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Abstract

Dictionary learning has became an increas-
ingly important task in machine learning,
as it is fundamental to the representation
problem. A number of emerging techniques
specifically include a codebook learning step,
in which a critical knowledge abstraction
process is carried out. Existing approach-
es in dictionary (codebook) learning are ei-
ther generative (unsupervised e.g. k-means)
or discriminative (supervised e.g. extreme-
ly randomized forests). In this paper, we
propose a multiple instance learning (MIL)
strategy (along the line of weakly supervised
learning) for dictionary learning. Each code
is represented by a classifier, such as a linear
SVM, which naturally performs metric fusion
for multi-channel features. We design a for-
mulation to simultaneously learn mixtures of
codes by maximizing classification margins in
MIL. State-of-the-art results are observed in
image classification benchmarks based on the
learned codebooks, which observe both com-
pactness and effectiveness.

1. Introduction

Finding an effective and efficient representation re-
mains as one of the most fundamental problems in ma-
chine learning. A number of important developments
in the recent machine learning literature (Blei et al.,
2003; LeCun et al., 2004; Hinton et al., 2006; Serre
& Poggio, 2010) have an important dictionary learn-
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ing stage, either explicitly or implicitly. For example
the bag of words (BoW) model (Blei et al., 2003), due
to its simplicity and flexibility, has been adopted in
a wide variety of applications, in document analysis
in particular. In computer vision, the spatial pyramid
matching algorithm (SPM) (Lazebnik et al., 2006) has
demonstrated its success in image classification and
categorization.

In this paper, we propose a general dictionary learning
method through weakly-supervised learning, in par-
ticular multiple instance learning (Dietterich et al.,
1997). Our method can be applied in many domains
and here we focus on image-based codebook learning
for classification. On one hand, visual patterns are giv-
en as multi-variate variables and often live in high di-
mensional spaces; on the other hand, there are intrinsic
structural information in these patterns, which might
be unfolded into lower dimensional manifolds. Dictio-
nary (codebook) learning provides a way of knowledge
abstraction upon which further architectures can be
built.

In computer vision applications, given a learned code-
book, each image patch in an input image is either as-
signed with a code or a distribution (on learned code-
book); then image representation can be built based
on the encoded image patches. In the experiments of
this paper, each input sample is denoted by a feature
vector, such as SIFT (Lowe, 2004) and LBP (Ojala
et al., 1996), extracted from an image patch (say 48
× 48). Using codebook has several advantages: (1)
explicit representations are often enforced; (2) dimen-
sionality reduction is performed through quantization;
(3) it facilitates hierarchical representations; (4) spa-
tial configuration can be also imposed. A direct way to
learning a codebook is by performing clustering, e.g.
the k-means algorithm (Duda et al., 2000). Several
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Positive Bag Negative Bag 

Figure 1. Illustration of max-margin multiple-instance dic-
tionary learning. Left: A positive bag containing both
positive instances (rectangles and diamonds) and negative
instances (circles). In this paper, we assume that positive
instances may belong to different clusters. We aim to learn
max-margin classifiers to separate the instances in positive
bags. Right: A negative bag with all negative instances.

approaches have been proposed (Jurie & Triggs, 2005;
Lazebnik & Raginsky, 2009) and one often builds fur-
ther models on top of a learned codebook (Fei-Fei &
Perona, 2005). However, a direct clustering approach
is often sensitive to: (1) initialization, (2) number of
codes, and (3) metric (distance) of the multi-channel
features. In a supervised setting where the labels are
available, several discriminative codebook learning ap-
proaches have also been proposed (Moosmann et al.,
2006; Yang et al., 2008; Moosmann et al., 2008).

Instead of learning a dictionary in a fully unsupervised
way (e.g. k-means) or supervised way (e.g. random
forests (Moosmann et al., 2008)), we take a different
path to dictionary learning through a multiple instance
learning strategy. Given a set of training images with
each image assigned with a class label, we treat one
particular class of images as positive bags, and the
rest images as the negative bags; dense image patches
are collected as the instances in each bag. Our al-
gorithm then tries to learn multiple linear SVMs for
two purposes: (1) to identify those patches (instances)
which are genuine to the class of interest; (2) to learn
linear SVM classifiers to classify those identified patch-
es. These linear SVMs naturally cluster the positive
instances into different clusters. We repeat the pro-
cess for all the image classes and collect the learned
classifiers, which become our dictionary (codebook).
Due to the difference to the codes learned in standard
ways, we call each learned linear SVM as generalized
code, or G-code. In this paper, we propose a learning
framework to achieve the above goal, which has the

following properties: (1) a multiple instance learning
strategy is proposed for dictionary learning (an un-
common direction); (2) each code is represented by a
linear SVM which naturally performs metric fusion for
multi-channel features; (3) we design a formulation to
simultaneously learn mixtures of codes by maximizing
classification margins in MIL. State-of-the-art results
are observed in image classification benchmarks with
significantly smaller dictionary (e.g. only 1/6) than
the competing methods. Next, we briefly discuss the
relations between our work and the existing literature
in dictionary learning.

2. Related Work

Based on low-level descriptors (Lowe, 2004; Ojala
et al., 1996), bag of words (BoW) model (Fei-Fei &
Perona, 2005) using codebooks is widely adapted for
image classification and object detection. On one
hand, unsupervised learning, such as K-means, is al-
ready demonstrated its popularity for codebook learn-
ing in many applications. On the other hand, people
found that supervised learning methods tend to pro-
duce more discriminative codebooks, as described in
recent works (Moosmann et al., 2008; Yang et al., 2008;
2010; Jiang et al., 2012; Mairal et al., 2010; Winn et al.,
2005). More recently, there are some attempts (Parizi
et al., 2012; Singh et al., 2012; Zhu et al., 2012) tried
to involve latent structures during both the learning
and inference process for image classification, howev-
er, their target is not for generic dictionary learning.
Different from all the previous work, in this paper we
try to explicitly perform the dictionary learning along
the line of weakly-supervised learning.

Strongly supervised methods like Attributes (Farha-
di et al., 2009; Pechyony & Vapnik, 2010; Parikh &
Grauman, 2011), Poselets (Bourdev & Malik, 2009),
and Object Bank (Li et al., 2010), have shown to
be promising. In our approach, we only use the
image-level labels with no additional human annota-
tions to learn the codebook. In Classemes (Torresani
et al., 2010), the emphasis was made on learning an
image-level representation for image search. From the
viewpoint of multiple instance learning, our proposed
method is related to multiple component learning (M-
CL) (Dollár et al., 2008) and multiple clustered in-
stance learning (MCIL) (Xu et al., 2012). Due to
the lack of explicit competition among the clusters,
however, both MCL and MCIL are hard to general-
ize to solve the codebook learning problem. From the
viewpoint of multiple instance clustering, our proposed
method is related to M3MIML (Zhang & Zhou, 2008)
and M3IC (Zhang et al., 2009) methods. However,
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both M3MIML and M3IC try to maximize the bag-
level margin, we instead maximize the instance-level
margin with the MIL constrains, which is quite dif-
ferent from (Zhang & Zhou, 2008; Zhang et al., 2009)
in problem formulation, research motivation, and task
objective.

3. Max-margin Multiple-Instance
Dictionary Learning

3.1. Notation and Motivation

We first briefly give the general notations of MIL (Di-
etterich et al., 1997). In MIL, we are given a set of
bags X = {X1, . . . , Xn}, each of which contains a set
of instances Xi = {xi1, . . . ,xim}; and each instance
is denoted as a d-dimensional vector xij ∈ Rd×1. In
addition, every bag is also associated with a bag la-
bel Yi ∈ {0, 1}; and every instance is associated with
an instance label yij ∈ {0, 1} as well. The relation
between bag label and instance labels is interpreted
in the following way: if Yi = 0, then yij = 0 for all
j ∈ [1, . . . ,m], i.e., no instance in the bag is positive.
If Yi = 1, then at least one instance xij ∈ Xi is a
positive instance of the underlying concept.

To use MIL for dictionary learning, we consider an im-
age as a bag, and a patch (or region) within the image
as an instance. Given a set of images from multiple
classes with the corresponding class labels, we treat
the images of one typical class as positive images, and
the rest ones as negative images. Intuitively, for each
image, if it is labelled as positive, then at least one
patch within it should be treated as a positive patch;
while if it is labelled as negative, then all patches with-
in it should be labeled as negative patches. Take the
images in 15 Scene dataset (Lazebnik et al., 2006) as
an example, if highway class is the positive class, then
the mountain class falls into the negative class; image
patches of sky appear in both classes will be treated as
negative patches. As shown in Fig. 1, we assume pos-
itive patches are drawn from multiple clusters, and we
view negative patches from a separate negative cluster.
The goal of this paper is to learn max-margin classi-
fiers to classify all patches into different clusters, and
illustrate the learned classifiers (G-codes) for image
categorization/classification. Our dictionary learning
problem involves two subproblems: (1) discriminative
mixture model learning and (2) automatic instance la-
bel assignment (which cluster a patch might belong
to). It seems that MIL is a natural way to address
the above problem. Hence, in the following, we will
first give a naive solution, and then provide detailed
formulation and solution to our proposed max-margin
multiple-instance dictionary learning (MMDL) prob-

Given positive bags and negative bags, do the follow-
ing two steps.

MIL step: Run mi-SVM on the input positive and
negative bags, and obtain positive instances in
positive bags.

Clustering step: Run k-means on the positive in-
stances obtained by mi-SVM.

Figure 2. A naive solution for multiple-instance dictionary
learning.

lem.

3.2. A Naive Solution

A naive way to use MIL for dictionary learning is to
first run the standard MIL (e.g. mi-SVM) to select
positive instances, then run a clustering algorithm to
build the dictionary. In Fig. 2, we show a naive solu-
tion based on the mi-SVM (Andrews et al., 2002) and
k-means algorithm. This method typically treats mul-
tiple instance learning and mixture models learning
as two independent steps, which is not necessarily the
optimal solution. In the following, we will introduce
our formulation to perform these two steps simulta-
neously, which is called max-margin multiple-instance
dictionary learning (MMDL).

3.3. Formulation of MMDL

In MMDL, we explicitly maximize the margins be-
tween different clusters. To achieve this goal, we build
the MMDL based on multi-class SVM, e.g., Crammer
and Singer’s multi-class SVM in (Crammer & Singer,
2002). Without loss of generality, we simply adapt the
linear classifier, which is defined as f(x) = wTx. Each
cluster is then associated with a specific linear classi-
fier. Due to the flexibility introduced by the multi-
class SVM formulation, it’s very natural to allow all
the classifiers to compete with each other during the
learning process. In this paper, we introduce a cluster
label as latent variable, zij ∈ {0, 1, . . . ,K}, for each in-
stance. If zij = k ∈ {1, . . . ,K}, instance xij is in the
kth positive cluster. Otherwise, zij = 0, xij is in the
negative cluster. Furthermore, we also define a weight-
ing matrix W = [w0,w1, . . . ,wK ],wk ∈ Rd×1, k ∈
{0, 1, . . . ,K} as linear classifiers stacked in each colum-
n, where wk represents the k-th cluster model. Note
that, w0 denotes the negative cluster model. Hence,
instance xij can be classified by:

zij = arg maxkwT
k xij (1)
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Input: Positive bags, negative bags, and the number of positive clusters K.
Initialization: For instances in negative bags, we set zij = 0. For instances in positive bags, we use k-means algorithm
to divide all these instances into K clusters, and set cluster label to be index of clustering center. Instance weight is
set to 1, pij = 1, for all instances in positive bags.

We iterate the following two steps for N ( N is typically set to 5 in our experiments) times:

Optimize W: we sample ps portion of the instances per positive bag according to instance weight pij and take
all negative instances to form a training set D′; since cluster labels are known, we solve the multi-class SVM
optimization problem to obtain W,

min
W

K∑
k=0

‖ wk ‖2 +λ
∑
ij

max(0, 1 + wT
rijxij −wT

zijxij)

in which xij ∈ D′ and rij = arg maxk∈{0,...,K},k 6=zij
wT

k xij .

Update pij and zij: for all instances in positive bags:

1. Update pij according to Eq. (4)

2. Update zij = arg maxk∈{1,...,K}
(
wT

k xij −wT
0 xij

)
Output: The learned classifiers W.

Figure 3. Optimization algorithm for MMDL

With the above definitions, the objective function be-
comes

min
W,zij

K∑
k=0

‖ wk ‖2 +λ
∑
ij

max(0, 1 + wT
rijxij −wT

zijxij)

s.t. if Yi = 1,
∑
j

zij > 0, and if Yi = 0, zij = 0,

(2)
where rij = arg maxk∈{0,...,K},k 6=zijw

T
k xij .

In Eq. (2), the first term,
∑K

k=0 ‖ wk ‖2 is for the
margin regularization, while the second term is the
multi-class hinge-loss denoted as `(W; (xij , zij)).

`(W; (xij , zij)) =
∑
ij

max(0, 1 + wT
rijxij −wT

zijxij)

(3)
Parameter λ controls the relative importance between
the two terms. The loss function `(W; (xij , zij)) ex-
plicitly maximizes soft-margins between all K+1 clus-
ters. Constraints in Eq. (2) are equivalent to con-
straints in MIL. Because

∑
j zij > 0 ⇔

∑
j yij > 0

and zij = 0⇔ yij = 0.

This MMDL formulation leads to a non-convex op-
timization problem. However, this problem is semi-
convex (Felzenszwalb et al., 2010) since optimization
problem becomes convex once latent information is
specified for the instances in the positive bags. In
(Felzenszwalb et al., 2010), a “coordinate descend”
method is proposed to address this kind of problem,
which guarantees to give a local optimum. Our prob-

lem is even harder, since we do not know the number
of positive instances in each positive bag.

3.4. Learning Strategies of MMDL

At first, we denote training set as D = {X1, . . . , Xn}
including all positive and negative bags for training.
Then we define instance weight as follows:

pij = sigmoid( max
k∈{1,...,K}

(
wT

k xij −wT
0 xij

)
/σ)

=

(
1 + exp

(
− max

k∈{1,...,K}

(
wT

k xij −wT
0 xij

)
/σ

))−1
(4)

pij shows “positiveness” of the instance. It is deter-
mined by the maximal difference of SVM decision func-
tion value between a positive cluster and the negative
cluster which is maxk∈{1,...,K}

(
wT

k xij −wT
0 xij

)
. Sig-

moid function is used for mapping the difference of
SVM decision function value into the range of (0, 1).
σ is a parameter for normalization.

In the next step, we solve the problem in (2) using
coordinate descend in a stochastic way which is sum-
marized in Fig. 3. We form a new training set D′ out
of the original D by sampling instances from each bag
based on pij . Because latent variables are only effec-
tive for instances in positive bags, we take all instances
in negative bags into D′. In addition, we only sample
ps portion of the instances per positive bag. Initially,
the instance weights are equal for all positives. After
the sampling step, the data set D′0 is used to train
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Figure 4. Illustration of MMDL for image classification.
Given a set images (in the first row) from multiple classes,
we divide image patches into different clusters and obtain
G-codes through MMDL. Some patches in the learned clus-
ters (both positive and negative) are shown in the second
row. For an input image, image representation is build
based on response maps of G-code classifiers and spatial
pyramid (shown in the third row).

a standard multi-class SVM classifier f0. This com-
pletes the Optimize W step. Once we get f0, we
can apply it to the original positive bags to perform
Update pij and zij step. Then, we sample another
ps portion of instances from each positive bag based
on the classification results, forming a new dataset D′1
and then obtain f1. This process is repeated until the
desired number of iterations N is reached. Sampling
instances according to their “positiveness” makes sure
that a portion of instances in positive bag have pos-
itive instance labels. This satisfies the constraint in
Eq. (2). In addition, this sampling procedure can also
increase the efficiency of our optimization algorithm.

4. MMDL for Image Representation

A learned dictionary consists of a set of linear clas-
sifiers (G-code classifiers) for different patch clusters
from different image classes. Similar to the way in ob-
ject bank (Li et al., 2010), our image representation
is constructed from the responses of G-code classifiers.
Our MMDL framework is illustrated in Fig. 4. Sup-
pose there are M categories in the dataset, for each
image category, we use the training images in this cat-
egory as positive examples, and the rest training im-
ages as negative examples. Through MMDL, K + 1
G-code classifiers are learned. Given an input image,
patch-level image features are densely extracted. Sup-
pose x is a local feature vector, response of x given by

the kth G-code is wT
k x, k ∈ {0, 1, . . . ,K}. Thus, we

can obtain a response map for each G-code classifier.
For each response map, a three-level spatial pyramid
representation (Lazebnik et al., 2006) is used, resulting
in (12 + 22 + 42) grids; the maximal response for each
G-code classifier in each grid is computed, resulting in
M×(K+1) length feature vector for each grid. A con-
catenation of features in all grids leads to a compact
image descriptor of the input image.

Note that the complexity of feature encoding using
G-codes is very low. It involves no more than a dot
product operation. The benefit of using G-codes of
low complexity is evident, since feature encoding is a
time-consuming process in many classification system-
s (Chatfield et al., 2011). For the high-level image
classification tasks, our image representation achieves
the state-of-the-art performance on several benchmark
datasets.

5. Experiments

Dataset We evaluate the proposed MMDL method
for image classification on three widely used dataset-
s, including scene image (15 Scene (Lazebnik et al.,
2006), MIT 67 Indoor (Quattoni & A.Torralba, 2009)
datasets), activity images (UIUC Sports dataset (Li
& Fei-Fei, 2007)). Experimental setting for the three
datasets are listed below:

• 15 Scene: It contains 4,485 images divided into 15
categories, each category has 200 to 400 images,
and the average image size is 300 × 250. Follow-
ing the same experimental setup as in (Lazebnik
et al., 2006), we take 100 images per class for
training and use the remaining images for test-
ing.

• MIT 67 Indoor: This dataset contains images
from 67 different categories of indoor scenes.
There is a fixed training and test set containing
approximately 80 and 20 images from each cate-
gory respectively.

• UIUC Sports: This is a dataset of 8 event classes.
Seventy randomly drawn images from each class
are used for training and 60 for testing follow-
ing (Li & Fei-Fei, 2007).

For the 15 Scene and UIUC Sports datasets, we ran-
domly run experiments for 5 times, and record average
and standard deviation of image classification accura-
cies over all image classes.

Experiment Setup For each image, image patches
are densely sampled by every 16 pixels on image, under
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three scales, 48×48, 72×72, and 96×96. For each im-
age patch, we resize it to 48×48 and compute five kind-
s of features for describing it. The features are HoG,
LBP, GIST (Oliva & Torralba, 2001), encoded SIFT
and LAB color histogram. For the HoG and LBP fea-
tures, we use the implementation in VLFeat (Vedaldi
& Fulkerson, 2008); their dimensions are 279 and 522,
respectively. For the GIST feature, we use the imple-
mentation provided by the authors of (Oliva & Torral-
ba, 2001); its dimension is 256. When computing the
encoded SIFT feature, we densely compute SIFT fea-
ture at the size of 16 by every 6 pixels; then the SIFTs
are quantized by a 100 bins via k-means by assigning
each SIFT feature to its nearest entry in the cluster;
a histogram is built on the quantized SIFTs; dimen-
sion of the encoded SIFT feature is 100. For the LAB
color histogram feature, we compute a 16 dimension
histogram for each of the three channels. These five
diverse features are normalized separately, concatenat-
ed into a 1205 dimensional vector, and normalized by
its `2 norm as local patch representation. In MMDL,
the weight parameter λ is set to 1; the number of it-
erations N in the optimization algorithm in Fig. 3 is
set to 5; the sampling portion ps is set to 0.7; and the
normalization parameter σ is set to 0.5. In the step of
“optimize W”, we use LibLinear (Fan et al., 2008) to
solve this multi-class SVM problem. Training images
of each dataset are used for learning our dictionary.
The overall image representation is based on the de-
scription in Sec. 4. LibLinear is also used for image
classification after image representation is computed.

5.1. Nature Scene Image Classification: A
Running Example

In experiments on the 15 Scene dataset, we compare
MMDL to k-means codebook learning, extremely ran-
domized clustering forests (ERC-Forests) (Moosmann
et al., 2008), the naive solution in Sec. 3.2, and some
of the existing methods.

In Fig. 5, X-axis shows the number of codewords of k-
means or G-codes; Y-axis shows average classification
accuracy (in percentage) of different test. HoG, LBP,
GIST and encoded SIFT are tested separately with
MMDL (using 165 G-codes, 11 G-codes per-class); av-
erage classification accuracy of LBP (81.23%) is much
higher than HoG (75.7%), encoded SIFT (74.74%) and
GIST (74.27%). Fusing these four descriptors, we can
obtain an improved accuracy of 86.35%. Color descrip-
tor is not used in this dataset, because all images in
this dataset are grey.

Using multiple features, we also test traditional
k-means codebook learning, ERC-Forests codebook
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Figure 5. Average classification accuracies of different
methods comparison on 15 Scene dataset over different
number of codewords.

learning and our baseline method, mi-SVM + k-means,
in Sec. 3.2. Codebooks learned by k-means, ERC-
Forests, and mi-SVM + k-means are used for locality-
constrained linear coding (LLC) in (Wang et al., 2010)
which is a popular state-of-the-art feature encoding
method. Then we follow the pipeline in (Wang et al.,
2010) for image classification. In Fig. 5, we observe
that ERC-Forests works even worse than k-means
in this situation. Our baseline method (mi-SVM +
k-means in Fig. 2) works better than raw k-means
method, since it can explore discriminative image fea-
ture for each scene class. However, it is still worse
than MMDL. Mi-SVM + k-means obtains an average
classification accuracy of 85.06% using 1500 codeword-
s, while the average classification accuracy of MMDL
is 86.35% when only using 165 G-codes.

We compare MMDL with some previous methods in
Table. 1. Notice that in (Lazebnik et al., 2006) and
(Bo et al., 2010) non-linear SVM is used for image
classification; (Li et al., 2010), (Yang et al., 2009) and
our method adopt linear SVM. We observe that the
performance of our method is very close to the best
performance obtained by kernel descriptors, with very
small number of codewords using linear SVM.

Learning G-codes using MMDL is computationally ef-
ficient. In this dataset, learning 11 G-codes for one
category takes about 8 minutes on a 3.40GHz com-
puter with an i7 multi-core processor. In the testing
stage, it takes about 0.8 second for patch-level fea-
ture extraction, and takes less than 0.015 second for
computing the image representation. The conclusions
drawn from experiments on this dataset are general:
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Table 1. Classification accuracy and number of codewords used of different methods on 15 Scene dataset.
Methods Accuracy (%) Number of codewords

Object Bank (Li et al., 2010) 80.90 2400
Lazebnik et al.(Lazebnik et al., 2006) 81.10±0.30 200

Yang et al.(Yang et al., 2009) 80.40±0.45 1024
Kernel Descriptors (Bo et al., 2010) 86.70±0.40 1000

Ours 86.35±0.45 165

Table 2. Classification accuracy on MIT 67 Indoor dataset.

Methods Accuracy(%)

ROI+Gist (Quattoni & A.Torralba, 2009) 26.5
MM-scene (Zhu et al., 2010) 28.0
Centrist (Wu & Rehg, 2011) 36.9
Object Bank (Li et al., 2010) 37.6

DPM (Pandey & Lazebnik, 2011) 30.4
RBoW (Parizi et al., 2012) 37.93

Disc. Patches (Singh et al., 2012) 38.1
SPMSM (Kwitt et al., 2012) 44.0

LPR (Sadeghi & Tappen, 2012) 44.84
Ours 50.15

1. MMDL can naturally learn a metric to take the
advantage of multiple features.

2. The max-margin formulation leads to very com-
pact code for image representation and very com-
petitive performance. It is clearly better than the
naive solution.

5.2. Indoor Scene Image Classification

In the experiment on MIT 67 Indoor dataset, for each
of the 67 classes, we learn 11 G-codes, 10 for positive
cluster and 1 for negative cluster. Therefore, we have
737 G-codes in total. Fig. 6 shows some cluster models
learned in buffet and computer-room category. Take
the computer-room category as an example: cluster 2
corresponds to computers; and cluster 8 corresponds to
desks. Clusters are learned given no more than image
class labels. But it seems that they are very semantic
meaningful.

Table. 2 summarizes the performances of our method
and some previously published methods. Our perfor-
mance is much better than traditional scene recogni-
tion methods, such as (Quattoni & A.Torralba, 2009;
Zhu et al., 2010; Wu & Rehg, 2011). Here we fo-
cus on comparisons with three mid-level image rep-
resentations, DPM (Pandey & Lazebnik, 2011), R-
BoW (Parizi et al., 2012), and Discriminative Patch-
es (Singh et al., 2012). DPM, RBoW and our methods
have used labels of training images for learning. Dis-
criminative Patches method learns mid-level represen-
tation in an unsupervised way. In (Singh et al., 2012),

Table 3. Classification accuracy on UIUC Sports dataset.

Methods Accuracy (%)

Li et al.(Li & Fei-Fei, 2007) 73.4
Wu et al.(Wu & Rehg, 2009) 84.3
Object Bank (Li et al., 2010) 76.3
SPMSM (Kwitt et al., 2012) 83.0

LPR (Sadeghi & Tappen, 2012) 86.25
Ours 88.47±2.32

they combine Discriminative Patches with DPM, Gist-
color, and SP and obtained a classification accuracy of
49.4%. Our much better performance indicates the
efficiency and effectiveness of MMDL.

5.3. UIUC Sports Image Classification

In this experiment, we report the performance result
of event recognition in the UIUC Sports dataset. For
each event category, we only learn 11 different G-
codes. This results in 88 codewords in total for image
representation. However, our performance is consis-
tently better than object bank (requires detailed hu-
man annotations) and two very recent approaches, L-
PR (Sadeghi & Tappen, 2012) and SPMSM (Kwit-
t et al., 2012) as shown in Table. 3. In addition, a
codebook learning method (Wu & Rehg, 2009) using
histogram intersection kernel has also been compared.

6. Conclusion

In this paper, we have proposed a dictionary learning
strategy along the line of multiple instance learning.
We demonstrate the effectiveness of our method, which
is able to learn compact codewords and rich semantic
information.
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