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Abstract

This paper extends the neighborhood components anal-

ysis method (NCA) to learning a mixture of sparse distance

metrics for classification and dimensionality reduction. We

emphasize two important properties in the recent learning

literature, locality and sparsity, and (1) pursue a set of lo-

cal distance metrics by maximizing a conditional likelihood

of observed data; and (2) add ℓ1-norm of eigenvalues of

the distance metric to favor low rank matrices of fewer pa-

rameters. Experimental results on standard UCI machine

learning datasets, face recognition datasets, and image cat-

egorization datasets demonstrate the feasibility of our ap-

proach for both distance metric learning and dimensional-

ity reduction.

1. Introduction

K-nearest neighbor classifier (kNN) [4] is one of the

most popular classification schemes in machine learning

and it has been widely adopted. The performance of kNN is

often sensitive to the adopted distance metric. Commonly

used Euclidean distance metric is straightforward to imple-

ment but often produces inferior results than a well-tuned

distance metric learned from data. In the past, a wealthy

body of distance metric learning algorithms [6, 25, 27, 21,

3, 10, 26] have been proposed to improve the performance

of kNN. Among them the neighborhood components analy-

sis (NCA) [6] is effective and most related to our approach.

Given a set of training data with their corresponding la-

bels, NCA learns a distance metric by maximizing the log-

likelihood of observed data in a transformed space. NCA

[6] has been successfully applied to data visualization, di-

mensionality reduction, and classification. However, NCA

assumes the same Mahalanobis distance metric on the entire

data space, which is sometimes inappropriate; in addition,

it requires the specification of the number of dimensions.

High-dimensional data often observe sparsity and locality,

which should be taken into account in the metric learning

process. Motivated by the above observations, we propose a

method, mixture of sparse neighborhood components anal-

ysis (msNCA), which (1) adds ℓ1-norm of eigenvalues of

the distance metric to enforce sparsity, and (2) encourages

locally adaptive distance metrics in the data space.

2. Related Work

Distance metric learning is an active research area in

machine learning. In this section, we give a brief discus-

sion of some representative approaches such as neighbor-

hood components analysis (NCA) [6], large margin nearest

neighbor classifier (LMNN) [25], and information-theoretic

metric learning (ITML) [3]. NCA was proposed in [6] for

data visualization, dimensionality reduction, and classifica-

tion. It learns a Mahalnobis distance metric by finding a

linear transformation such that a stochastic variant of kNN

achieves the minimal leave-one-out classification error in

the transformed space. By specifying the dimension of the

transformation matrix as e.g. 2 or 3, NCA projects the high-

dimensional data onto the corresponding subspace, while

preserving its intrinsic structure for classification. LMNN

is a large margin induced distance metric learning method

[25]. It aims to find a Mahalnobis distance metric such

that instances from different classes are well separated by

a large margin within the neighborhood. In addition, the

authors formulated the above problem as a semidefinite pro-

gram with linear constraints and solved it globally by stan-

dard convex optimization strategies. An information theory

based distance metric learning approach, termed as ITML,

was proposed in [3]. ITML considers the distance metric

learning problem as the minimization of the differential rel-

ative entropy between two multivariate Gaussians. It can be

further expressed as a Bregman optimization problem with

linear constraints.

Methods like NCA, LMNN and ITML are able to iden-

tify better distance metrics than the commonly used Eu-

clidean distance metric for classification. Experimental re-



sults have also supported that the classification accuracy of

kNN significantly increases when it adopts more appropri-

ate distance metrics. However, the above approaches as-

sume the same metric uniformly applied on the entire data

space, which might be suboptimal in practice. To mitigate

the above limitation, a local distance metric learning algo-

rithm has been proposed in [5], which assigns a specific dis-

tance metric to each instance in the training set. Apart from

its computational burden, this local distance metric learning

algorithm does not make use of any global information and

may lead to overfitting.

Our proposed msNCA combines advantages of both

global and local aspects of distance metric learning. It ob-

tains a set of local distance metrics and gating functions by

minimizing the negative log-likelihood of observed data. In

addition, an appropriate distance metric might observe the

property of low rank with sparse eigenvalues. This con-

straint of sparse eigenvalues is useful for distance metric

learning, but has been given less attentions. Recently, two

sparse distance metric learning algorithms have been pro-

posed in [27] and [20]. Other approaches [2] use random

projection in the classification. msNCA differs from the

above sparse distance metric learning algorithms on where

to put ℓ1-norm. In particular, ℓ1-norm is evaluated on ele-

ments of the distance metric in [27] and on the determinant

of the distance metric in [20]; while msNCA puts ℓ1-norm

on eigenvalues of the distance metric.

3. Mixtures of Sparse Neighborhood Compo-

nents Analysis

Let D = {(xi, yi)|xi ∈ R
d, yi ∈ {1, 2, ···, ℓ}, i = 1, 2, ··

·, n} be the set of training data, the Mahalanobis distance
between two instances xj and xi is:

d(xj , xi|M) = (xj − xi)
⊤M(xj − xi), (1)

given M ∈ R
d×d. If a soft neighbor assignment is con-

sidered, then the probability of the instance xj of being as-
signed in the neighborhoodN (xi) of the instance xi can be
approximated as:

q(xj ∈ N (xi)) =
exp {−d(xj , xi|M)/‖M‖F }

∑n

l=1,l6=i
exp {−d(xl, xi|M)/‖M‖F }

,

(2)

where j 6= i, xj , xi ∈ D, and ‖M‖F is the Frobenius norm

added as the normalization term for mitigating the scaling

effect of M on the probability q(xj ∈ N (xi)) [6, 13, 23].

Based on the nearest neighbor classification rule, the condi-

tional distribution p(yi|xi; M) of the instance xi being clas-

sified into the class with the label yi can be approximated

as:

p(yi|xi; M) ≈
n
∑

j=1,j 6=i,yj=yi

q(xj ∈ N (xi)) , (3)

where (xi, yi) is the training data and i = 1, 2, · · ·, n. Note
that the right-hand side of eqn. (3) was originally proposed
as an estimation of the leave-one-out classification accuracy
of kNN [6]. It is also quite natural to consider it as an
approximation to the conditional distribution p(yi|xi; M)
[13, 22, 23]. Based on eqn. (3), we get the negative log-
likelihood L(M) of observed data as:

L(M) = −
n
∑

i=1

log











n
∑

j=1

j 6=i
yj=yi

exp

{

−(xj − xi)
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n
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(4)

In eqn. (4), M is positive semi-definite, thus can be de-

composed as M = Q⊤Q, where Q ∈ R
d′×d. Instead of

minimizing L(M) with respect to M by the gradient de-

cent method, NCA firstly identifies a linear transformation

Q that minimizes the above objective function, then M is

given by Q⊤Q. The above trick is particularly useful for

data visualization, where the best choice of d′ should be

2 or 3. However, for other applications of distance metric

learning and dimensionality reduction, we do not have any

prior knowledge about what a good value of d′ should be. In

both cases, a reasonable value of d′ could be d and Q is thus

a square matrix. Therefore, optimizing L(M) with respect

to M is equivalent to optimizing L(M) with respect to Q
up to rotation. To simplify our mathematical derivations,

we minimize the above objective function with respect to

M directly in this paper. This coincides with most current

literatures in distance metric learning [25, 3]. It is worth to

mention that L(M) is non-convex with respect to M . How-

ever, experimental results in [6] suggested that the gradient

decent method was often able to guarantee a high quality M
that minimizes L(M) locally.

3.1. Sparsity

High dimensional data usually locate in a subspace with

low intrinsic dimensionality [11]. kNN will become more

effective with respect both to the classification accuracy and

the search cost at test time, if distances between data are

measured in this intrinsic subspace. Therefore, the distance

metric M is encouraged to be low rank with sparse eigen-

values from the standpoint of distance metric learning. An-

other advantage of low rank distance metric is to decrease

the complexity of kNN w.r.t. its number of parameters if

the distance metric is considered as its component, and thus,

likely increase its generalization ability on test data. More-

over, one major application of NCA is dimensionality re-

duction, that aims to project high dimensional data into low

dimensional subspaces. For that reason like M , the linear



transformation Q should also be low rank with sparse eigen-

values.
It is therefore desirable to encourage M to have sparse

eigenvalues. This can be realized by adding ℓ1-norm of
eigenvalues of M into the objective function (4). Let
{ei|i = 1, 2, · · ·, d} denote all d eigenvalues of M , then

ℓ1-norm of eigenvalues is equal to
∑d

k=1
|ek|. By adding

ℓ1-norm of eigenvalues into L(M), it leads to a sparse ver-
sion of NCA that minimizes the following objective func-
tion SL(M):

SL(M) = L(M) + λ

d
∑

k=1

|ek| , (5)

where λ ≥ 0. Since M is positive semi-definite with non-
negative eigenvalues and {ek ≥ 0, k = 1, 2, · · ·, d}. There-
fore, ℓ1-norm of eigenvalues of M can be computed from
its trace:

d
∑

i=1

|ei| =

d
∑

i=1

ei = Tr(M) , (6)

where Tr(M) is the trace of the distance metric M . After
combining (5) and (6), SL(M) can be refined as:

SL(M) = L(M) + λTr(M). (7)

The derivative of eqn. (7) w.r.t. to M can then be derived.

It is noted that most of the existing literatures aim to learn

a sparse matrix and their ℓ1-norm is put on all elements in

the matrix [28, 16, 27]; while our purpose is to learn a low

rank Mahalanobis distance metric with sparse eigenvalues

and our ℓ1-norm is thus evaluated on eigenvalues.

3.2. Mixture model

Next, we study eqn. (4), which evaluates the negative

log-likelihood of observed data. Note eqn. (4) makes the as-

sumption that the data share the same Mahalanobis distance

metric. This condition holds when all the data points locate

in a single linear subspace. However, many real datasets are

not homogeneous and it is hard to find a single distance met-

ric well describing all pairwise similarities. Based on this

observation, it might be worth pursuing a mixture model

[12] with adaptive local metrics.

Inspired by the divide-and-conquer approach, we design

the mixture of NCA by splitting the data space into several

regions and train a set of local models to fit the data in these

regions. Let p(yi|xi; v, M) be the mixtures of conditional

distributions:

p(yi|xi; v, M) =
S
∑

s=1

πs(xi)ps(yi|xi, Ms), (8)

where S is the number of components and {M1, M2, · ·
·, Ms} is a set of Mahalanobis distance metrics. In eqn.
(8), each component ps(yi|xi, Ms) is defined as:

ps(yi|xi, Ms) =

∑n

j=1,j 6=i,yj=yi
exp{−d(xj , xi|Ms)/‖Ms‖F }

∑n

l=1,l6=i
exp{−d(xl, xi|Ms)/‖Ms‖F }

,

and πs(x) is the gating function for s = {1, 2, · · ·, S}. A

commonly used gating function is the multi-class logistic

regression model defined as:

πs(x) =
exp{v⊤s x + bs}

∑S

t=1
exp{v⊤t x + bt}

, (9)

where vs ∈ R
d are parameters to learn [12, 7]. The gating

function of a multi-class logistic regression is able to divide
the feature space into several regions. However, it is in favor
of coefficients with large absolute values. Here, we propose
a regularized gating function by adding ℓ1-norm of coeffi-
cients to penalize this bias and the negative log-likelihood
L(v, M) becomes:

L(v, M) = −
n
∑

i=1

log

(

S
∑

s=1

πs(xi)p(yi|xi, Ms)

)

+

S
∑

s=1

ηs

(

d+1
∑

w=1

|vw
s |

)

, (10)

where ηs ≥ 0, for s = 1, 2, ..., S.

3.3. msNCA

In the above two subsections, we provided two ex-
tensions to the existing NCA: sparse NCA and mixtures
of NCA. Now we introduce a mixture of sparse NCA
(msNCA) that combine the above two extensions together.
msNCA can thus be formulated as the following con-
strained optimization problem:

minG(v, M) = −
n
∑

i=1

log

(

S
∑

s=1

πs(xi)p(yi|xi, Ms)

)

+
S
∑

s=1

λsTr(Ms) +
S
∑

s=1

ηs

(

d+1
∑

w=1

|vw
s |

)

, (11)

s.t.

Ms � 0,

for s = 1, 2, · · ·, S. ℓ1-norm regularizers in eqn. (11) can

be considered as double-exponential priors on both Ms and

vs:

p(Ms) ∝
d
∏

w=1

exp {−|ew
s |/τs} = exp {−Tr(Ms)/τs} ,

(12)

and

p(vs) ∝
d+1
∏

w=1

exp {−|vw
s |/ξs} , (13)

where τs ≥ 0, ξs ≥ 0, for s = 1, 2, ..., S. Instead of

maximizing the log-likelihood of observed data like NCA,

msNCA minimizes the posterior of p(v, M |x, y) as:

p(v, M |x, y) ∝ p(y|x; v, M)p(v)p(M) , (14)



where parameters v and M are assumed to be independent
[24]. We define ps(yji|xi, Ms) as:

ps(yji|xi, Ms) =
exp{−(xj − xi)

⊤Ms(xj − xi)/‖Ms‖F }
∑n

l=1

l 6=i

exp{−(xl − xi)⊤Ms(xl − xi)/‖Ms‖F }
,

for j 6= i and j, i = 1, 2, · · ·, n. Differentiating G(v, M)
with respect to both v and M respectively, we get:

∂G(v, M)

∂vs

=

−
n
∑

i=1

[(

ps(yi|xi, Ms)
∑S

t=1
πt(xi)pt(yi|xi, Mt)

− 1

)

πs(xi)xi

]

+ ηses,

(15)

and

∂G(v, M)

∂Ms

=

−
n
∑

i=1

πs(xi)
∑S

t=1
πt(xi)pt(yi|xi, Mt)

·
∂ps(yi|xi, Ms)

∂Ms

+λsI, (16)

where

ew
s =

{

+1 if vw
s ≥ 0

−1 otherwise
, (17)

and

∂ps(yi|xi, Ms)

∂Ms

= −
n
∑

j=1,
j 6=i,

yj=yi

ps(yji|xi, Ms)

‖Ms‖F

[

(xj − xi)(xj − xi)
⊤ −

(xj − xi)
⊤Ms(xj − xi)

‖Ms‖F

Ms

‖Ms‖F

]

+ ps(yi|xi, Ms)
n
∑

l=1,
l 6=i

ps(yli|xi, Ms)

‖Ms‖F

[

(xl − xi)(xl − xi)
⊤ −

(xl − xi)
⊤Ms(xl − xi)

‖Ms‖F

Ms

‖Ms‖F

]

.

The update rule at iteration h is thus:

vh+1
s = vh

s − γv

∂G(v, M)

∂vs

,

and

Mh+1
s = Mh

s − γm

∂G(v, M)

∂Ms

,

where γv and γm are step sizes. To make sure

Ms � 0,

we project the obtained metric Ms onto the convex set

C = {M : M � 0} at each iteration with the following

steps employed: (1) to use eigenvalue decomposition to de-

compose Ms as UΛU⊤, where Λ is a diagonal metric; (2)

to set all negative elements in Λ as 0, that is

Ms = U(max{0, Λ})U⊤, (18)

Table 1. Classification accuracy on six UCI datasets.

Iris Wine Segment
SVM 96.16 ± 4.71 98.88± 2.34 90.73± 3.47
kNN 95.19 ± 1.06 96.38± 0.76 92.36± 0.31

LMNN 95.33 ± 4.05 97.78± 2.87 93.04 ± 2.24
ITML 96.44 ± 0.98 98.11± 0.95 92.13± 0.49
NCA 94.67 ± 3.26 98.33± 2.68 90.26± 0.77

msNCA 96.00 ± 0.57 99.44 ± 1.76 92.86± 0.58
Iono Vehicle Waveform

SVM 83.51 ± 4.93 70.77± 7.41 85.96 ± 1.17
kNN 84.64 ± 0.66 72.87± 1.10 79.71± 0.67

LMNN 86.85 ± 5.79 78.08± 4.17 76.90± 1.63
ITML 88.39 ± 1.79 74.76± 2.79 79.61± 0.83
NCA 86.57 ± 5.10 74.04± 4.54 83.20± 1.09

msNCA 91.28 ± 6.34 82.45 ± 5.30 83.60± 1.23
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Figure 1. Values of objective functions and classification accura-

cies on testing data (a) Wine dataset; (b) Wine dataset; (c) Vehicle

dataset; (d) Vehicle dataset.

for s = 1, 2, · · ·, S [8]. If the task is to do classification, for

a new test example x we first determine which of these dis-

tance metrics M1, M2, ..., Ms will be used, then calculate

its label by kNN under this distance metric. If the task is

to do dimension reduction, we compute a set of projection

matrices {Q1, Q2, ..., Qs} by (U max{0,
√

Λ})⊤, then for

each instance in the dataset determine which of these pro-

jection matrices should be used. During the testing process,

each instance y is assigned to the distance metric Mk with

the largest value of πk(y).

4. Experimental Results

In our experiments, msNCA is evaluated on UCI ma-

chine learning datasets, two face recognition datasets and

two image categorization datasets.
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Figure 2. 2-D projections of the Iono dataset obtained by: (a) PCA;

(b) NCA; (c) the first distance metric of msNCA; (d) the second

distance metric of msNCA.
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Figure 3. Eigenvalues of distance metrics with and without ℓ1-

norm. It tells us that ℓ1-norm leads to distance metrics with sparse

eigenvalues.

4.1. UCI machine learning datasets

4.1.1 Distance metric learning

To validate the feasibility of msNCA for distance metric

learning, the classification accuracy of kNN with the dis-

tance metric learned by msNCA is compared with those

obtained by (1) multi-class support vector machine (SVM)

with linear kernel, (2) kNN with Euclidean distance met-

ric (kNN), (3) kNN with the distance metrics learned by

LMNN (LMNN), (4) kNN with distance metrics learned

by ITML (ITML), and (5) kNN with the distance met-

rics learned by NCA (NCA). Parameters of msNCA were

fixed in experiments as follows: the number of components

S = 4, λs = 0.02 and ηs = 0.02 for s = 1, 2, · · ·, S;

the learning rates γv = 0.02 and γm = 0.02. The classifi-

cation accuracy was evaluated by 10-fold cross-validation.
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Figure 4. 2-D projections of the Semeion handwritten digit dataset

(a) PCA; (b) NCA; (c) the first distance metric of msNCA; (d) the

second distance metric of msNCA.
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Figure 5. Classification accuracies of kNN on: (a) the Iono dataset,

(b) the Semeion handwritten digit data set obtained by PCA, NCA

and msNCA by varying the number of reduced dimensionality.

Table (1) shows the results. As discussed in the previous

section, NCA also minimizes the negative log-likelihood of

observed data. Fig. (1a) and Fig. (1c) display values of neg-

ative log-likelihood of observed data by NCA and msNCA.

From Fig. (1), we can see that, the gap between values of

negative log-likelihood of NCA and msNCA is quite large.

This large gap of log-likelihood of observed data suggests

that a single distance metric sometimes may not be suffi-

cient to well fit the data and kNN with the mixtures of local

distance metrics might be more appropriate. Fig. (1c) and

Fig. (1d) show the classification accuracies of kNN with

a single distance metric learned by NCA and kNN with

the mixtures of distance metrics learned by msNCA and

we can observe consistent results as in Fig. (1a) and Fig.

(1c). Fig.(3) gives the comparison between distance met-



Table 2. Classification accuracy on AT&T face recognition dataset.

Methods SVM kNN LMNN

Yale 81.67 ± 0.50 78.33 ± 4.72 94.02± 2.38
AT&T 95.83 ± 1.67 92.74 ± 1.99 97.81± 0.90

Methods ITML NCA msNCA

Yale 88.48 ± 1.15 90.15 ± 1.20 93.67± 1.76
AT&T 97.22 ± 1.27 96.39 ± 2.09 98.24± 0.80

rics learned by NCA with and without ℓ1 norm.

4.1.2 Dimensionality reduction

To validate the feasibility of msNCA for dimension re-

duction, we evaluate principle components analysis (PCA),

NCA and msNCA on the Iono dataset and the Semeion

handwritten digit data set. The Iono dataset has 351 in-

stances and 32 features; while the Semeion handwritten

digit data set contains 1, 593 instances and 256 features. To

simplify the visualization of our experimental results, we fix

the number of components of msNCA as 2 and select a sub-

set of the Semeion handwritten digit dataset that contains all

instances from five classes for comparing PCA, NCA and

msNCA. For each class, 50 instances are randomly picked

for training and the remaining ones are used for testing. Fig.

(2) and Fig. (4) show 2D projections of the Iono dataset

and the Semeion handwritten digit dataset obtained by PCA,

NCA and msNCA. Noted that in msNCA, the gating func-

tion divides the whole dataset into two subsets and each sub-

set has a transformation matrix that projects instances in the

subset onto a 2-D subspace. We observe from Fig. (2) and

Fig. (4) that 2D projections of instances in the same class

obtained by msNCA are close to each other, while instances

in different classes become separate. Fig. (5) gives the clas-

sification accuracies of kNN on the Iono dataset and the Se-

meion handwritten digit dataset obtained by PCA, NCA and

msNCA by varying the number of reduced dimensionality.

We observe from Fig. (5) that on both of the Iono dataset

and the Semeion handwritten digit dataset msNCA achieved

consistently higher accuracies than PCA and NCA. It there-

fore can be concluded from the above experimental results

that msNCA is able to achieve a better dimensionality re-

duction than PCA and NCA.

4.2. Face recognition

msNCA was tested on two face recognition datasets:

Yale and AT&T. The Yale dataset includes 165 faces of

15 different persons and the AT&T dataset contains 400
faces of 40 different persons. We applied PCA to obtain

30-dimensional eigenfaces as descriptors that is enough to

capture 96% variance [25]. We randomly selected 7 im-

ages of each person for training and the other images for
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Figure 6. Classification accuracy of msNCA with different number

of components on AT&T face dataset.

Figure 7. Two face images that were classified incorrectly by

NCA, but correctly by msNCA. The first and the third rows are

two images and their 3-nearest neighbors obtained by NCA; the

second and the fourth rows are the same two images and their 3-

nearest neighbors obtained by msNCA. The first column is the test

image and the following three columns are 3-nearest neighbors

of the test image. It is observed that neighborhoods obtained by

msNCA are much cleaner than NCA.

testing. Table (2) shows the average results after 50 execu-

tions. It is observed from Table (2) that learned Mahalno-

bis distance metric significantly improved the performance

of kNN. In addition, LMNN and msNCA achieved higher

classification accuracies than NCA, ITML and SVM both

on Yale and AT&T face datasets. Fig. (8) shows the 2D

projections of the Yale face dataset obtained by PCA, NCA

and msNCA. It is observed from Fig. (8) that a single dis-

tance metric sometimes can not describe the similarities be-

tween instances well and the mixtures of local distance met-

ric are more effective than a single distance metric. To fur-

ther demonstrate the effectiveness of msNCA, we compared

the neighborhood of images obtained by NCA and msNCA.
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Figure 8. 2-D projections of the Yale face dataset (a) PCA; (b) NCA; (c) the first distance metric of msNCA; (d) the second distance metric

of msNCA.

Table 3. Accuracies on image categorization datasets.

Methods SVM kNN LMNN

Graz-02 79.6 ± 0.4 75.6 ± 1.1 78.3 ± 0.2
Graz01 Person 82.9 ± 0.9 76.4 ± 0.9 83.9 ± 0.6

Methods ITML NCA msNCA

Graz-02 77.4 ± 0.6 80.1 ± 1.2 82.2 ± 0.9
Graz01 Person 80.2 ± 0.7 82.4 ± 0.3 85.8 ± 0.5

Two face images in AT&T face dataset, which were classi-

fied incorrectly by NCA, but correctly by msNCA, together

with their 3-nearest neighbors are given in Fig. (7). In

Fig. (7), the first and the third rows are two test face im-

ages together with their 3-nearest neighbors in the training

set under the distance metric obtained by NCA; while the

second and the fourth rows are the same images and their 3-

nearest neighbors obtained by msNCA. By comparing their

neighborhoods, we can conclude from Fig. (7) that msNCA

is able to obtain a much cleaner neighborhood than NCA.

In addition, we studied the effect of the number of compo-

nents on the performance of msNCA. Fig. (6) shows that a

large number of components may lead to the overfitting of

msNCA.

State-of-the-art results on Yale and AT&T face recog-

nition datasets are given as follows: In [19], the authors

adopted V1-like descriptors and achieved perfect perfor-

mance (≥ 98%) both on Yale and AT&T datasets. LMNN

was tested on AT&T face recognition dataset in [25] and its

classification accuracy was 97.3%. Other state-of-the-art

results include 81.7% on Yale and 97.4% on AT&T [1], and

90.6% on Yale and 98.40% on AT&T [9], where 5 images

were used for training and 5 images for testing. msNCA

was also tested under this experimental setup and its classi-

fication accuracy is 91.33% on Yale and 97.50% on AT&T.

4.3. Image categorization

We tested msNCA on Graz-01 and Graz-02 datasets for

image categorization. We adopted the same experimental

setup as [18], where 100 positive and 100 negative images

were used for training. All color images were firstly trans-

Figure 9. Three nearest neighbors obtained by NCA and msNCA.

The first row by NCA and the second row by msNCA.

formed into gray-level images; dense sift descriptors were

extracted and quantized by k-means clustering algorithm to

300 components. PCA was employed to remove redundant

dimensions and the dimension was reduced to 30. There-

fore, each image was represented as a vector of 30 com-

ponents. Table (3) gives classification accuracies of SVM,

kNN, LMNN, ITML, NCA and msNCA on Graz-01 Person

and Graz-02 datasets. Current literatures about experimen-

tal results on these two datasets include 79.5% in [14] and

80.5% in [18] on Graz-01 person dataset, and 76.1% in [17]

and 82.7% in [15] on Graz-02 dataset. Fig. (10) shows 2D

projections of the Graz-02 dataset. Fig. (9) gives 3-nearest

neighborhoods of a particular image in the Graz-01 dataset.

5. Conclusions

In this paper, we have proposed a distance metric learn-

ing approach using a mixture of sparse neighborhood com-

ponents analysis (msNCA). msNCA extends existing dis-

tance metric learning approaches in two aspects. The first

aspect adds ℓ1-norm of eigenvalues of Mahalanobis dis-

tance metrics, thus bias to low-rank matrices with sparse

eigenvalues. The second extension localizes NCA by gat-
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Figure 10. 2-D projections of the Graz dataset (a) PCA; (b) the first distance metric of msNCA; (c) the second distance metric of msNCA;

(d) the third distance metric of msNCA.

ing functions. A set of local Mahalanobis distance met-

rics are obtained and mixed. We formulate our problem

as a constrained optimization problem for minimizing the

log-likelihood of observed data with exponential priors.

We have tested msNCA on several standard datasets and

demonstrated its feasibility for both distance metric learn-

ing and dimensionality reduction. Advantages of msNCA

over existing distance metric learning approaches include:

(1) adding prior knowledge of low-rank matrices with

sparse eigenvalues; (2) combining advantages of flexibil-

ity and strong resistance to overfitting of local and global

distance metric learning by mixture models.
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