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Abstract

This paper presents an efficient algorithm for image seg-
mentation and a framework for perceptual grouping. It
makes an attempt to provide one way of combining bottom-
up and top-down approaches. In image segmentation, it
generalizes the Swendsen-Wang cut algorithm [1] (SWC)
to make both 2-way and m-way cuts, and includes topology
change processes (graph repartitioning and boundary diffu-
sion). The method directly works at a low temperature with-
out using annealing. We show that it is much faster than the
DDMCMC approach [12] and more robust than the SWC
method. The results are demonstrated on the Berkeley data
set [7]. In perceptual grouping, it integrates discriminative
model learning/computing, a belief propagation algorithm
(BP) [15] , and SWC into a three-layer computing frame-
work. These methods are realized as different levels of ap-
proximation to an “ideal” generative model. We demon-
strate the algorithm on the problem of human body config-
uration.

1. Introduction

Image segmentation and perceptual grouping are among the
key problems in vision. Yet the results of existing methods
are not matching human performance in terms of both speed
and quality [7]. Discriminative and generative methods are
two representative approaches in image segmentation. One
promising direction is to integrate discriminative (bottom-
up) and generative (top-down) models [16, 13, 8, 10, 9]. It
is not clear, though, how to build a generic system to auto-
matically understand natural scenes and segment/recognize
a wide class of patterns/objects. Efforts leading to the birth
of such a system may include extensive study of low level
features/cues (edges, corners, interest points), affinity mea-
sures/discriminative models for perceptual grouping, gen-
erative models on appearance of complex objects and tex-
ture, shape models for a wide variety of objects, and fast
algorithms to combine them in making efficient visual in-
ference.

In this paper, we make an attempt to design an efficient
algorithm for image segmentation and a general scheme for
perceptual grouping. It can be divided into two parts. The

first part is about an efficient image segmentation algorithm
dealing with low-level patterns. The second part uses the
results from the first part and provides a general framework
for perceptual grouping. In the future, we will try to com-
bine the two parts into a fully integrated system.

(I) The DDMCMC [12] method is a computational
paradigm which combines top-down and bottom-up infor-
mation in searching for the optimal solution. Compared to
the traditional MCMC algorithms [3], it is more efficient
due to its use of bottom-up processes in guiding the search.
However, it is hard to make large moves since the topol-
ogy of the regions is maintained on-line when making split-
ting/merging. The SWC algorithm [1], instead, works on
atomic regions (pixel groups), and combines the split and
merge dynamics into a single process. This largely im-
proves the speed over the original DDMCMC algorithm.
However, SWC only makes 2-way cuts and it works on a
graph with fixed topology of atomic regions. Here, we gen-
eralize 2-way cuts in SWC to also make m-way cuts. This is
particularly useful in perceptual grouping when we want to
group multiple atomic regions/components into one part in
one step. Also, we allow graph topology changes to include
repartitioning and boundary diffusion of atomic regions.
The new segmentation algorithm eliminates the need for us-
ing annealing and works directly at a fixed low temperature.
Intuitively, most of the dynamics in the new algorithm can
be understood as doing “region competition”. Initially, a
set of atomic regions are obtained from a bottom-up pro-
cess (edge detection). With 2-way and m-way cuts, regions
are competing for atomic regions. This quickly locates re-
gion boundaries according to those of atomic regions rather
than moving region boundaries pixel by pixel as in the vari-
ational approach. With a variational approach [18], regions
are competing for the boundary pixels. This corresponds to
the boundary diffusion process to locally refine the segmen-
tation.

(II) In the second part of this work, we design a three-
layer computing framework for perceptual grouping. It is
illustrated on the problem of identifying/configuring an ar-
ticulated human body. One of the key concepts in SWC is
that bottom-up cues/discriminative models are used to prob-
abilistically group elements (atomic regions). Belief propa-
gation algorithms have been shown to be effective methods



for approximating the marginal distributions. This allows us
to integrate BP with the SWC. In the first layer, a discrim-
inative method, probabilistic boosting-tree [14] is adopted
to learn and compute a multi-class pairwise affinity map
for atomic regions. BP is then used to pass the messages
to better approximate the marginal distributions in the sec-
ond layer. These marginals are used as proposals for veri-
fication by the high-level knowledge (generative models) in
the third layer. We show that discriminative model learning
and BP are essentially different levels of approximation to
an “ideal” generative model. About 100 images containing
some baseball players are manually annotated for learning
the pairwise discriminative models of body parts. A PCA
shape model is learned from the training set also. We report
some results at the end of this paper.

2. Overall framework
For an input image, �, the task of image segmentation/scene
understanding is to infer how many regions/objects there are
and their locations. A scene interpretation (solution)� can
be denoted as

� � ��� ����� ��� ���� � � ��������

where � is the number of regions, �� is the region domain
(a set of pixels), �� is its type, and �� is the parameter for the
appearance model of region��.

An ideal model
If we can obtain the model about � and the generation

process which generates �, then the optimal solution � �

can be inferred from

��� ��� � ������� ����� ��� ���� � � �� ���� ����� �

���� ����� ��� ��� � � �� ���� ����� (1)

This requires the knowledge about the relations and config-
urations among all the regions/objects, appearance model
for complex objects, and the knowledge about shapes. This
“ideal” model is often out of reach, and for each specific
problem, we usually seek a certain degree of approxima-
tions. 1

Independence assumption
The first common approximation to the ideal model is

the independence assumption,

��� ��� � ����
�

�

����������� ������������������������

(2)
where ����������� ��� is the appearance model about re-
gion/object � and �������� defines its shape. It assumes in-
dependence of each region on appearance and shapes. This

1Notation � has slightly different meanings in the segmentation part
and perceptual grouping part.

is similar to the one defined in [12]. However, this model is
also hard to compute due to the complex distribution.

Limiting the search space
�� defines the domain of each region/object and�

��� � � where � is the lattice of the input image �. 	� �
���� � � ����� defines all possible � ways of partitioning �
whose space is enormously large. Drawing samples from
this space is computationally prohibitive. Therefore, we try
to make another approximation by defining an underlying
graph, 
 �� �� �, in which � � ���� ���� ��� includes
all the atomic regions as basic elements.  is a set of links
� �� ��� �� � which define the neighborhood relationship
between the �s. Such an example can be seen in Fig. (1).
The domain of each region �� � ����� ���� ���� is now de-
fined on these atomic regions. Sampling in the partition
space of � is then reduced to draw samples in the new space
based on 
. This largely reduces the search space and also
facilitates the use of graph based methods.

3. Sampling W

Our goal is to make inference about� � that maximizes the
posterior ��� ��� in eqn. ( 2), which is highly complex. We
use the Metropolis-Hasting [3] algorithm to perform sam-
pling in the solution space which consists of the partition
space and the parameter space. Suppose we are given a
graph 
 �� �� � in which � � ���� ���� ��� includes
all the atomic regions. Each � partition of � can be denoted
as

	� � ���� ��� ���� ���� ��� 	 �
�

�

	��

where 	 defines the entire the space for all possible parti-
tions. The Swendsen-Wang cut algorithm provides a smart
way of sampling in the partition space 	. We briefly discuss
the 2-way SWC below, and details can be found in [1].

3.1. 2-Way Swendsen-Wang Cut
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Figure 1: Illustration of a 2-way SWC. Each dot represents an atomic
region/element. In each region/group, atomic regions are connected with
edges indicating how strongly they are bonded.
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Figure 2: Illustration of the m-way SWC algorithm.

Given a graph � �� ��� 	, build 
� . For each ��� � �, ����� �� �

� denotes the affinity (bond) between atomic regions � and � . ����� �� �
������� � ����� � � ��.

� Randomly pick a region �� and sample edges in �� to be �� with prob-
ability ��. This gives rise to a set of connected components in �� . See
Fig. (1).

� Randomly pick a connected component, and either make it as a new region
or merge it with one of its neighboring regions.

� Propose for the region type �s and parameters, and compute the ���� ���.

� Compute the proposal probabilities from �� to �� , and from �� to
�� .

� Compute the acceptance rate by the Metropolis-Hasting algorithm to de-
cide whether or not to accept this move.

Figure 3: 2-Way SW-cut algorithm.

Fig.(1) illustrates an example of a 2-way cut. The accep-
tance rate is computed as follows:

���� � ��� � ������

������ � ������������������ ���


������ � ���������������������
��

where �������� and �������� are proposal probabilities
for proposing model type and parameters for the regions
changed. The magic of the SWC lies in the fact that when
computing the ratio,

��	����� 	�����

��	����� 	�����
�

�
����

��� ����
����

��� ���
�

the burden of enumerating all the possibilities leading to
the same connected component is removed because they are
canceled from the both sides. We only need to compute the
cuts. Fig. (1) gives such an example.

3.2. Generalizing SW-cut
We generalize the current SW-cut in two ways: (I) to design
m-way cut, and (II) to make topology changes to the graph.

M-way SW-cut
The 2-way SW-cut algorithm splits a region into two or

merges two regions into one at each step. To have a more
efficient algorithm, we want to merge multiple regions into

Given a graph � �� ��� �, we construct ��. This is the same as
that in 2-way SWC.

� Randomly pick a set of regions � � �	�� 


� with probability
�������. This usually can be done by choosing regions that are
in a selected focus area.

� Sample only edges in each region 	� � � with its corresponding
edge probability. This gives rise to a set of connected components
for each 	� � �, ����� � 


��. See Fig. (2).

� Collect all the connected components and deterministically build
a tree. Compute the probability �

��
� for each edge in the tree.

This can be done efficiently by integrating the edge probability
on their atomic regions. See the center figure in Fig. (2).

� Randomly sample all the edges of the tree to be on or off.

� For each set of connected � s, create a region.

� Propose for the region type �s and parameter �s for each region.

� Compute the acceptance rate by the Metropolis-Hasting algo-
rithm. If the move is rejected, then go back to ��.

Figure 4: M-way SW-cut algorithm.
one group or split one region into several regions at once.
Fig. (2) illustrates a new m-way SWC algorithm. Again,
one critical issue is to compute the proposal probability ra-
tio. We obtain:
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� (3)

Here ��� are all the edges in cut ��, �� is the bond for
the edge connecting atomic regions, � ��� is the bond for the
edge connecting connected components. ���� �� sums all
the possible probabilities leading to a connected �� �. We
only need to compute the cuts as shown in eqn. (3). Fig. (4)
illustrates the procedure. Intuitively, we can see that dif-
ferent choices of the edges leading to the same connected
components are canceled from both sides. The algorithm
first randomly selects a set of regions of interest. Then the
edge bonds connecting all the atomic regions are sampled



to be either on or off. This gives rise to a set of connected
components. In 2-way cut, only one connected component
is picked to either be a stand alone region or merge with a
neighboring region. Here, a tree is deterministically built
as another layer of edges whose bonds indicate how likely
that two connected components ��� and ��� should be
grouped. The tree is used to make sure that each set of cuts
define a unique set of connected �� . This is a limitation
since the connected components are not fully connected as
in the atomic regions case. Computing the proposal ration
can be reduced to compute cuts only as in eqn (3). We can
see that m-way SWC enlarges the scope of the sampling
algorithm. To go from �� to �� as shown in Fig. (2), 2-
way cut needs at least three steps, among which there may
be local minimums, whereas for m-way cut there is only
one step. But we need pay a bit more computational price
in constructing the tree and building and sampling bonds for
connected components.

Changing the topology of the graph
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(a) Boundary diffusion on atomic regions
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(b) Coarse-to-fine repartitioning of the graph

(c) Input image (d) By SWC (e)
Figure 5: Two ways of changing the underlying graph topology. In (a) bound-
aries of atomic regions are diffused resulting in the change of both � and � . The
topology of atomic regions is maintained and moved explicitly on the image grid. In
(b), the graph is repartitioned with a coarse-to-fine strategy. This changes the �, but
� remains the same. (c) shows an input image. (d) is the segmentation result by
SWC [1], (e) shows the result by the algorithm proposed.

In section 2 we show that the introduction of atomic re-
gions is essentially one way of making an approximation.
It facilitates the sampling process. But on the other hand, it
also limits the scope of the search space. For example, one
can not put the region boundary on the place where there

are no atomic regions. However, the global optimal is de-
fined on the original lattice, �. Fig. (5d) shows a segmenta-
tion result by the SWC algorithm [1]. First, the boundaries
are jagged. Second, there are several places where regions
have leaks. This causes some big regions to not be pro-
ply merged. We introduce two ways of fixing the problem.
First, we add the diffusion process on the atomic regions.
The purpose is to sample � subject to ��� ���. Region
competition [18] is a variational approach which diffuses
the neighboring region boundaries in minimizing the en-
ergy. We do the same thing here but on the boundaries
of regions. Fig. (5a) shows an example. The boundaries
of atomic regions which are not shared by the current re-
gions remain unaltered. Second, we adopt a coarse-to-fine
segmentation strategy. The sampling process starts from an
atomic region map at a coarse scale. After certain steps
(2000), we repartition the current graph by a partition map
at a fine scale. In theory, this does not change the state
of the current � . But it enlarges the space that the sam-
pling process can possibly visit. Fig. (5b) shows such an
example. Fig. (5e) shows the segmentation by the proposed
algorithm.

3.3. Summary of segmentation by Generalized
SWC

For image segmentation, the prior and likelihood models are the same
to those used in [12].

� For an input image, it uses Canny edge detector to obtain a parti-
tion map at a coarse scale. This gives us the atomic regions.

� Randomly use 2-way or m-way SWC to group/ungroup atomic
regions or diffuse the boundaries.

� After 2000 steps, repartition the atomic regions by a partition map
at a fine scale.

� Run the dynamics again.

� Stop the algorithm according to a certain criterion.

Figure 6: Image segmentation by the proposed algorithm.

In Fig. (6), we give a summary of the proposed image
segmentation algorithm. The algorithm starts from a seg-
mentation with atomic regions at a coarse level. Due to
the use of m-way cuts, these atomic regions are quickly
grouped together, whereas it may take many steps for 2-
way cuts to merge them one by one. But 2-way cuts are
still very useful to split/merge specific atomic regions in the
group. A random diffusion process is proposed to move
the boundaries of atomic regions for local refinement. With
a variational approach [18], regions are competing for the
boundary pixels. With 2-way and m-way cuts, regions are
competing for atomic regions. This quickly locates region
boundaries according to those of atomic regions rather than
moving region boundaries pixel by pixel as in the PDE ap-
proach. After a certain stage (2000 steps), a segmentation
map from a bottom-up process (Canny edge detector) at a



fine level is used to repartition the current atomic regions.
This enlarges the solution space from which the algorithm
can draw samples (See Fig. (5)b). The combination of these
approaches gives rise to an efficient algorithm which seg-
ments an image of ��� � ��� in about � � � minutes. It
is much faster than the DDMCMC algorithm and more ro-
bust than the original SWC algorithm. Also, it provides a
general framework to further perform perceptual grouping.
Fig. (7) shows some steps of the algorithm. They are tested
on the Berkeley dataset with the outputs being the overlay
of segmentations at three scales shown in Fig. (14).

(a) (b) (c) (d)

Figure 7: Illustration of the image segmentation algorithm. (a) is an in-
put image. (b) shows the atomic region map at the beginning. (c) illustrates
the status after the repartitioning. Boundaries with light lines are those of
atomic regions, and dark ones show the segmented regions. (d) shows the
final result.

4. Configuration of the human body

The task of segmenting and configuring the human body is
very difficult. Human bodies are highly articulated and the
appearance of body parts has large variations. Some recent
work in this domain includes [6, 17, 5]. Graphical model
algorithms are attractive in performing perceptual grouping
task. In this section, we show how it is addressed by the
proposed framework.

4.1. Problem definition

Figure 8: Some of the 100 training images collected from the internet
using Google. Each body part is manually annotated.

We model each human body using 14 parts labeled from
� to �� and assume there is only one human in each image.
The top left figure in Fig. (9) gives such a template. For
a given graph 
 �� �� �, where � � ���� ���� ���
includes all the atomic regions, the solution� is defined as

� � ���� � ������� ������ � ������� ���� ������� � �������� ������

where �� to ��	 are the body parts from head to feet. ��


includes all the background regions. For each� , we denote
the part id of each atomic region by ��� ��.

The posterior distribution is defined as

��� ��� � ������
����
�����
� �

��������
����� ���� ��	������ ���� ��	�(4)

which says that the background region is different with
body part regions, and all the body parts define a joint ap-
pearance for a human. Also, there is a joint probability on
the shape of each part. Apparently, these parts are highly
correlated. We assume the independence of the likelihood
model for each body part and apply a simple texture model.
Learning the shape model of an articulated object is still
an ongoing research topic. Instead of specifically defin-
ing the articulation of each part, we adopt a simple PCA
model. For each part ��, we fit an ellipse and obtain a vec-
tor ���� ��� ��� ��� ���, where ��, and �� are respectively the
long and short axis of the ellipse, �� and �� are coordinates
of the center of the ellipse, and �� is the orientation. These
values are normalized w.r.t. the size and center of the head.
We gather all the values of each part and align them into a
vector

� � ���� ��� ��� ��� ��� ���� ��	� ��	� ��	� ��	� ��	��

Therefore the shape prior is defined by

����� ���� ��	� � �����
�

�
��� ��������� ���

We collect 100 images containing baseball players and
we annotate the body parts. A PCA model with 25 com-
ponents is then learned. Fig. 9 shows some of the samples.
This PCA model is adopted to show the need of using top-
down information. More work needs to be done to better
capture the overall articulation of the parts.
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Figure 9: The first image is the template. Others are the samples drawn
from the PCA model for the shape of body parts.

4.2. Three-layer computing framework
In the first layer, probabilistic boosting-tree [14] (PBT) is
adopted to learn and compute pairwise multi-class affinity
map for neighboring atomic regions. BP is then used to
pass the messages to better approximate the marginal dis-
tributions in the second layer. These marginals are used
as proposals for SWC to probabilistically group the atomic
regions according to the high-level knowledge in the third
layer. One of the ideas in SWC is that affinities (discrim-
inative models) between atomic regions/basic elements are



used to guide the grouping process. This largely facilitates
the computing process. However, it is hard to obtain the
marginals directly form eqn. (4). Instead, we approximate
it by

	��� ��� �
�

 

�

�����

�������� ������������ ��� ������ ��� (5)

where  is the partition function (normalization), and
�� and �� are neighboring atomic regions. We learn
these discriminative models from examples. The dis-
criminative model �������� ������������ ��� ������ ��� mod-
els the pairwise affinity between �� and �� . It suggests
what are the possible parts for two neighboring atomic
regions given their shapes and appearance. This model
can be learned based on a large set of annotated im-
ages. Once we have the �������� ������������ ��� ������ ���,
what we are really interested is the marginal distribution
�������� ������������ ��� ������ ��� based on 	��� ���. This
fits very well into the BP framework which approximates
the marginal distribution in loopy graphs. Since these
marginals are all approximations, in the end, we still want
to use the high-level knowledge about the shape and overall
appearance as verification. The integration of these proce-
dures gives rise to a three-layer computational framework.

I: Learning the multi-class discriminative model
Local image patches show various levels of information

in identifying a specific object. Fig. (11) illustrates an ex-
ample in which several zoomed-in parts are displayed. We
are able to identify the arm and the head even from local
patches. This gives us a hint to use local discriminative
model to make inference about object parts. Kumar and
Herbert [4] have developed a discriminative Markov ran-
dom fields model on rectangular image patches to perform
scene interpretation. Here, the goal is to learn the dis-
criminative model �������� ������������ ��� ������ ��� with
������ ����� 	 ��� �� ��� �
�. It is a multi-class discrimina-
tive learning problem. We use the image segmentation algo-
rithm discussed before to obtain a set of atomic regions on
the 100 training examples and collect the pairwise atomic
regions for the bodies and background regions. The total
number of types of the pairs is �� since not every two parts
are adjacent to each other.

AdbBoost has become a powerful classification algo-
rithm which combines a set of weak classifiers into a strong
classifier. In vision, the focus is mostly on its application
for detection. We use a new discriminative model learning
framework, probabilistic boosting-tree (PBT) [14] , to learn
pairwise relationships between neighboring atomic regions.
Both appearance and shape contribute to this discriminative
model. Intuitively, if two atomic regions are both from left
thigh, then they should have similar intensity patterns, and
they are most likely located at the bottom-half of the im-
age. These are some weak cues/knowledge. It is up to the

learning algorithm to decide what are the important cues
and how to combine them. PBT combines these cues into a
strong decision maker, and outputs a posterior probability.
It learns a unified multi-class discriminative model hierar-
chically by a divide-and-conquer approach. The top node of
the tree outputs the overall posterior probability by integrat-
ing probabilities gathered from its sub-trees. The details of
how to learn and compute the model by PBT are discussed
in [14]. The features used in selection for the learner are
edges at various scales, edge orientations, absolute and rel-
ative positions, Hu moments for the shape of � �, �� , and
��
�
�� , and mean and variance on filter responses of vari-

ous Gabor filters. The idea is to make use of both the shape
and appearance information about � �� �� � ������ ����� to tell
how the two regions should be probabilistically labeled.

Figure 11: A training image and its zoomed-in versions of various parts.
We can see that local image patches still give rich information about what
they are.

II: Approximating the marginals by BP algorithm
The information computed by the discriminative model

is purely local. The first row in Fig. (12) shows some of
the saliency maps computed. We marginalize the pairwise
probabilities into unary probabilities for better visualiza-
tion. Our goal is to obtain the marginal distribution based on
all the current atomic regions and use them as affinity map
to guide the search verified using the high level knowledge.
This can be done by message update as shown in [15, 2, 11]
The messages are computed by

!������

�

 �

������� ���
�

��������

!�������

and the beliefs are then

������� ��� �
�

 
������� ���

�

��������

!������
�

��������

!�������

The second row in Fig. (12) shows some saliency maps for
the one-node beliefs obtained. We can see that they elimi-
nates some uncertainty by confirming with each other.

III: Verification using high-level knowledge
The local beliefs are used as proposals for the SWC al-

gorithm to make inference based on the generative model’s
(high-level) knowledge. Therefore, the algorithms in this
three-layer framework correspond to low-level, mid-level,



Layer 1: Compute the Discriminative Model Layer 2: Use BP to approximate the marginal Layer 3: Use GSWC on the approximate marginal

Figure 10: Three-layer computing framework. The first layer computes the affinities of atomic regions based on a multi-class discriminative model learned from an annotated
The second layer uses BP algorithm to approximate the marginal distributions. In the third layer, high-level information is used to verification.

and high-level understanding of the scene. The discrim-
inative models give affinities between two atomic regions
based on their shape and appearance. This is computed lo-
cally. The BP algorithm then passes information around
to make confirmation by propagating the messages. This
corresponds to the mid-level inference. As we show, both
the methods are approximations to the underlying poste-
rior distribution governed. In the third layer, the high-level
knowledge defined by generative model is used as verifica-
tion based on the beliefs gathered from the mid-level.

Figure 12: The first row shows some of the saliency maps by the dis-
criminative models for some parts. Dark intensity means the high prob-
ability. The second row shows the one-node belief computed by the BP
algorithm based on the computed discriminative models. It helps to re-
solve some local ambiguities and confirms some parts.

4.3. Experiments
We test the proposed algorithm on in images in [6]. We
use grey scale images instead of color images. Some re-
sults are shown in Fig. (13). We show the original images,
the segmented parts with each region labeled with the part
id, and the corresponding estimation of the ellipse for each
part. The results are promising, but they can be improved
by learning a better shape model rather than a simple PCA.
Also, a joint appearance model may better approximate the
ideal generative model than independence assumption.

5. Discussions and conclusions
In this paper, we have introduced an integrated framework
for image segmentation and perceptual grouping. It gen-

eralizes the SW-cut to include 2-way cut, m-way cut, and
topology changes. This gives rise to a system which is
much faster than the DDMCMC algorithm, more robust
than the SW-cut, and makes moves of large scope when
searching for the optimal solution. It further generalizes
the SW-cut into a three-layer computational framework for
perceptual grouping. The scheme integrates discriminative
model learning, BP, and SW-cut together as different lev-
els of approximation to an “ideal” model. This computing
framework is general and it provides one way of combining
top-down and bottom-up information. However, we still
don’t know the optimal strategy to design general system
for making visual inference and we need to investigate more
the roles of top-down and bottom-up learning/computing in
a general visual inference system.

Figure 13: Results by the proposed algorithm on some gray scale im-
ages. The first row shows the input image. The second row shows the
segmented body with the region labeled with identified part id. The third
row are the corresponding estimated ellipses for body configuration.
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