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Abstract

In graph-based semi-supervised learning approaches,
the classification rate is highly dependent on the size of
the availabel labeled data, as well as the accuracy of the
similarity measures. Here, we propose a semi-supervised
multi-class/multi-label classification scheme, dynamic la-
bel propagation (DLP), which performs transductive learn-
ing through propagation in a dynamic process. Existing
semi-supervised classification methods often have difficulty
in dealing with multi-class/multi-label problems due to the
lack in consideration of label correlation; our algorithm in-
stead emphasizes dynamic metric fusion with label infor-
mation. Significant improvement over the state-of-the-art
methods is observed on benchmark datasets for both multi-
class and multi-label tasks.

1. Introduction
In classification, it is often hard to obtain a single fixed

distance metric for points in the entire data space. More-
over, nice properties enjoyed by graph-based (built on the
distance metric) two-class semi-supervised classification
[36] become less obvious in the multi-class classification
situations [11], due to the correlations of the multiple la-
bels.

Supervised metric learning methods often learn a Ma-
halanobis distance by encouraging small distances among
points of the same label while maintaining large distances
for points of different labels [29, 28]. Graph-based semi-
supervised learning frameworks on the other hand utilize a
limited amount of labeled data to explore information on
a large volume of unlabeled data. Label propagation (LP)
[36] specifically assumes that nodes connected by edges of
large similarity tend to have the same label through infor-
mation propagated within the graph. A wide range of ap-
plications such as classification, ranking, and retrieval [37]
have adopted the label propagation strategy. Another type
of semi-supervised learning, co-training [5], utilizes multi-
view features to help each other by pulling out unlabeled
data to re-train and enhance the classifiers.

The above methods are mainly designed to deal with
the binary classification problem. For the multi-class/multi-
label case, the label propagation algorithm [36] becomes
more problematic, therefore some special care needs to
be taken. A common approach to address the multi-
class/multi-label learning is to use a one vs. all strategy. The
disadvantage of one vs. all approaches is, however, that the
correlations among different classes are not fully utilized.
As discussed in [35], taking the class correlations into ac-
count often leads to a significant performance improvement.

In this paper, we propose a new method, dynamic label
propagation (DLP), to simultaneously deal with the multi-
class and multi-label problem. Our method incorporates the
label correlations and instance similarities into a new way
of performing label propagation. Our intuition in DLP is
to update the similarity measures dynamically by fusing
multi-label/multi-class information, which can be under-
stood in a probabilistic framework. The K nearest neigh-
bor (KNN) matrix is used to preserve the intrinsic structure
of the input data. We present comprehensive experimental
results illustrating the advantages of the proposed method
on multi-class digit categorization, object recognition, and
multi-label text classification.

2. Related Work

As discussed in Section (1), a popular strategy toward
multi-class/multi-label learning is to divide it into a set
of binary classification problems, using techniques such
as one-versus-the-rest, one-versus-one, and error-correcting
coding[1]. These methods however have certain limitations
including: (1) the difficulty to scale up to large data sets, and
(2) inability to exploit the coherence and relations among
classes due to the use of independent classifiers. Also, they
may result in unbalanced classification outputs, especially
when the number of classes is large.

A lot of recent attention has been focused on address-
ing those limitations of semi-supervised multi-class learn-
ing. The existing algorithms can be roughly classified into
three categories. 1) Density-based: a recent notable ad-



vance in density-based method is a multi-class extension to
the TSVM by [30]; however, its high computational cost
limits it from being widely adopted. 2) Boosting-based:
there are a variety of semi-supervised multi-class extensions
to the boosting methods [24, 20]; these methods differ in
the loss functions and regularization techniques; the disad-
vantage of them is the lack of ability to utilize the correla-
tion between labels and input features (especially for the
unlabeled data), which, to some extent, jeopardizing the
classification accuracy. 3) Graph-based: some recent ad-
vances adopt Gaussian Processes [21, 17] or Markov Ran-
dom Walks [2]. Transduction by Laplacian graph [4, 10] is
also shown to be able to solve multi-class semi-supervised
problems; although these algorithms make use of the rela-
tionship between unlabeled and labeled data, their compu-
tational complexity is demanding, e.g. of O(n3).

However, there are much fewer attempts to tackle semi-
supervised multi-label problem, despite there being a rich
body of literature about supervised multi-label learning.
One popular method is label ranking [8], which learns
a ranking function of category labels from the labeled in-
stances and classifying each unlabeled instance by thresh-
olding the scores of the learned ranking functions. Although
being easy to scale up, label ranking fails to exploit the cor-
relations among data categories. Recently, category corre-
lations are given more attention in multi-label learning. A
maximum entropy method is employed to model the corre-
lations among categories in [35]. [18] studies a hierarchi-
cal structure to handle the correlation information. In [12],
a correlated label propagation framework is developed for
multi-label learning that explicitly fuses the information of
different classes. However, these methods are only for su-
pervised learning, and how to make use of label correlation
among unlabeled instances is still unclear. [16] uses con-
strained non-negative matrix factorization to propagate the
label information by enforcing the examples with similar
input patterns to share similar sets of class labels. Another
semi-supervised multi-label learning technique [7] devel-
ops a regularization with two energy terms about smooth-
ness of input instances and label information by solving
a Sylvester Equation. A similar algorithm [33] solves the
multi-label problem with an optimization framework with
an regularization of Laplacian matrix.

Different from these semi-supervised multi-label meth-
ods, the proposed method explicitly merges the input data
and label correlations. Moreover, by doing projection on the
fused manifolds, DLP further takes advantage of the corre-
lations among labeling information of unlabeled data. Our
work also differs significantly from a very recent algorithm
[13], which emphasizes the learning of fusion parameters
for unlabeled data; the focus here is however the dynamic
update of the similarity functions from both data and label
information. In addition, our method is a unifying frame-

work for both multi-class and multi-label classification.
The current literature addressing combined multi-class

and multi-label problem is still limited. The reason is two-
fold. First, the multi-label problem considers the label cor-
relations, but it may lead to a loss in the discrimination
power of the multi-class classifiers. On the other hand, the
prediction function learned in the multi-class problem often
fails to solve the multiple overlaps of different labels in the
multi-label problem. The proposed dynamic label propa-
gation method (DLP) aims to solve semi-supervised multi-
class and multi-label problem simultaneously by combin-
ing the discriminative graph similarities and the label cor-
relations in a dynamic way, while preserving the intrinsic
structure of input data. These two steps can well balance
the difference in the multi-class and multi-label problems.

3. Label Propagation
First, a brief introduction of the well-known label prop-

agation algorithm is provided in this section. We are given
a finite weighted graph G = (V,E,W ), consisting of a set
of vertices V based on a data set X = {xi, i = 1, . . . , n},
a set of edges E of V × V , and a nonnegative symmetric
weight function W : E → [0, 1]. If W (i, j) > 0, we say
that there is an edge between xi and xj . We interpret the
weightW (i, j) as a similarity measure between the vertices
xi and xj . If ρ is a distance metric defined on the graph,
then the similarities matrix can be constructed as follows:

W (i, j) = h(
ρ(xi, xj)

2

µσ2
), (1)

for some function h with exponential decay at infinity. A
common choice is h(x) = exp(−x). Note that µ and σ
are hyper-parameters. σ is learned by the mean distance to
K-nearest neighborhoods [31].

A natural transition matrix on V can be defined by nor-
malizing the weight matrix as:

P (i, j) =
W (i, j)∑

k∈V W (i, k)
, (2)

so that
∑

j∈V P (i, j) = 1. Note that P is asymmetric after
the normalization.

Denote the dataset as X = {Xl

⋃
Xu}, where Xl repre-

sents the labeled data and Xu represents the unlabeled data.
One important step in label propagation (LP) is clamping,
i.e., the labels of labeled data must be reset after each itera-
tion. For the two-class LP, we refer readers to [36]; for the
multi-class problem, 1−of−C coding representation is of-
ten used, so the label matrix is Y = [Y (l);Y (u)] ∈ Rn×C ,
where n is the number of data points, C is the number of
classes, Y (l) is the label matrix for labeled data, and Y (u)

is the label matrix for unlabeled data. We let Y (l)(i, k) be 1
if xi is labeled as class k, and 0 otherwise. During each it-
eration, two steps are performed: 1) Labels are propagated



Yt = P ∗ Yt−1. 2) Labels of labeled data Xl are reset.
The main algorithm of label propagation is summarized in
Fig.(1).

1. Construct a probabilistic transition matrix P by (2).
2. Let Y0 = [Y l

0 ;0].
3. Performing the following steps for T steps:

3.a Yt+1 = P ∗ Yt,
3.b Y

(l)
t+1 = Y l

0 .
4. Output YT

Figure 1. Algorithm of Label Propagation (LP).

4. Dynamic Label Propagation
4.1. Local Similarity

Given a dataset X and its corresponding graph G =
(V,E,W ), we construct a KNN graph G = (V, E ,W): the
vertices of G are the same as in G, and weighted edges are
those nearby ones only. In other words, those similarities
between non-neighboring points (in terms of the pairwise
similarity values) are set to zero. Essentially we make the
assumption that local similarities (high values) are more re-
liable than far-away ones; and accordingly local similarities
can be propagated to non-local points through a diffusion
process on the graph. This is a mild assumption widely
adopted by other manifold learning algorithms [23, 19].

UsingK nearest neighbor (KNN) to measure local affin-
ity, we construct G with associated similarity matrix:

W(i, j) =

{
W (i, j) if xj ∈ KNN(xi)

0 otherwise (3)

Then the corresponding KNN matrix becomes:

P(i, j) = W(i, j)∑
xk∈KNN(xi)

W(i, k)
. (4)

Note that P carries the full pair-wise similarity informa-
tion among the data whereas P only encodes the similarity
to nearby data points. However, P incorporates the robust
structural information about the input data space. For clar-
ity, we call P the status matrix and P the corresponding
KNN matrix.

4.2. Label Fusion on Diffusion Space

One disadvantage of label propagation is that it does not
work well on multi-class/multi-label classification problem
due to a lack of interplay among labels within different
classes. In this paper, we propose a dynamic version of
label propagation that aims to improve the effectiveness on
multi-class/multi-label classification. Our main idea is to
have an improved transition matrix by fusing information
of both data features and data labels in each iteration.

Given the kernel Pt, where t denotes the number of it-
erations, we can define the diffusion distance [14] at time t
as:

Dt(i, j) =‖ Pt(i, :)− Pt(j, :) ‖ . (5)

The diffusion process maps the data space into an n-
dimensional space Rn

t in which each data point is repre-
sented by its transition probability to the other data points.
It is reasonable to assume that for each data xt ∈ Rn

t , we
have p(xt) = N (xt|µt, Pt), where µt is unknown. Note
that the label matrix Yt contains information about class la-
bels, and the correlation of these labels KY = YtY

T
t can

be viewed as the similarity between data points in the label
space Qn

t , and data points in this label space Qn
t have the

probability p(yt) = N (yt|0,Kt).
We divide our method into two steps:
1) Kernel Fusion.
The first part of dynamic label propagation is the fusion

of the status matrix Pt and the label kernel KY = YtY
T
t .

A weight α is assigned to the label kernel KY . The fused
kernel is then

Ft = (Pt + αYtY
T
t ). (6)

This operation corresponds to an addition operator in the
diffusion spaces:

zt = xt +
√
αyt. (7)

We can then verify that

p(zt) = N (zt|µt, Pt + αYtY
T
t ) = N (zt|µt, Ft). (8)

This simple fusion technique considers the correlation
among the instance label vectors. The underlying assump-
tion is that two instances with high correlated label vectors
tend to have high similarity in the input data space. The cor-
relation between label vectors can represent the label depen-
dency among instances, especially for the multi-label/multi-
class problem. The advantage of fusing transition kernel
and the label correlation is two-fold: On one hand, two in-
stances with high correlated label vectors are likely to have
high similarity in input data space, this fusion process there-
fore enhances the fitness of the kernel matrix for the input
manifold. On the other hand, the resulting kernel matrix
leads to better label information through next round of label
propagation. In this way, we build up a dynamic interaction
process between the feature space and label space. How-
ever, since the label information is dynamically updated
during the propagation process, the resulting label informa-
tion after the initial several rounds no longer improves the
transition matrix, sometimes even makes it worse. To deal
with this problem, we design a novel fusion-operator based
on the local neighbours as follows .

2) Kernel Diffusion.
Assume P0 is the initial status matrix of the input data

calculated using (1) and (2), and P = KNN(P0) by (3)



and (4); We employ this linear operator P to do the projec-
tion

xt+1 = Pzt + λtε, (9)

where ε is white noise, i.e. p(ε) = N (ε|0, 1). Note thatP is
a sparse version of P0 and only local neighbor information
in the space is kept in the operator P:

xt+1(i) =
∑

j∈KNN(i)

P0(i, j)zt(j) + λtε

=
∑

j∈KNN(i)

P0(i, j)(xt(j) + αyt(j)) + λtε

With this linear operation, we have:

p(xt+1|zt) = N (xt+1|Pzt, λtI). (10)

The marginal distribution of xt+1 is

p(xt+1) =

∫
N (zt|µt, Ft)N (xt+1|Pzt, λtI)dzt

= N (xt+1|Pµt,PFt(P)T + λtI). (11)

The above equation implies that, the essence of dynamic
label propagation is to do linear operations on diffusion
space iteratively. Note that xt+1 is a point in the diffu-
sion space. Instead of performing linear projection in the
original data space, we do projection in the diffusion space.
The advantages of projection onto the diffusion space are
two-fold: 1) we avoid the need to perform computational
expensive sampling procedures in the input space; 2) The
resulting variance matrix again is a good diffusion kernel
for label propagation.

The intuition behind this projection lies in the fact that
simple fusion of label correlation in Eqn. (6) would re-
sult in a degeneration at the first round when the learned
label information of unlabeled data is not accurate enough
to infer the similarities in the input space. Hence, inspired
by [25], we need to re-emphasize the intrinsic structure be-
tween all the input data by the KNN matrix. From (13), we
can see that, the diffusion process propagates the similari-
ties through the KNN matrix. In this way, we can adjust the
fused kernel matrix to maintain part of the information of
the initial structure.

The direct reflection of this projection on diffusion space
is that , at each iteration, we construct the transition matrix
for next iteration to be:

Pt+1 = P(Pt + αYtY
T
t )PT + λtI. (12)

Thus, we have

Pt+1(i, j) =
∑

k∈KNN(i)

∑
l∈KNN(j)

P0(i, k)P0(j, l)(Pt(k, l)

+ α < Yt(k, :), Yt(l, :) >) + λtδij . (13)

where < x1,x2 > denotes the inner product of two vec-
tors x1 and x2, and δij = 1 if i = j, 0 otherwise. From
Eqn.(13), we see that only information between dominant
neighbours are propagated into the transition matrix of next
iteration. An important observation is that if data i and j
have common dominant neighbours in both similarity met-
rics, it is highly possible that they belong to the same class.

We summarize the details of dynamic label propagation
in Fig.(2).

1. Construct a probabilistic transition matrix P0 by (2).
2. Let Y0 = [Y l

0 ;0].
3. Calculate the KNN matrix P of P0,
4. Performing the following steps for a desired T steps:
4.a Yt+1 = Pt ∗ Yt,
4.b Y

(l)
t+1 = Y l

0 ,
4.c Pt+1 = P(Pt + αYtY

T
t )PT + λtI .

5. Output YT .

Figure 2. Algorithm of Dynamic Label Propagation (DLP).

4.3. Analysis

4.3.1 Convergence Analysis

It is difficult to give a formal theoretical proof of the conver-
gence of DLP. However, empirical experience shows DLP
converges much faster than LP (see Fig.(3) and Fig.(5)).
Usually, LP needs 1, 000 − 5, 000 iterations to converge,
while DLP only needs 10−50 iterations. This is because the
diffusion process projects the fused manifold into a KNN
structure where only local similarities are preserved. The
learned labels can improve the similarity between input in-
stances quickly.

A loose theoretical proof of convergence can be con-
structed based on the spectral analysis of the diffusion pro-
jection P . Since P is a KNN matrix of P0, it is easy to see
that the spectral radius of P is less than 1. We have

Yt ∝ Y (∞)+[(P)t(P0+αY0Y
T
0 )(PT )t]P0Y0+o(t) (14)

where o(t) is an infinitesimal as t approaches infinity, and
Y (∞) ∈ Rn×C is a constant label matrix. We observe
that since the spectral radius of P is less than 1, we have
limt→∞ Pt → 0. Hence, the final label is limt→∞ Yt =
Y (∞), although we do not have a closed form for Y (∞) at
present.

4.3.2 Time Complexity

Traditional Label Propagation algorithm has a complexity
of O(n2), however, since our DLP only diffuses the sim-
ilarities on KNN structures, DLP shares the same scale of
time complexity. For the step of kernel fusion, we only per-
form the addition of two matrices, so the time cost isO(n2).



For the step of diffusion in Eqn.(12), we decompose it as in
Eqn.(13), from which we observe that only local neighbours
are used to propagate the similarities. An easy way to speed
up the diffusion process is, first we keep a record of the
KNN matrix and then every time we perform the diffusion
process, we extract the fixed local structure from the KNN
structure and only perform multiplication K times for each
pair of data points. Therefore we can update the transition
kernel in (12) in timeKn2+Kn. To summarize, the overall
time complexity of DLP is O(Kn2), where K � n.

4.3.3 Parameter Analysis

There are several parameters to tune in DLP. How to choose
the number of neighbors in the KNN matrix P remains an
open problem. A small K leads to insufficient structural
information in P; a large K value results in an increase in
the time complexity and loss in the sparsity in P . There
is a trade-off between accuracy and complexity. In all our
experiments, we choose K from {10, 20, 30, 40, 50} by 10-
fold cross-validation. Another two important parameters in
DLP are α and λ. α is the weight of label correlation, while
λ represents the importance of regularization. Fortunately,
DLP is not sensitive to these two parameters. So we fix
α = 0.05 and λ = 0.1 in all experiments (see an empirical
illustration in Fig.(6)).

4.4. A Toy Data

We first test our dynamic label propagation on a toy
data set. It consists of five circles (i.e., 5 classes) (see
Fig.(3)(A)). This is a challenging dataset since it contains
multiple classes and only one in each class is labeled. We
test the effect of the two steps in the dynamic label propaga-
tion. We construct the KNN matrix same in [26]. First, we
omit the first step that fuses the label correlation with the
kernel matrix. The other steps are all the same. The result
is shown in Fig.(3).(B). Second, we do the first step to fuse
label correlations but omit the second step of kernel diffu-
sion. The result is shown in Fig.(3).(C). Comparing these
two results, we see that, each step is important to the final
result of DLP. Without the label correlation, DLP fails to
capture the dependence between different classes; without
the kernel diffusion process, the DLP goes wild because the
label correlation in the beginning provides a poor guidance
for the kernel matrix. In addition, we show the classification
results of DLP and LP in Fig.(3)(D)(E). It is observed that
our method only needs a few iterations to converge while
LP gets a reasonable result after thousands of iterations.

5. Experiments
5.1. Semi-supervised Multi-class Learning

We compare our DLP with several popular semi-
supervised learning methods: 1) Label Propagation (LP) ; 2)

A variant of LP on KNN structure(LP+KNN) [22]; 3) Local
and Global Consistency (LGC) [34]; 5) Transductive SVM
(TSVM) 6) LapRLS [3]. Note that for LP and LGC, we use
one-vs-the-rest methods to deal with multi-class problems;
for TSVM and LapRLS, they have their own multi-class ex-
tensions.

5.1.1 Benchmarks

We test our method on the benchmarks in [6]. An extensive
review of the performance of existing algorithms are also
availabel in [6]. All the datasets have 12 splits each of
which has 100 labeled and 1,400 unlabeled instances. To
show the effect of fusing label correlation, we especially
set α = 0 in our method and denote this special method
as DLP0. The comparisons are shown in Tab.(1). We can
see that, our method is still capable of performing binary
classification but it is especially suitable for the multi-class
classification problem, such as in the dataset COIL. Another
important observation is that, although we set α = 0.05 for
DLP, it does not indicate that the label correlation is of little
importance. The only reason for small value of α lies in
difference of the numerical scale of label correlation and
transition probability. We don’t show the results of DLP0

in the subsequent experiments.

5.1.2 Digit Classification

Table 2. Comparison of error rate on the MNIST dataset.
labeled LGC TSVM LapRLS LP LP+KNN DLP

1% 3.96 4.87 2.92 8.57 4.27 2.01
5% 2.14 2.18 1.54 5.82 2.48 0.90

In this section, we test our method on the popular digit
dataset: MNIST1. It consists of 60,000 training and 10,000
test images of ten handwritten digits (0 to 9), with 28 × 28
pixels. In our first experiment, we randomly extract 1%
(600) training images, together with 10,000 test images.
Our second experiment consists of 5% (3000) training im-
ages, together with 10,000 test images. The average error
rates of test samples are reported in Tab(2).

Our method outperforms the existing semi-supervised
learning techniques on multi-class digit recognition. Note
that DLP achieves a significant improvement over the LP
algorithm. Also, as to TSVM and LapRLS, they have much
heavier computational burdens (O(n3)) than that of DLP.

5.1.3 Caltech 101

We also test our algorithm on the well-known Caltech-101
dataset [9] which consists of 101 classes and a collection
of background images. We selected 12 classes (including
animals, faces, buildings, etc.) from Caltech-101, which

1http://yann.lecun.com/exdb/mnist/



Table 1. A quantitative comparison of error rate on the benchmark datasets.
Methods/Dataset digit1 USPS BCI g241c COIL gc241n text

LGC 4.80 8.39 34.21 28.54 10.72 27.78 23.90
TSVM 6.15 9.77 33.25 18.46 25.80 22.42 24.52

LapRLS 1.81 4.31 27.89 23.45 11.92 24.77 23.32
LP 4.15 7.35 46.22 30.05 11.03 28.11 25.71

LP+KNN 4.01 7.46 40.35 29.49 10.71 27.46 24.07
DLP0 3.65 6.53 35.87 25.53 6.314 25.21 23.78
DLP 1.64 3.00 33.48 21.86 3.57 21.82 22.84
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Figure 3. (A) is the toy data with only one labeled data (the colored dots) for each class. (B) is the classification result without using label correlations. (C)
is the classification result without using diffusion process. (D) is the result of DLP with only 20 iterations. (E) is the result of LP with 5000 iterations.

Table 3. A quantitative comparison of error rate on the Caltech 101 dataset.
Experiments/Methods LGC TSVM LapRLS LP LP+KNN DLP
siftLLC+5% labeled 13.48% 9.82% 7.39% 22.91% 14.22% 2.04%
siftSPM+5% labeled 10.24% 8.79% 7.33% 16.36% 12.38% 1.74%
siftLLC+10% labeled 9.47% 7.50% 5.35% 16.33% 8.96% 0.60%
siftSPM+10% labeled 7.43% 5.42% 4.20% 10.46% 7.38% 0.48%

contains totally 2,788 images. These classes are chosen due
to the relatively large number of availabel images within the
category. The number of images per category varies from
41 to 800, most of which are medium resolution, i.e. about
300× 200 pixels. Fig.4 shows some samples of the subset.

Figure 4. Sample images chosen from Caltech 101.

We use two kinds of variants of SIFT feature: SIFT with
locality-constrained linear coding (siftLLC) [27] and SIFT
with Spatial Pyramid Matching (siftSPM) [15]. The SIFT
features are both extracted from 16 × 16 pixel patches on
a grid with step size of 8 pixels. The codebooks are ob-
tained by standard K-means clustering with the codebook
size 2, 048. The distance between two images is obtained
by the χ2 distance between two feature vectors. Two experi-
ments are conducted: 1)Only 5% of the samples are labeled,
and the remaining samples are tested. 2) 10% samples are
labeled, and the rest are tested. We reported the results of
error rate in Tab(3).
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Figure 5. (A)Error rate versus the iteration numbers for DLP.
(B)Error rate versus the iteration numbers for LP.

We also show the dynamics of label propagation and the
proposed methods. We report the error rate of each itera-
tion of DLP and LP (see Fig.(5)). We can see that, as itera-
tions go on, DLP decreases the error rate while on the other
hand, LP worsens. This is obviously a big disadvantage of
LP for multi-class classification. The 1 − of − C coding
sometimes makes the LP unable to discriminate the multi-
ple class labels. However, our method does not suffer from
this problem because DLP iteratively update the transition
matrix based on local similarity and label information. In
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Figure 6. (A)Error rate versus the parameter α for DLP. (B)Error
rate versus the parameter λ for DLP.

addition, sensitivity test of the two parameters α and λ are
conducted. For the sensitivity of α, we fix λ = 0.1 and vary
α in the range of [0.01, 0.1]. For λ, we fix α = 0.05 and
vary λ in the range of [0.01, 1]. The errors of recognition
are reported in Fig.(6). We can see that, our proposed DLP
is insensitive to α and λ.

5.2. Semi-supervised Multi-label Classification

In this section, we test our method on the task of semi-
supervised multi-label classification. We use the data from
[7]: a subset of RCV 1 − v2 text data which includes
the information of topics, regions and industries for each
document. We first randomly pick 3000 documents, then
choose words with more than 5 occurrences and topics
with more than 40 positive assignments. We compare our
methods with five existing baseline algorithms in semi-
supervised multi-label classification. The first one is a Semi-
supervised Multi-label learning method by solving Sylvester
Equation (SMSE) [7]. Here we use the first version men-
tioned in [7] which needs only one parameter to tune. The
second one is based on Constrained Non-negative Matrix
Factorization (CNMF) [16], which assumes that two in-
stances tend to have large overlap in their assigned labels
if they share high similarity in their input patterns. The
third one is Multi-label Informed Latent Semantic Indexing
(MISL) [32], which maps the input features into a new fea-
ture space which captures the structure of both input data
and label dependency, and then uses SVM on the projected
space. The fourth one is the a recent method TRAM, i.e.,
a transductive multi-label classification algorithm via label
set propagation [13], which estimates the label sets of the
unlabeled instances by utilizing the information from both
unlabeled instances and unlabeled data. The last one is Sup-
port Vector Machine (SVM), in which a linear SVM clas-
sifier is built for each category independently. We evaluate
the performance using a common evaluation metric like in
[12]: F1 Micro which can be seen as the weighted average
of F1 scores over all the categories.

Fig.(7) shows the performance measured by F1 Micro of

six algorithms: DLP, SMSE, CNMF, MLSI, TRAM, SVM
at different ranks when the number of training data is 500 or
2000. Note that a 10-fold experiment using the same train-
ing/test split of the data set is performed and all the param-
eters used in the five algorithms are tuned by grid search.
We can see that our dynamic label propagation can properly
capture the inner structure of label correlation and improve
the classification accuracy. When the number of predicted
labels for each instance increases, our method can still pro-
vide good performance.
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Figure 7. F1 Micro when the number of training samples is 500 or
2000. Higher values indicate better performance.

6. Conclusion
In this paper, we have proposed a novel classification

method named dynamic label propagation (DLP), which
improves the discriminative power in multi-class/multi-
label problems in the framework of semi-supervised learn-
ing. Our method explores the effect of labeled informa-
tion and local structure in improving the transition matrix in
semi-supervised learning. The significant performance im-
provement on toy data and some popular natural object im-
ages has demonstrated the effectiveness of DLP for multi-
class/ multi-label classification. Our future work will fo-
cus on providing deeper theoretical understanding of the
approach.
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