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Abstract

In this paper, we propose a diffusion-based approach to
improving an input similarity metric. The diffusion process
propagates similarity mass along the intrinsic manifold of
data points. Our approach results in a global similarity
metric which differs from the query-specific one for ranking
produced by label propagation [25]. Unlike diffusion maps
[7], our approach directly improves a given similarity met-
ric without introducing any extra distance notions. We call
our approach Self-Smoothing Operator (SSO). To demon-
strate its wide applicability, experiments are reported on
image retrieval, clustering, classification, and segmentation
tasks. In most cases, using SSO results in significant perfor-
mance gains over the original similarity metrics, with also
very evident advantage over diffusion maps.

1. Introduction
In many vision/learning applications, data samples are

modeled as high dimensional points in an ambient Eu-
clidean space, and the distance between two samples is
measured by Euclidean (or Mahalanobis) distances. It has
been shown that data samples often live in a much lower-
dimensional intrinsic space (i.e. the Riemannian mani-
fold), where Euclidean assumption is valid only locally
[16, 21, 15]. How to capture and utilize the intrinsic man-
ifold structure therefore becomes a central problem in the
vision and learning community.

There exists a large body of literature on manifold learn-
ing [21, 15, 7]. The idea is to explicitly construct a new em-
bedding space with a corresponding metric which is more
faithful to the manifold structure and hence induces a bet-
ter distance/similarity measure. These algorithms have been
applied to clustering and image segmentation [18, 12]. The
same idea can be extended to semi-supervised cases, where
a limited portion of data labels are given. For example, la-
bel propagation [25] uses a diffusion process to propagate
the limited label information to the unlabeled data samples
along the manifold. Other examples include Markov ran-
dom walks on manifolds [20] and Ranking on Data Man-
ifolds (RDM) [24]. In particular, RDM uses a similarity-

induced diffusion kernel to improve the ranking result with
respect to a single query. Although the above methods have
been shown to be effective in classification/ranking tasks,
they lack the notion of a global similarity metric, which is
crucial in many applications.

From a different point of view, diffusion maps [7] de-
fine diffusion distances between data samples. An input
similarity matrix is then improved through a diffusion pro-
cess. The advantages of diffusion maps over the previous
approaches are: (1) there is an explicit notion of a global
distance/similarity metric; and (2) the diffusion step param-
eter t provides a natural way of doing multi-scale data anal-
ysis. Isomap [21] applies shortest-path algorithm to com-
pute pairwise geodesic distances, which essentially defines
a min operator on the data manifold. On the other hand, dif-
fusion based algorithms assembles and accumulates all the
paths between two samples, which defines an average oper-
ator on the manifold. It has been observed that the average
operator might be more robust than the min operator used
by Isomap [24].

Our work is closely related to diffusion maps [7]. How-
ever, instead of using the notion of diffusion distances be-
tween data samples, we work on the similarity matrix di-
rectly using the self-induced smoothing kernel. Therefore
we name our approach Self-Smoothing Operator (SSO).
Compared with diffusion maps, the structure of the input
similarity metric is better respected and preserved. Com-
pared with label propagation [25] or RDM [24], SSO gives
a global similarity metric rather then with respect to a sin-
gle query. It is also natural and intuitive to understand
our approach as a smoothing process: a smoothing ker-
nel is constructed from the input metric and the smooth-
ing process, like diffusion, is to propagate the similarity
through weighted connections. After a few steps, the met-
ric gets “smoothed” through manifold geometry but without
the need to explicitly construct the manifold, which is often
a time-consuming and difficult task.

2. Related Work

Given a graph G = (Ω,W ) where Ω = {xi, i =
1, · · · , n} is the space for finite nodes representing data



samples and W is a similarity matrix with each entry
W (i, j) ∈ [0, 1] being the similarity between sample xi and
xj . The higher W (i, j) is, the more similar xi is to xj . In
practice, W is often obtained from applying Gaussian ker-
nel to a distance matrix:

W (i, j) = exp
{−d2(i, j)/(kσ2)

}
(1)

where d(i, j) denotes the distance between xi and xj , and
k and σ control the width of kernel. A stochastic diffu-
sion process on G allows local similarities to be propa-
gated along data manifold, without explicitly constructing
the manifold geometry. In the following, we discuss several
related approaches which can be broadly categorized into
equilibrium-based and dynamics-based approaches.

A most well-known equilibrium-based approach is the
PageRank algorithm [14] which exploits the global hyper-
link structure of the web. The transition kernel is given by
row-wise-normalizing the similarity matrix W which en-
codes the outbound link information:

P = D−1W (2)

where D is a diagonal matrix with D(i, i) =∑n
k=1W (i, k). Let us assume that P has eigenvalues

|λ0| ≥ |λ1| ≥ · · · ≥ |λn−1| with associated left and
right eigen-vectors: φT

i P = λiφ
T
i and Pψi = λiψi

(i = 0, · · · , n − 1). If the kernel is ergodic and aperiodic,
then only |λ0| = 1 and the diffusion process

ft+1 = PT ft (3)

converges to the first left eigen-vector ft→∞ = φ0, as long
as the initial f0 is not orthogonal to φ0. PageRank then uses
φ0 to rank all the pages on the web.

Another example is the RDM algorithm [24] to improve
ranking results with respect to a query. Instead of construct-
ing a transition kernel P , RDM constructs a symmetrically
normalized matrix S = D−1/2WD−1/2. Although S is
not a transition matrix because none of its rows or columns
are normalized, it encodes the same global information as
P does. The query information is injected by a vector:

y = [y1, · · · , yn]T where yi =
{

1 if xi is a query
0 otherwise.

(4)
Then the diffusion process is simply:

ft+1 = αSft + (1 − α)y (5)

where α is a parameter in [0, 1). Note the first term of r.h.s.
in (5) defines a global diffusion process similar to (3), and
the specific query information is injected by the second term
in each diffusion step. It can be shown that the equilibrium
point has a closed form ft→∞ = (I − αS)−1y.

One example of dynamics-based approaches is label
propagation [25], which is widely used to solve the semi-
supervised learning problem. It propagates each labeled
sample’s label information to its neighboring samples. Here
we give a formulation in the context of retrieval [5]. Label
propagation uses the same row-wise normalized transition
kernel (2). With an initial f0 = y, it iterates between the
following two steps: (1). ft+1 = Pft; (2). ft+1(i) = 1
if yi = 1. Note the second clamping step injects query
information into the diffusion process, and the first step is
very similar to but different from (3). Actually, because P
is row-wise normalized, we have 1 = P1 where 1 denotes a
constant vector. Therefore the iterations have to be stopped
before the equilibrium is achieved, and the step parameter t
provides a natural way of doing multi-scale data analysis.

Although RDM and label propagation improves the
ranking/retrieval results through a diffusion process, they
lack a global notion of similarity/distance metrics.

3. Self-Smoothing Operator

Diffusion maps introduce a global distance metric (i.e.
diffusion distances) over data samples. Given the transition
kernel P in (2), the diffusion distance between xi and xj at
step t is defined as:

d2
t (i, j) = ||pt(i, ·) − pt(j, ·)||21/φ0

(6)

=
n∑

k=1

1
φ0(k)

(pt(i, k) − pt(j, k))2

where pt(i, ·) is the i-th row of the t-step transition
matrix Pt = P t, and φ0 is the equilibrium dis-
tribution. It can be shown that the diffusion dis-
tance can be directly computed from the diffusion map:

Ψt : xi → [
λt

1ψ1(i), · · · , λt
qψq(i)

]T
, and d2

t (i, j) ≈
‖Ψt(i) − Ψt(j)‖2 =

∑q
k=1 λ

2t
k (ψk(i) − ψk(j))2. Here

ψk’s are the right eigen-vectors of P , and q ≤ n−1 captures
the leading nontrivial eigenvalues. Since pt→∞(i, ·) = φT

0 ,
at the equilibrium point any pairwise diffusion distance is 0,
and what matters is the dynamics of the diffusion process.

It is unclear, however, how close this distance notion is
related to the input similarity. For example, let us assume
that the initial W (and its induced P ) is close to identity.
This is not uncommon because in order to reveal the under-
lying manifold structure of the data, only a small portion of
similarity mass is distributed among the closest neighbors
at the beginning. Otherwise the mixing rate of the diffusion
process will be drastic and the chance of discovering the in-
trinsic structure becomes slim. In this case, the diffusion
distances at the beginning would be almost same for any
pair of data samples due to the near-orthogonal condition.
At the other extreme, when the process approaches equilib-
rium, the diffusion distances would be exactly 0 for any pair



of data samples, for the convergence condition analyzed in
the above text. The given similarity W therefore has little,
if any, impact on the two extreme cases. In those intermedi-
ate steps, how W influences the diffusion distances is also
largely obscure.

3.1. The method

Instead of using the notion of diffusion distances, we in-
troduce a new smoothing operator which better respects and
preserves the structure of W . We call this operator Self-
Smoothing Operator (SSO). In analogy to smoothing in im-
age processing, SSO propagates the mass of similarity to
the nearest data samples. Here the smoothing kernel is not
hard-coded, but induced from the input metric itself. Af-
ter a few steps, the metric gets “smoothed” through mani-
fold geometry but without the need to explicitly construct
the manifold, which is often a time-consuming and difficult
task. The algorithm of SSO is as follows:

1. Computing the smoothing kernel: P = D−1W

where D is a diagonal matrix with D(i, i) =∑n
k=1W (i, k).

2. Performing smoothing for t steps: Wt = WP t

3. Self-normalization: W ∗ = Δ−1Wt where Δ is a
diagonal matrix with Δ(i, i) = Wt(i, i).

4. PSD Projection: Ŵ ∗ = proj to psd(W ∗) Function
proj to psd(A) = V diag( max(λ, 0))V T , where λ
and V are the eigenvalues and eigen-vectors of
1
2 (A+AT ) respectively.

Figure 1. Algorithm of Self-Smoothing Operator (SSO). The last
step is optional and is only used when a positive semi-definite
similarity matrix is required for subsequent algorithms (e.g. in-
put metrics for kernel k-means).

In Step 1, a smoothing kernel P is induced from an input
similarity matrix W ; P is then used as a smoothing kernel
in a diffusion process for t steps in Step 2; Step 3 guarantees
that the diagonal entries of the smoothed similarity matrix
are always 1, which reflects the identity of indiscernible for
a distance metric (any entry in W ∗ with value greater than
one will also be clamped to 1). Note that in general Wt

andW ∗ are neither symmetric nor positive semi-definite. If
such property is required for the subsequent data analysis
algorithms (e.g. kernel kmeans), an optional projection step
can be done in the last step.

As in other manifold learning algorithms, SSO is based
on the assumption that long-range similarities can be ap-
proximated by an accumulation of local similarities. SSO is
not expected to work well when the assumption fails or the
local similarities can not be reliably estimated.

The difference between SSO and label propagation,
RDM, or other query-specific methods [5] is that SSO in-

duces a global similarity metric and hence is non-query-
specific. Unlike diffusion maps, the similarity metric given
by SSO is a more direct improvement over the input similar-
ity W , without introducing any additional distance notions.

The improved similarity W ∗ can be used in numerous
applications. For example, given W ∗ retrieval can be done
on a per-row basis [5]. In other words, for each row (a
query), the similarity scores are sorted in descending or-
der and the first K (retrieval window) items are returned.
When label information is available for the retrieved items,
classification can be done by majority voting inside the K-
NN window. For clustering, kernel kmeans [17] can be em-
ployed to deal with the similarity matrix directly. Because
positive-semidefinite-ness is required for the convergence
of the algorithm, we use the projected version Ŵ ∗ as the
input to kernel kmeans.

Given an input similarity matrix W , the only parame-
ter in SSO is the step t. As in other dynamics-based ap-
proaches, t controls the scale at which the data are ana-
lyzed. Return to our analogy to image de-noising, per-
forming smoothing on a noisy image naturally increases the
signal-to-noise ratio. However, if too much smoothing is
done, the image becomes over-smoothed and too much in-
formation is lost. In this regard, t in SSO has the same
effect in improving the similarity. When necessary, t can be
a fractional number in Step 2. In this case, a complex W t

can emerge and only its real part is used subsequently.
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Figure 2. A running example. Bull’s eye score (retrieval rate with
window size K = 40) over t on the MPEG7 dataset. Dash-dot
lines are the baseline from the input similarity.

Fig. (2.a) shows a running example where the result is
evolving during the SSO process in a retrieval task. The
performance consistently improves and is stable over a wide
range of t, and then it slowly drops down. Eventually it will
converge to a degenerated (over-smoothed) point where the
retrieval result stays constant over all queries, because

Wt→∞ = W × (1φT
0 ) ∝ φ0φ

T
0 , (7)

where φ0 is the equilibrium distribution of the smoothing
kernel P . For a direct comparison, we also plot out the
result of diffusion maps [7] in Fig. (2.b). We have the fol-
lowing observations: (1) SSO has the similar asymptotic
behavior as diffusion maps as both are dynamics-based ap-
proaches; (2) the parameter t in SSO is not very sensitive



and similar performance gain can be observed over a wide
range of t (a typical choice is t = 500 ∼ 1, 000); (3) SSO
improves over the input metric immediately whereas diffu-
sion maps has to pick up the performance from the point
where it is even worse than the original input; and (4) SSO
delivers results significantly better than diffusion maps. In
the next section, we report more experimental results by
SSO on a wide variety of applications, which further con-
firms the above observations.

3.2. Justification

In this section, we provide some justification for the
intuition and motivation of SSO. Consider the follow-
ing 3 × 3 toy example: Suppose the ground-truth W =
[1, 0.9, 0.9; 0.9, 1, 0.9; 0.9, 0.9, 1] is corrupted to Ŵ , whose
entries Ŵ (1, 3) = Ŵ (3, 1) = 0. The Frobenius-norm
of the difference is 1.27. Based on Ŵ and its induced
kernel P , one iteration of smoothing rectifies W̃1(1, 3) =∑3

i=1 Ŵ (1, i) × P (i, 3) = 0.29, and the F-norm of differ-
ence is decreased to 0.35 after 5 iterations of SSO.

As in the unsupervised manifold learning cases [21, 15],
local distances are mostly accurate and long distances are
problematic. Assume we are given an input similarity ma-
trix W with one entry being inaccurate (corrupted)W 13 →
Ŵ13 (Ŵ13 = Ŵ31).

W =

⎛⎝ W11 W12 Ŵ13

W21 W22 W23

Ŵ31 W32 W33

⎞⎠ , and

P =

⎛⎝ W11/D11 W12/D11 Ŵ13/D11

W21/D22 W22/D22 W23/D22

Ŵ31/D33 W32/D33 W33/D33

⎞⎠ ,

where Dii =
∑3

j=1Wij . For simplicity of the illustration,
we let the distance measure dij = 1 −Wij . The corruption
of entry W13 → Ŵ13 results in d12 + d23 
 d̂13 (equiv-
alently W12 + W23 � Ŵ13), which violates the triangular
inequality.

Observation: Assume (1, 2) and (2, 3) are neighbors,
then process of SSO, W (t+1) = W (t)P , improves the
neighborhood situation between (1, 3) with corrupted entry
Ŵ13.

Proof: Our neighborhood assumption implies W12 >
0.5; Ŵ13 < 0.5 due to the corruption. Without loss of gen-
erability, we further assume W12 = W23. One round of
smoothing gives:

W
(1)
12 =

W11 ·W12

D11
+
W12 ·W22

D22
+
Ŵ13 ·W32

D33

W
(1)
23 =

W21 · Ŵ13

D11
+
W22 ·W23

D22
+
W23 ·W33

D33

W
(1)
13 =

W11 · Ŵ13

D11
+
W12 ·W23

D22
+
Ŵ13 ·W33

D33
(8)

Thus,

(d(1)
12 + d

(1)
23 − d

(1)
13 ) − (d12 + d23 − d̂13)

=
2W 2

12

1 +W12 + Ŵ13

+
2Ŵ13

1 +W12 + Ŵ13

+
W 2

12

1 + 2W12

− 2W12

1 + 2W12
− Ŵ13, with W12 > Ŵ13

>
3W 2

12 + 2Ŵ13 − 2W12

1 + 2W12
− Ŵ13

≥ 0, when W12 ≥
Ŵ13 + 1 +

√
Ŵ 2

13 − Ŵ13 + 1

3
�(9)

W12 ≥ Ŵ13+1+
√

Ŵ 2
13−Ŵ13+1

3 is not a hard condition to

meet, e.g. when Ŵ13 = 0.4 then it requiresW12 ≥ 0.76.

4. Experiments

To demonstrate the general applicability of SSO, experi-
ments on image retrieval, clustering, classification, and seg-
mentation are reported in this section. In most cases, using
SSO leads to significant improvement over the input simi-
larity matrix and the advantage over diffusion maps [7] is
also very evident.

4.1. Image Retrieval

Three datasets are used in image retrieval. The first one
is the MPEG7 dataset [10], which consists of 1, 400 silhou-
ette shape images. These images are evenly distributed over
70 classes with 20 shapes in each class. For a given similar-
ity matrix, retrieval is benchmarked using the average recall
rate at a window size K = 40 for each query shape, also
known as the bull’s eye score.

SSO is applied to a linearly combined similarity matri-
ces W = 1

3 (WSC + WIDSC + WDDGM ), where WSC ,
WIDSC , and WDDGM are obtained by applying eqn. (1)
to Shape Context distances [6], IDSC distances [11], and
Data-Driven Generative Models [22] computed over the
dataset respectively. In computing eqn. (1), we set k = 0.1
and σ2 is estimated by the average distance from each shape
to its 30 nearest neighbors. The baseline bull’s eye score of
the input W on SC+IDSC+DDGM is 95.84% (92.77% on
SC+IDSC).

The dynamics of SSO and diffusion maps are shown in
Fig. (2.a) and (2.b) respectively. We observe that SSO im-
proves the input similarities over a wide range of t. The im-
provement peaks around 500 steps, and thereafter the per-
formance drops slowly. In particular, a maximum score of
99.20% is obtained by SSO, which translates to 80.77% rel-
ative reduction in error fromW . Table 1 lists some reported
bull’s eye scores on the dataset. Note that the highest score
reported so far was 97.72% in [4]. The focus of [4] is how-
ever the fusion of two (limited to two) input similarity mea-



SC [6] 84.87%
IDSC [11] 86.81%

DDGM [22] 80.86%
[5] on IDSC 91.61%
[23] on IDSC 93.32%
(SC+IDSC) 92.77%

[5] on (SC+IDSC) 92.92%
DM on (SC+IDSC) 92.07%
SSO on (SC+IDSC) 97.64%
(SC+IDSC+DDGM) 95.84%

DM on (SC+IDSC+DDGM) 97.35%
SSO on (SC+IDSC+DDGM) 99.20%

Table 1. Some reported bull’s eye scores on MPEG7. SSO
achieves 99.2% based on a direct linear combination of three in-
put similarity measures. On SC+IDSC, the diffusion maps method
does not improve over the input similarity measures at all and it has
worse results than SSO overall.

sures whereas we here study a metric learning algorithm,
which is more general (applicable in retrieval, clustering,
segmentation, classification, etc.) than the transduction-
based framework in [5, 4]. With a much simpler linear
combination, SSO has achieved a 99.2% bull’s eye score
on MPEG7.

On the other hand, diffusion maps do not perform as well
as SSO in this task. The first diffusion step actually wors-
ens the retrieval results. On SC+IDSC, the diffusion maps
method does not improve the input similarity measures at
all. This is because the notion of diffusion distance does
not have a direct connection to the input similarity, espe-
cially in the initial phase of diffusion as we discussed in
Section 3. Although afterwards the scores rise and peak
around 10, 000 diffusion steps, they are significantly infe-
rior to the results by SSO overall.

Fig. (3) shows some retrieved shapes by the inputW and
W ∗ after 500 SSO diffusion steps. It can be seen that forW
there are many false positives in the first 10 retrieved shapes
for some queries. For example, six of the top 10 results of
query spoon are actually jar. Those false positives are
eliminated by W ∗. Furthermore, for the correct retrievals,
the ranking makes more sense for W ∗ than for W : The
more similar a intra-class shape is to the query, the higher
position it has in the retrieved list.

The second dataset we used in retrieval is Tari1000 [3],
which is another commonly used shape dataset. Its configu-
ration is mostly the same as the MPEG7 dataset, except that
there are 50 classes, each one covering 20 different shapes.
Because the bull’s eye score (retrieval window size K =
40) saturates in this dataset, a more strict K = 20 is used
in this experiment. The input W = 1

2 (WSC + WIDSC).
Other experimental settings are the same as the above. Fig.
(4) shows the dynamics of SSO and diffusion maps. In this
case, although diffusion maps (98.02%) improve over the

baseline (95.49%), it is outperformed by SSO again, which
attains a maximum score of 98.92%.

The last dataset we tested in retrieval is the N-S image
dataset [19]. It is a large-scale natural image dataset, con-
sisting of 2, 550 objects/scenes, each of which is imaged
from 4 different viewpoints. Hence there are 10, 200 images
in total. The initial similarity matrix is obtained by applying
eqn. (1) to a distance matrix computed from [9]. Here the
intention is not to provide the best results on this dataset,
but rather to demonstrate the general effectiveness of SSO
on improving the retrieval results. With a window size
K = 4, the initial similarity leads to an average recall rate
of 79.72%, and is improved to 81.04% by SSO, as shown
in Fig. (5). The improvement is smaller compared to those
on the other two datasets, because local affinities are not
reliably estimated in the dataset, thus violating the assump-
tion of SSO: A nearest-neighbor classification leads to an
accuracy of 85.86%, compared to 99.43% for the MPEG7
dataset and 99.80% for the Tari1000 dataset. Nevertheless,
SSO still improves over this “noisy” initial condition, and
diffusion maps seem not work at all in this case.

4.2. Image Clustering

We also used the previous MPEG7 and Tari1000
datasets, along with the ORL face image dataset for the il-
lustration of clustering. ORL has 40 subjects with 10 gray-
scale images per subject. Slight variations of pose, illumi-
nation, and expression are present.Each image is first down
sampled to size 16× 16 and then normalized to 0-mean and
1-variance. The input similarity matrix W is computed by
applying eqn. (1) to the pairwise Euclidean distances of the
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Figure 4. Retrieval rate at a window size K = 20 over t on the
Tari1000 dataset.
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Figure 5. Retrieval rate at a window size K = 4 over t on the N-S
dataset.
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Figure 3. The first 10 retrieved shapes in MPEG7 by W (odd rows) and W∗ after 500 SSO steps (even rows). The first column shows the
query shape.
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Figure 6. NMI scores over t for MPEG7 (left), Tari1000 (middle), and ORL (right). Average scores and the standard deviations are shown.
Note that the method in [5] uses affinity propagation [8] to handle the non-global similarity metric it produces, but the performance is
significantly inferior.

normalized images. In eqn. (1), we used k = 0.1 and σ2

was estimated by the average distance from each image to
its 15 nearest neighbors.

Normalized mutual information (NMI) is used for a
quantitative measure of the clustering results. The ground-
truth class partition Γ and the returned cluster partition Δ
define a confusion matrix with each entry n (j)

i being the
number of data samples in cluster i and class j, and n is the
total number of samples. Then NMI is computed as follows:

2
∑I

i=1

∑J
j=1

n
(j)
i

n log n
(j)
i n∑ I

k=1 n
(j)
k

∑ J
k=1 n

(k)
i

H(Γ) +H(Δ)

where I is the number of clusters and J is the number
of classes. H(Γ) = −∑I

i=1
ni

n log ni

n and H(Δ) =
−∑J

j=1
n(j)

n log n(j)

n are the entropies of partition Γ and
Δ, respectively. A high value of NMI indicates that Γ and
Δ match well. Kernel kmeans is used in clustering given a
similarity matrix, and we set I = J in the experiments. Five
trials were conducted to account for stochastic variations.

The NMI scores of SSO and diffusion maps over t are
plotted in Fig. (6). Note that SSO leads to a clear advantage
over diffusion maps. For completeness, we also tested with
another popular clustering algorithm affinity propagation
[8]. Affinity propagation does not require a positive semi-
definite similarity metric and was used in [5] to cluster im-
ages given a similarity matrix constructed by independently
applying label propagation to each query image. As is dis-
cussed in Section 3, this procedure does not lead to a global
similarity metric. The result of this scheme (SSO without
the optional projection step, followed by affinity propaga-
tion) is also included in Fig. (6), which is significantly in-
ferior to either SSO or diffusion maps. Furthermore, it is
difficult to specify the number of clusters in affinity prop-
agation, and it tends to over-cluster in most cases. For ex-
ample, using the default settings, affinity propagation leads
to about 100 clusters on the ORL dataset. This justifies our
statement for SSO being more general than transduction-
based approaches such as [5, 4].

Fig. (7) visualizesW and Ŵ ∗ after 200 SSO steps on the



Figure 7. The input similarity W (left) and the new Ŵ ∗ (right) af-
ter 200 SSO steps on the ORL dataset. The block-diagonal struc-
ture of 40 clusters begins to emerge in Ŵ ∗.

ORL dataset. As is discussed in Section 3, the near-identity
characteristic ofW is crucial for the revelation of the under-
lying manifold structure in the process of diffusion. It can
be observed that the block-diagonal structure of 40 clusters
is discernible in Ŵ ∗.

4.3. Image Segmentation

The Berkeley image dataset [13] was used to test SSO
on the image segmentation task. We only used the test
subset in this experiment, which contains 100 color natural
images. These images are first converted to gray scale for
the ease of processing. We used the code in [2] to construct
the input similarity matrixW across pixels inside an image.
Then SSO is applied to obtain a new Ŵ ∗.

Three segments are obtained for each image by cluster-
ing based on the similarity matrix. It is noted that our in-
tention in this experiment is not to propose the best image
segmentation algorithm; rather we show the general appli-
cability of SSO and demonstrate that using improved sim-
ilarity measures by SSO enhances a state-of-the-art image
segmentation algorithm, Normalized Cuts [2].

To obtain a quantitative summary of the segmentation
results, we used two measures proposed in [13]. In partic-
ular, we want to measure the regional consistency between
two segmentations Γ (human annotation) and Δ (algorithm
output). For each pixel pi, the local refinement error is:

E(Γ,Δ, pi) = |R(Γ, pi)\R(Δ, pi)| / |R(Γ, pi)|

where R(Γ, pi) is the region pi belongs to in Γ, and simi-
larly R(Δ, pi) is the region pi belongs to in Δ. Note that
E is asymmetric, i.e. E(Γ,Δ, pi) 
= E(Δ,Γ, pi). Hence
Global Consistency Error (GCE) and Local Consistency Er-
ror (LCE) are defined as:

GCE(Γ,Δ) =
1
n

min

{∑
i

E(Γ,Δ, pi),
∑

i

E(Δ,Γ, pi)

}

LCE(Γ,Δ) =
1
n

∑
i

min {E(Γ,Δ, pi), E(Δ,Γ, pi)}

where n is the number of pixels inside an image. Naturally,
we have LCE ≤ GCE. In the dataset, there are some im-
ages with multiple annotations Γ. In these cases, we com-
pute the error to each annotation and simply take the lowest
one. Finally, the average GCE/LCE scores are reported over
the whole dataset in Table 2.

The improvement of SSO to NCut is also significant
(more than 25% relative reduction in both GCE and LCE).
This result is encouraging considering that NCut can also
be formulated as a diffusion-based approach to explore the
data manifold [12], and SSO still finds room to improve the
results. Fig. (8) provides more visual examples, which con-
firms the improvement brought by SSO.

SSO DM
GCE / LCE GCE / LCE

t = 0 0.1568 / 0.1269
t = 5 0.1483 / 0.1178 0.1301 / 0.1067
t = 10 0.1443 / 0.1134 0.1304 / 0.1077
t = 20 0.1420 / 0.1116 0.1385 / 0.1169
t = 50 0.1310 / 0.1034 0.1426 / 0.1177
t = 100 0.1118 / 0.0881 0.1482 / 0.1224

Table 2. GCE and LCE scores on the Berkeley segmentation
dataset. NCut is used in clustering (3 segments) given a similarity
matrix.

t = 0 t = 10 t = 100
Figure 8. Segmentation results of NCut with SSO. We apply SSO
on the input similarity matrix and give it to the Normalized Cuts
method. The number of desired segments is fixed to be 3. The
figures show the segmentation results of NCut using the enhanced
similarity matrix by SSO at different step t.

4.4. Medical Image Classification

Finally, SSO was tested on a MRI brain image clas-
sification task. The dataset consists of 120 brain MRI
scans, which are randomly sampled from the same cross
section (12 months after the start) of the publicly avail-
able ADNI dataset [1]. These scans belong to three classes:
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Figure 9. Average Leave-One-Out classification accuracy over t
on the MRI dataset. SSO reaches a maximum accuracy of 91.67%
over the original 38.33% accuracy and is significantly better than
diffusion maps (80.83%).

Alzheimer’s Disease (AD), its preclinical stage Mild Cogni-
tive Impairment (MCI), and Normal, and each class covers
40 scans. All the scans were skull-stripped and aligned first,
after which the cortical and subcortical structures were ex-
tracted. Six different similarity matrices were constructed
out of two kinds of measures: overlap-based measure and
registration-based measures. For the limit of spaces, we
choose not to elaborate on all the details. Again, the pur-
pose here is to show the general applicability of SSO.

Here we took a simple fusion scheme to combine the
information in the six similarities: Each similarity matrix
is diffused separately and for each step t, the average sim-
ilarity matrix is used in classification. A Leave-One-Out
classification setting is taken based on majority voting for
each query scan with a K = 15 window size . We found
on this dataset using a fractional diffusion step t leads to
more refined classification results, as shown in Fig. (9).
Again, the effectiveness of SSO (with a maximum accuracy
of 91.67% over the original 38.33% accuracy) is significant
(86.5% relative reduction in error), and its advantage over
diffusion maps (80.83% maximum accuracy) is evident.

5. Conclusion

We have presented Self-Smoothing Operator (SSO) in
this paper. The smoothing kernel is induced from an input
similarity matrix, which will be directly improved through
a smoothing/diffusion process along the data manifold. Our
approach produces a direct global metric, which differen-
tiates it from other diffusion-based methods, such as la-
bel propagation, RDM, or diffusion maps. The algorithm
of SSO is simple and intuitive. Its effectiveness has been
demonstrated on tasks of image retrieval, clustering, seg-
mentation, and classification, across which a consistent im-
provement is observed. The advantage of SSO over dif-
fusion maps is also very evident, and in many cases over-
whelming. Future research includes automatic estimation
of the parameter t and other metric fusion schemes along
the smoothing process.

Acknowledgment: This work is supported by Office of

Naval Research Award N000140910099and NSF CAREER
award IIS- 0844566.

References
[1] http://adni.loni.ucla.edu/. 7
[2] http://www.cis.upenn.edu/ jshi/software/. 7
[3] C. Aslan, A. Erdem, E. Erdem, and S. Tari. Disconnected skeleton:

Shape at its absolute scale. IEEE PAMI, 30:2188–2201, 2008. 5
[4] X. Bai, B. Wang, X. Wang, W. Liu, and Z. Tu. Co-transduction for

shape retrieval. In Proc. of ECCV, 2010. 4, 5, 6
[5] X. Bai, X. Yang, L. Latecki, W. Liu, and Z. Tu. Learning context

sensitive shape similarity by graph transduction. IEEE Trans. Pattern
Anal. Mach. Intell., 2010. 2, 3, 5, 6

[6] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object
recognition using shape contexts. IEEE Trans. Pattern Anal. Mach.
Intell., 24:705–522, 2002. 4, 5

[7] R. Coifman and S. Lafon. Diffusion maps. Applied and Comp. Har-
monic Ana., 2006. 1, 3, 4

[8] B. J. Frey and D. Dueck. Clustering by passing messages between
data points. Science, 315:972–976, 2007. 6

[9] H. Jegou, C. Schmid, H. Harzallah, and J. Verbeek. Accurate im-
age search using the contextual dissimilarity measure. IEEE Trans.
PAMI, 32(1):2–11, 2010. 5

[10] L. Latecki, R. Lakámper, and U. Eckhardt. Shape descriptors for
non-rigid shapes with a single closed contour. In Proc. of CVPR,
pages 424–429, 2000. 4

[11] H. Ling and D. Jacobs. Shape classification using the inner-distance.
IEEE Trans. Pattern Anal. Mach. Intell., 29(2):286–299, 2007. 4, 5

[12] M. Maila and J. Shi. Random walk view of segmentation, and learn-
ing spectral graph partitioning: Learning segmentation with random
walk. In Proc. NIPS, 2001. 1, 7

[13] D. R. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human
segmented natural images and its application to evaluating segmen-
tation algorithms. In ICCV, 2001. 7

[14] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank cita-
tion ranking: Bringing order to the web. Stanford Digital Libraries
Working Paper, 1998. 2

[15] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by
locally linear embedding. Science, 290:2323–2326, 2000. 1, 4

[16] H. S. Seung and D. D. Lee. The manifold ways of perception. Sci-
ence, 290(5500):2268–2269, 2000. 1

[17] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Anal-
ysis. Cambridge University Press, 2004. 3

[18] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE
Trans. Pattern Anal. Mach. Intell., 22(8):888–905, 2000. 1

[19] H. Stewénius and D. Nistér. Object recognition benchmark. In
http://vis.uky.edu/%7Estewe/ukbench/. 5

[20] M. Szummer and T. Jaakkola. Partially labeled classification with
markov random walks. In NIPS, pages 945–952, 2001. 1

[21] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geo-
metric framework for nonlinear dimensionality reduction. Science,
290(5500):2319–2322, 2000. 1, 4

[22] Z. Tu and A. L. Yuille. Shape matching and recognition - using
generative models and informative features. In Proc. ECCV, pages
195–209, 2004. 4, 5

[23] X. Yang, S. Koknar-Tezel, and L. Latecki. Locally constrained dif-
fusion process on locally densified distance spaces with applications
to shape retrieval. In Proc. of CVPR, 2009. 5

[24] D. Zhou, J. Weston, A. Gretton, O. Bousquet, and B. Schölkopf.
Ranking on data manifolds. In Proc. NIPS, 2004. 1, 2

[25] X. Zhu. Semi-supervised learning with graphs. In Doctoral Disser-
tation, CMU-LTI-05-192, 2005. 1, 2


