
Hippocampus 0.40 0.65 0.75 0.74

Table 3. Accuracy measures (DICE coefficients) on the
LPB40 test images for extracting the three types of structures

GM DM FreeSurfer Our Algorithm
Caudate 0.48 0.73 0.65 0.73
Putamen 0.49 0.58 0.64 0.75
Hippocampus 0.37 0.50 0.57 0.55

To demonstrate the improvement of our method with re-
spect to either generative or discriminative methods, Figure 1
shows a slice view on one image by three different algorithms,
and Table 2 and Table 3 give the DICE measures of all three
types of structures. As we can see, The proposed algorithm
significantly outperforms the two alternatives both qualita-
tively and quantitatively. The results of FreeSurfer [1] for
the two datasets are also listed in the two tables. Our method
shows competitive measures and the most stable performance
among all 4 methods on the two datasets. Besides, our method
takes only20 ∼ 30 minutes to segment an MRI image, which
is 5 ∼ 10 times faster than FreeSurfer under the same experi-
mental environment.

3.3. Robustness on large datasets and more structures

In this section, we show the robustness of the proposed al-
gorithm on different MRI datasets of larger number of im-
ages with significant variations. The model in this experi-
ment was trained from LPB40 to perform holistic segmenta-
tion (56 structures) on three datasets: (1) 492 brain images
from Alzheimer’s Disease Neuroimaging Initiative (ADNI)
[14] (2) A dataset from China with 160 images collected on
a 1.5T scanner, and (3) A schizophrenia dataset with 226 im-
ages collected in UCLA on a 3T scanner. Figure 2 shows
a number of MRI images together with the segmentation re-
sults. As we can see, the intensity patterns and textures are
quite different. Even in the same dataset, ADNI, the MRI im-
ages have large variation since not all of them were acquired
by the same scanner. Despite such a high degree of varia-
tion among these images, the segmentation results are mostly
satisfactory in both cortical and subcortical regions. This is
due to the benefit of integrating the generative model, which
has the explicit parameter to account for the image appear-
ance, and the discriminative model, which combines together
a large number of informative features.

We also provide DICE measures for the different datasets
as quantitative evidence in Table 4. Because it is time-
consuming to annotate for the ground truth of whole brain for
all images, we chose the left hippocampus as our target struc-
ture and manually annotated 68 images from ADNI, 3 images
from UCLA, and 3 images from China dataset. Without
changing any settings as well as the underlying model, the
results of our algorithm can achieve a DICE value around
0.6 to 0.7, which is the best among the three. Although the
adaptive atlas (generative model) can perform close to our
algorithm on UCLA and China datasets, it is not as stable as
ours when all the three datasets are taken into account. In



(a)LPB40 1 (b)LPB40 2 (c)ADNI 1 (d)ADNI 2

(e)ADNI 3 (f)ADNI 4 (g)ADNI 5 (h)ADNI 6

(i)China 1 (j)China 2 (k)UCLA 1 (l)UCLA 2

Fig. 2. Typical examples of the proposed brain segmentation
method on different datasets. We use 2D slices of similar
brain locations for comparison. All the results were obtained
by the identical system without parameter tuning.

Table 4. Average DICE value of the extracted left hip-
pocampi by different methods. All the results were obtained
by the identical system without parameter tuning.

DM GM Our Algorithm
ADNI 0.541 0.643 0.730
UCLA 0.551 0.607 0.631
China 0.495 0.565 0.595

[15], the performance of FreeSurfer for hippocampus seg-
mentation of ADNI dataset had also been addressed (0.71)
and is slightly lower than our method.

4. CONCLUSIONS

We propose a principled approach for brain MRI image seg-
mentation by fusing together adaptive atlas (generative) and
informative features through a discriminative framework.
This approach uses a new way of combining generative and
discriminative models. It takes advantage of the generative
model being explicit and the discriminative classifier having
high discrimination power. We demonstrated improved and
robust results over the state-of-the-art algorithms on several
clinical MRI datasets. Including a more explicit shape model
may further improve our system, which is left for future
research.
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