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Abstract. Shape retrieval/matching is a very important topic in com-11 11

puter vision. The recent progress in this domain has been mostly driven12 12

by designing smart features for providing better similarity measure be-13 13

tween pairs of shapes. In this paper, we provide a new perspective to14 14

this problem by considering the existing shapes as a group, and study15 15

their similarity measures to the query shape in a graph structure. Our16 16

method is general and can be built on top of any existing shape match-17 17

ing algorithms. It learns a better metric through graph transduction by18 18

propagating the model through existing shapes, in a way similar to com-19 19

puting geodesics in shape manifold. However, the proposed method does20 20

not require learning the shape manifold explicitly and it does not require21 21

knowing any class labels of existing shapes. The presented experimen-22 22

tal results demonstrate that the proposed approach yields significant23 23

improvements over the state-of-art shape matching algorithms. We ob-24 24

tained a retrieval rate of 91% on the MPEG-7 data set, which is the25 25

highest ever reported in the literature.26 26

1 Introduction27 27

Shape matching/retrieval is a very critical problem in computer vision. There28 28

are many different kinds of shape matching methods, and the progress in in-29 29

creasing the matching rate has been substantial in recent years. However, all30 30

of these approaches are focused on the nature of shape similarity. It seems to31 31

be an obvious statement that the more similar two shapes are, the smaller is32 32

their difference, which is measured by some distance function. Yet, this state-33 33

ment ignores the fact that some differences are relevant while other differences34 34

are irrelevant for shape similarity. It is not yet clear how the biological vision35 35

systems perform shape matching; it is clear that shape matching involves the36 36

high-level understanding of shapes. In particular, shapes in the same class can37 37

differ significantly because of distortion or non-rigid transformation. In other38 38

words, even if two shapes belong to the same class, the distance between them39 39

may be very large if the distance measure cannot capture the intrinsic property40 40

of the shape. It appears to us that all published shape distance measures [1–7]41 41
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are unable to address this issue. For example, based on the inner distance shape42 42

context (IDSC) [3], the shape in Fig. 1(a) is more similar to (b) than to (c),43 43

but it is obvious that shape (a) and (c) belong to the same class. This incorrect44 44

result is due to the fact that the inner distance is unaware that the missing tail45 45

and one front leg are irrelevant for this shape similarity judgment. On the other46 46

hand, much smaller shape details like the dog’s ear and the shape of the head47 47

are of high relevance here. No matter how good a shape matching algorithm is,48 48

the problem of relevant and irrelevant shape differences must be addressed if we49 49

want to obtain human-like performance. This requires having a model to capture50 50

the essence of a shape class instead of viewing each shape as a set of points or a51 51

parameterized function.52 52

Fig. 1. Existing shape similarity methods incorrectly rank shape (b) as more similar
to (a) than (c).

Fig. 2. A key idea of the proposed distance learning is to replace the original shape
distance between (a) and (e) with a geodesic path in the manifold of know shapes,
which is the path (a)-(e) in this figure.

In this paper, we propose to use a graph-based transductive learning algo-53 53

rithm to tackle this problem, and it has the following properties: (1) Instead54 54

of focusing on computing the distance (similarity) for a pair of shapes, we take55 55

advantage of the manifold formed by the existing shapes. (2) However, we do not56 56

explicitly learn the manifold nor compute the geodesics [8], which are time con-57 57

suming to calculate. A better metric is learned by collectively propagating the58 58

similarity measures to the query shape and between the existing shapes through59 59

graph transduction. (3) Unlike the label propagation [9] approach, which is semi-60 60

supervised, we treat shape retrieval as an unsupervised problem and do not re-61 61

quire knowing any shape labels. (4) We can build our algorithm on top of any62 62

existing shape matching algorithm and a significant gain in retrieval rates can63 63

be observed on well-known shape datasets.64 64

Given a database of shapes, a query shape, and a shape distance function,65 65

which does not need to be a metric, we learn a new distance function that is66 66

expressed by shortest paths on the manifold formed by the know shapes and the67 67

query shape. We can do this without explicitly learning this manifold. As we68 68
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will demonstrate in our experimental results, the new learned distance function69 69

is able to incorporate the knowledge of relevant and irrelevant shape differences.70 70

It is learned in an unsupervised setting in the context of known shapes. For71 71

example, if the database of known shapes contains shapes (a)-(e) in Fig. 2, then72 72

the new learned distance function will rank correctly the shape in Fig. 1(a) as73 73

more similar to (c) than to (b). The reason is that the new distance function74 74

will replace the original distance (a) to (c) in Fig.1 with a distance induced by75 75

the shortest path between in (a) and (e) in Fig.2.76 76

In more general terms, even if the difference between shape A and shape C77 77

is large, but there is a shape B which has small difference to both of them, we78 78

still claim that shape A and shape C are similar to each other. This situation is79 79

possible for most shape distances, since they do not obey the triangle inequality,80 80

i.e., it is not true that d(A,C) ≤ d(A,B) + d(B, C) for all shapes A,B, C [10].81 81

We propose a learning method to modify the original shape distance d(A,C).82 82

If we have the situation that d(A,C) > d(A,B) + d(B, C) for some shapes83 83

A,B, C, then the proposed method is able to learn a new distance d′(A,C) such84 84

that d′(A,C) ≤ d(A, B) + d(B, C). Further, if there is a path in the distance85 85

space such that d(A,C) > d(A,B1) + . . . + d(Bk, C), then our method learns86 86

a new d′(A, C) such that d′(A, C) ≤ d(A,B1) + . . . + d(Bk, C). Since this path87 87

represents a minimal distortion morphing of shape A to shape C, we are able to88 88

ignore irrelevant shape differences, and consequently, we can focus on relevant89 89

shape differences with the new distance d′.90 90

Our experimental results clearly demonstrate that the proposed method can91 91

improve the retrieval results of the existing shape matching methods. We ob-92 92

tained the retrieval rate of 91% on part B of the MPEG-7 Core Experiment93 93

CE-Shape-1 data set [11], which is the highest ever bull’s eye score reported in94 94

the literature. As the input to our method we used the IDSC, which has the95 95

retrieval rate of 85.40% on the MPEG-7 data set [3]. Fig. 3 illustrates the ben-96 96

efits of the proposed distance learning method. The first row shows the query97 97

shape followed by the first 10 shapes retrieved using IDSC only. Only two flies98 98

are retrieved among the first 10 shapes. The results of the learned distance for99 99

the same query are shown in the second row. All of the top 10 retrieval results100 100

are correct. The proposed method was able to learn that the shape differences101 101

in the number of fly legs and their shapes are irrelevant.

Fig. 3. The first column shows the query shape. The remaining 10 columns show the
most similar shapes retrieved from the MPEG-7 data set. The first row shows the
results of IDSC [3]. The second row shows the results of the proposed learned distance.



4 ECCV-08 submission ID 1108

The remainder of this paper is organized as follows. In Section 2, we briefly102 102

review some well-known shape matching methods and the semi-supervised learn-103 103

ing algorithms. Section 3 describes the proposed approach to learning shape104 104

distances. Section 4 relates the proposed approach to the class of machine learn-105 105

ing approaches called label propagation. The problem of the construction of the106 106

affinity matrix is addressed in Section 5. Section 6 gives the experimental results107 107

to show the advantage of the proposed approach. Conclusion and discussion are108 108

given in Section 7.109 109

2 Related work110 110

The semi-supervised learning problem has attracted an increasing amount of in-111 111

terest recently, and several novel approaches have been proposed. The existing112 112

approaches could be divided into several types, multiview learning [12], gener-113 113

ative model [13], Transductive Support Vector Machine (TSVM) [14]. Recently114 114

there have been some promising graph based transductive learning approaches115 115

proposed, such as label propagation [9], Gaussian fields and harmonic functions116 116

(GFHF) [15], local and global consistency (LGC) [16], and the Linear Neigh-117 117

borhood Propagation (LNP) [17]. Zhou et al. [18] modified the LGC for the118 118

information retrieval. The semi-supervised learning problem is related to mani-119 119

fold learning approaches, e.g., [19].120 120

The proposed method is inspired by the label propagation. The reason we121 121

choose the framework of label propagation is it allows the clamping of labels.122 122

Since the query shape is the only labeled shape in the retrieval process, the label123 123

propagation allows us to enforce its label during each iteration, which naturally124 124

fits in the framework of shape retrieval. Usually, GFHF is used instead of label125 125

propagation, as both methods can achieve the same results[9]. However, in the126 126

shape retrieval, we can use only the label propagation, the reason is explained127 127

in detail in Section 4.128 128

Since a large number of shape similarity methods have been proposed in129 129

the literature, we focus our attention on methods that reported retrieval re-130 130

sults on the MPEG-7 shape data set (part B of the MPEG-7 Core Experiment131 131

CE-Shape-1). This allows us to clearly demonstrate the retrieval rate improve-132 132

ments obtained by the proposed method. Belongie et al. [1] introduced a novel133 133

local representation of shapes called shape context. Ling and Jacobs [3] modi-134 134

fied the shape context by considering the geodesic distance of contour instead of135 135

the Euclidean distance, which improved the classification of articulated shapes.136 136

Latecki and Lakaemper [4] used visual parts for shape matching. In order to137 137

avoid problems associated with purely global or local methods, Felzenszwalb138 138

and Schwartz [5] also described a hierarchical matching method. Other hierar-139 139

chical methods include the hierarchical graphical models in [20] and hierarchical140 140

procrustes matching [6].141 141

There is a significant body of work on distance learning [21]. Xing et al.142 142

[22] propose estimating the matrix W of a Mahalanobis distance by solving a143 143

convex optimization problem. Bar-Hillel et al. [23] also use a weight matrix W to144 144
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estimate the distance by relevant component analysis (RCA). Athitsos et al. [24]145 145

proposed a method called BoostMap to estimate a distance that approximates a146 146

certain distance. Hertz’s work [25] uses AdaBoost to estimate a distance function147 147

in a product space, whereas the weak classifier minimizes an error in the original148 148

feature space. All these methods’ focus is a selection of suitable distance from149 149

a given set of distance measures. Our method aims at improving the retrieval150 150

performance of a given distance measure.151 151

3 Learning New Distance Measures152 152

We first describe the classical setting of similarity retrieval. It applies to many153 153

retrieval scenarios like image, document, key word, and shape retrieval. Given is154 154

a set of objects X = {x1, . . . , xn} and a similarity function sim: X ×X → R+
155 155

that assigns a similarity value (a positive integer) to each pair of objects.156 156

We assume that x1 is a query object(e.g., a query shape), {x2, . . . , xn} is a157 157

set of known database objects (or a training set). Then by sorting the values158 158

sim(x1, xi) in decreasing order for i = 2, . . . , n we obtain a ranking of database159 159

objects according to their similarity to the query, i.e., the most similar database160 160

object has the highest value and is listed first. Sometimes a distance measure is161 161

used in place of the similarity measure, in which case the ranking is obtained162 162

by sorting the database objects in the increasing order, i.e., the object with the163 163

smallest value is listed first. Usually, the first N ¿ n objects are returned as the164 164

most similar to the query x1.165 165

As discussed above, the problem is that the similarity function sim is not166 166

perfect so that for many pairs of objects it returns wrong results, although it167 167

may return correct scores for most pairs. We introduce now a method to learn168 168

a new similarity function simT that drastically improves the retrieval results of169 169

sim for the given query x1.170 170

Let wi,j = sim(xi, xj), for i, j = 1, . . . , n, be a similarity matrix, which is171 171

also called an affinity matrix. We define a sequence of labeling functions ft :172 172

X → [0, 1] with f0(x1) = 1 and f0(xi) = 0 for i = 2, . . . , n. We use the following173 173

recursive update of function ft:174 174

ft+1(xi) =

∑n
j=1 wijft(xj)∑n

j=1 wij
(1)

for i = 2, . . . , n and we set175 175

ft+1(x1) = 1. (2)

We have only one class that contains only one labeled element being the query176 176

x1. We define a sequence of new learned similarity functions restricted to x1 as177 177

simt(x1, xi) = ft(xi). (3)

Thus, we interpret ft as a set of normalized similarity values to the query x1.178 178

Observe that sim1(x1, xi) = w1,i = sim(x1, xi).179 179

We iterate steps (1) and (2) until the step t = T for which the change is180 180

below a small threshold. We then rank the similarity to the query x1 with simT .181 181
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Our experimental results in Section 6 demonstrate that the replacement of the182 182

original similarity measure sim with simT results in a significant increase in the183 183

retrieval rate.184 184

The steps (1) and (2) are used in label propagation, which is described in185 185

Section 4. However, our goal and our setting are different. Although label propa-186 186

gation is an instance of semi-supervised learning, we stress that we remain in the187 187

unsupervised learning setting. In particular, we deal with the case of only one188 188

known class, which is the class of the query object. This means, in particular,189 189

that label propagation has a trivial solution in our case limt→∞ ft(xi) = 1 for all190 190

i = 1, . . . , n, i.e., all objects will be assigned the class label of the query shape.191 191

Since our goal is ranking of the database objects according to their similarity to192 192

the query, we stop the computation after a suitable number of iterations t = T .193 193

As is the usual practice with iterative processes that are guaranteed to converge,194 194

the computation is halted if the difference ||ft+1 − ft|| becomes very slow, see195 195

Section 6 for details.196 196

If the database of known objects is large, the computation with all n objects197 197

may become impractical. Therefore, in practice, we construct the matrix w using198 198

only the first M < n most similar objects to the query x1 sorted according to199 199

the original distance function sim.200 200

4 Relation to Label Propagation201 201

Label propagation is formulated as a form of propagation on a graph, where202 202

node’s label propagates to neighboring nodes according to their proximity. In203 203

our approach we only have one labeled node, which is the query shape. The key204 204

idea is that its label propagates ”faster” along a geodesic path on the manifold205 205

spanned by the set of known shapes than by direct connections. While following206 206

a geodesic path, the obtained new similarity measure learns to ignore irrelevant207 207

shape differences. Therefore, when learning is complete, it is able to focus on208 208

relevant shape differences. We review now the key steps of label propagation209 209

and relate them to the proposed method introduced in Section 3.210 210

Let {(x1, y1) . . . (xl, yl)} be the labeled data, y ∈ {1 . . . C}, and {xl+1 . . . xl+u}211 211

the unlabeled data, usually l ¿ u. Let n = l + u. We will often use L and U212 212

to denote labeled and unlabeled data respectively. The Label propagation sup-213 213

poses the number of classes C is known, and all classes are present in the labeled214 214

data[9]. A graph is created where the nodes are all the data points, the edge be-215 215

tween nodes i, j represents their similarity wi,j . Larger edge weights allow labels216 216

to travel through more easily. We define a n× n probabilistic transition matrix217 217

P as a row-wise normalized matrix w.218 218

Pij =
wij∑n

k=1 wik
(4)

where Pij is the probability of transit from node i to node j. Also define a l×C219 219

label matrix YL, whose ith row is an indicator vector for yi, i ∈ L: Yic = δ(yi,c).220 220

The label propagation computes soft labels f for nodes, where f is a n×C matrix221 221

whose rows can be interpreted as the probability distributions over labels. The222 222

initialization of f is not important. The label propagation algorithm is as follows:223 223
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1. Initially, set f(xi) = yi for i = 1, . . . , l and f(xj) arbitrarily (e.g., 0) for224 224

xj ∈ Xu225 225

2. Repeat until convergence: Set f(xi) =
∑n

j=1
wijf(xj)∑n

j=1
wij

, ∀xi ∈ Xu and set226 226

f(xi) = yi for i = 1, . . . , l (the labeled objects should be fixed).227 227

In step 1, all nodes propagate their labels to their neighbors for one step. Step 2 is228 228

critical, since it ensures persistent label sources from labeled data. Hence instead229 229

of letting the initial labels fade way, we fix the labeled data. This constant push230 230

from labeled nodes, helps to push the class boundaries through high density231 231

regions so that they can settle in low density gaps. If this structure of data fits232 232

the classification goal, then the algorithm can use unlabeled data to improve233 233

learning.234 234

Let f = (
fL

fU
). Since fL is fixed to YL, we are solely interested in fU . The235 235

matrix P is split into labeled and unlabeled sub-matrices236 236

P =
[

PLL PLU

PUL PUU

]
(5)

As proven in [9] the label propagation converges, and the solution can be com-237 237

puted in closed form using matrix algebra:238 238

fU = (I − PUU )−1PULYL (6)

However, as the label propagation requires all classes be present in the labeled239 239

data, it is not suitable for shape retrieval. As mentioned in Section 3, for shape240 240

retrieval, the query shape is considered as the only labeled data and all other241 241

shapes are the unlabeled data. Moreover, the graph among all of the shapes is242 242

fully connected, which means the label could be propagated on the whole graph.243 243

If we iterate the label propagation infinite times, all of the data will have the244 244

same label, which is not our goal. Therefore, we stop the computation after a245 245

suitable number of iterations t = T .246 246

5 The Affinity Matrix247 247

In this section, we address the problem of the construction of the affinity matrix248 248

W . There are some methods that address this issue, such as local scaling [26],249 249

local liner approximation [17], and adaptive kernel size selection [27].250 250

However, in the case of shape similarity retrieval, a distance function is usu-251 251

ally defined, e.g., [1, 3–5]. Let D = (Dij) be a distance matrix computed by252 252

some shape distance function. Our goal is to convert it to a similarity measure253 253

in order to construct an affinity matrix W . Usually, this can be done by using a254 254

Gaussian kernel:255 255

wij = exp(−D2
ij

σ2
ij

) (7)
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Previous research has shown that the propagation results highly depend on the256 256

kernel size σij selection [17]. In [15], a method to learn the proper σij for the ker-257 257

nel is introduced, which has excellent performance. However, it is not learnable258 258

in the case of few labeled data. In shape retrieval, since only the query shape259 259

has the label, the learning of σij is not applicable. In our experiment, we use use260 260

an adaptive kernel size based on the mean distance to K-nearest neighborhoods:261 261

σij = C ·mean({knnd(xi), knnd(xj)}) (8)

where mean({knnd(xi), knnd(xj)}) represents the mean distance of the K-nearest262 262

neighbor distance of the sample xi, xj and C is an extra parameter. Both K and263 263

C are determined empirically.264 264

6 Experimental Results265 265

In this section, we show that the proposed approach can significantly improve266 266

retrieval rates of existing shape similarity methods.267 267

6.1 Improving Inner Distance Shape Context268 268

The IDSC [3] significantly improved the performance of shape context [1] by269 269

replacing the Euclidean distance with shortest paths inside the shapes, and ob-270 270

tained the retrieval rate of 85.40% on the MPEG-7 data set. The proposed271 271

distance learning method is able to improve the IDSC retrieval rate to 91.00%.272 272

For reference, Table 1 lists some of the reported results on the MPEG-7 data273 273

set. The MPEG-7 data set consists of 1400 silhouette images grouped into 70274 274

classes. Each class has 20 different shapes. The retrieval rate is measured by275 275

the so-called bull’s eye score. Every shape in the database is compared to all276 276

other shapes, and the number of shapes from the same class among the 40 most277 277

similar shapes is reported. The bull’s eye retrieval rate is the ratio of the total278 278

number of shapes from the same class to the highest possible number (which is279 279

20× 1400). Thus, the best possible rate is 100%.280 280

In order to visualize the gain in retrieval rates by our method as compared281 281

to IDSC, we plot the percentage of correct results among the first k most similar282 282

shapes in Fig. 4(a), i.e., we plot the percentage of the shapes from the same class283 283

among the first k-nearest neighbors for k = 1, . . . , 40. Recall that each class has284 284

20 shapes, which is why the curve increases for k > 20. We observe that the285 285

proposed method not only increases the bull’s eye score, but also the ranking of286 286

the shapes for all k = 1, . . . , 40.287 287

We use the following parameters to construct the affinity matrix: C = 0.25288 288

and the neighborhood size is K = 10. As stated in Section 3, in order to increase289 289

computational efficiency, it is possible to construct the affinity matrix for only290 290

part of the database of known shapes. Hence, for each query shape, we first291 291

retrieve 300 the most similar shapes, and construct the affinity matrix W for292 292

only those shapes, i.e., W is of size 300×300 as opposed to a 1400×1400 matrix293 293

if we consider all MPEG-7 shapes. Then we calculate the new similarity measure294 294
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simT for only those 300 shapes. Here we assume that all relevant shapes will be295 295

among the 300 most similar shapes. Thus, by using a larger affinity matrix we296 296

can improve the retrieval rate but at the cost of computational efficiency.297 297

Table 1. Retrieval rates (bull’s eye) of different methods on the MPEG-7 data set.

Alg. CSS Vis. Parts SC IDSC Hierarchical Shape Tree IDSC+DP
+TPS +DP Procrustes + our

[28] [4] [1] [3] [6] [5] method

Score 75.44% 76.45% 76.51% 85.40% 86.35% 87.70% 91.00%
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Fig. 4. (a) A comparison of retrieval rates between IDSC [3] (blue circles) and the
proposed method (red stars). (b) A comparison of retrieval rates between visual parts
in [4] (blue circles) and the proposed method (red stars).

In addition to the statistics presented in Fig. 4, Fig. 5 illustrates also that298 298

the proposed approach improves the performance of IDSC. A very interesting299 299

case is shown in the first row, where for IDSC only one result is correct for the300 300

query octopus. It instead retrieves nine apples as the most similar shapes. Since301 301

the query shape of the octopus is occluded, IDSC ranks it as more similar to an302 302

apple than to the octopus. In addition, since IDSC is invariant to rotation, it303 303

confuses the tentacles with the apple stem. Even in the case of only one correct304 304

shape, the proposed method learns that the difference between the apple stem is305 305

relevant, although the tentacles of the octopuses exhibit a significant variation306 306

in shape. We restate that this is possible because the new learned distances are307 307

induced by geodesic paths in the shape manifold spanned by the known shapes.308 308

Consequently, the learned distances retrieve nine correct shapes. The only wrong309 309

results is the elephant, where the nose and legs are similar to the tentacles of310 310

the octopus.311 311

As shown in the third row, six of the top ten IDSC retrieval results of lizard312 312

are wrong. since IDSC cannot ignore the irrelevant differences between lizards313 313

and sea snakes. All retrieval results are correct for the new learned distances,314 314

since the proposed method is able to learn the irrelevant differences between315 315
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Fig. 5. The first column shows the query shape. The remaining 10 columns show the
most similar shapes retrieved by IDSC (odd row numbers) and by our method (even
row numbers).

lizards and the relevant differences between lizards and sea snakes. For the results316 316

of deer (fifth row), three of the top ten retrieval results of IDSC are horses.317 317

Compared to it, the proposed method (sixth row) eliminates all of the wrong318 318

results so that only deers are in the top ten results. It appears to us that our319 319

new method learned to ignore the irrelevant small shape details of the antlers.320 320

Therefore, the presence of the antlers became a relevant shape feature here. The321 321

situation is similar for the bird and hat, with three and four wrong retrieval322 322

results respectively for IDSC, which are eliminated by the proposed method.323 323

An additional explanation of the learning mechanism of the proposed method324 324

is provided by examining the count of the number of violations of the triangle325 325

inequality that involve the query shape and the database shapes. In Fig. 6(a),326 326

the curve shows the number of triangle inequality violations after each iteration327 327

of our distance learning algorithm. The number of violations is reduced signif-328 328

icantly after the first few hundred iterations. We cannot expect the number of329 329

violations to be reduced to zero, since cognitively motivated shape similarity may330 330

sometimes require triangle inequality violations [10]. Observe that the curve in331 331
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Fig. 6(a) correlates with the plot of differences ||ft+1 − ft|| as a function of t332 332

shown in (b). In particular, both curves decrease very slow after about 1000 it-333 333

erations, and at 5000 iterations they are nearly constant. Therefore, we selected334 334

T = 5000 as our stop condition. Since the situation is very similar in all our335 335

experiments, we always stop after T = 5000 iterations.336 336
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Fig. 6. (a) The number of triangle inequality violations per iteration. (b) Plot of dif-
ferences ||ft+1 − ft|| as a function of t.

Besides MPEG-7, We also present experimental results on the Kimia Data337 337

Set [29]. The database contains 99 shapes grouped into nine classes. As the338 338

database only contains 99 shapes, we calculate the affinity matrix based on all339 339

of the shape in the database. The parameters used to calculate the affinity matrix340 340

are: C = 0.25 and the neighborhood size is K = 4. We changed the neighborhood341 341

size, since the data set is much smaller than the MPEG-7 data set. The retrieval342 342

results are summarized as the number of shapes from the same class among the343 343

first top 1 to 10 shapes (the best possible result for each of them is 99). Table 2344 344

lists the numbers of correct matches of several methods. Again we observe that345 345

our approach could improve IDSC significantly, and it yields a nearly perfect346 346

retrieval rate.

Table 2. Retrieval results on Kimia Data Set [29]

Algorithm 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

SC [29] 97 91 88 85 84 77 75 66 56 37

Shock Edit [29] 99 99 99 98 98 97 96 95 93 82

IDSC+DP [3] 99 99 99 98 98 97 97 98 94 79

Shape Tree [5] 99 99 99 99 99 99 99 97 93 86

our method 99 99 99 99 99 99 99 99 97 99

347 347

6.2 Improving Visual Part Shape Matching348 348

Besides the inner distance shape context [3], we also demonstrate that the pro-349 349

posed approach can improve the performance of visual parts shape similarity [4].350 350
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We select this method since it is based on very different approach than IDSC.351 351

In [4], in order to compute the similarity between shapes, first the best possible352 352

correspondence of visual parts is established (without explicitly computing the353 353

visual parts). Then, the similarity between corresponding parts is calculated and354 354

aggregated. The settings and parameters of our experiment are the same as for355 355

IDSC as reported in the previous section except we set C = 0.4. The accuracy356 356

of this method has been increased from 76.45% to 86.69% on the MPEG-7 data357 357

set, which is more than 10%. This makes the improved visual part method one358 358

of the top scoring methods in Table 1. A detailed comparison of the retrieval359 359

accuracy is given in Fig. 4(b).360 360

6.3 Improving Face Retrieval361 361

We used a face data set from [30], where it is called Face (all). It addresses a362 362

face recognition problem based on the shape of head profiles. It contains several363 363

head profiles extracted from side view photos of 14 subjects. There exist large364 364

variations in the shape of the face profile of each subject, which is the main reason365 365

why we selecte this data set. Each subject is making different face expressions,366 366

e.g., talking, yawning, smiling, frowning, laughing, etc. When the pictures of367 367

subjects were taken, they were also encouraged to look a little to the left or368 368

right, randomly. At least two subjects had glasses that they put on for half of369 369

their samples. A few sample pictures are shown in Fig. 7.370 370

Fig. 7. A few sample image of the Face (all) data set.

The head profiles are converted to sequences of curvature values, and normal-371 371

ized to the length of 131 points, starting from the neck area. Fig. 8(a) illustrates372 372

how the profiles are transformed to sequences of curvature. The data set has373 373

two parts, training with 560 profiles and testing with 1690 profiles. The train-374 374

ing set contains 40 profiles for each of the 14 classes. As reported on [30], we375 375

calculated the retrieval accuracy by matching the 1690 test shapes to the 560376 376

training shapes. We used a dynamic time warping (DTW) algorithm with warp-377 377

ing window [31] to generate the distance matrix, and obtained the 1NN retrieval378 378

accuracy of 88.9% By applying our distance learning method we increased the379 379

1NN retrieval accuracy to 95.04%. The best reported result on [30] has the first380 380

nearest neighbor (1NN) retrieval accuracy of 80.8%. The retrieval rate, which381 381

represents the percentage of the shapes from the same class (profiles of the same382 382

subject) among the first k-nearest neighbors, is shown in Fig. 8(b). The accu-383 383

racy of the proposed approach is stable, although the accuracy of DTW decreases384 384

significantly when k increases. In particular, our retrieval rate for k=40 remains385 385

high, 88.20%, while the DTW rate dropped to 60.18%. Thus, the learned dis-386 386

tance allowed us to increase the retrieval rate by nearly 30%. Similar to the387 387

above experiments, the parameters for the affinity matrix is C = 0.4 and K = 5.388 388
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Fig. 8. (a) Conversion of the head profile to a curvature sequence. (b) Retrieval accu-
racy of DTW (blue circles) and the proposed method (red stars).

7 Conclusion and Discussion389 389

In this work, we adapted a graph transductive learning framework to learn new390 390

distances with the application to shape retrieval. The key idea is to replace the391 391

distances in the original distance space with distances induces by geodesic paths392 392

in the shape manifold. The merits of the proposed technique have been vali-393 393

dated by significant performance gains over the experimental results. However,394 394

like semi-supervised learning, if there are too many outlier shapes in the shape395 395

database, the proposed approach cannot improve the results. Our future work396 396

will focus on addressing this problem. We also observe that our method is not397 397

limited to 2D shape similarity but can also be applied to 3D shape retrieval,398 398

which will also be part of our future work.399 399
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