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Abstract. In this paper, we tackle the tracking problem from a fusion
angle and propose a disagreement-based approach. While most existing
fusion-based tracking algorithms work on different features or parts, our
approach can be built on top of nearly any existing tracking systems
by exploiting their disagreements. In contrast to assuming multi-view
features or different training samples, we utilize existing well-developed
tracking algorithms, which themselves demonstrate intrinsic variations
due to their design differences. We present encouraging experimental
results as well as theoretical justification of our approach. On a set of
benchmark videos, large improvements (20% ∼ 40%) over the state-of-
the-art techniques have been observed.

1 Introduction

Object tracking has been a long standing problem in vision. Once a tracker gets
initialized, it starts to track the target in a video by performing two steps: (1)
making a prediction about the location of the target, and (2) updating its object
model (location, appearance, and shape) based on the prediction. This is in spirit
very similar to the bootstrapping and learning procedure in a learning algorithm.
With the recent success in detection-based tracking approaches, an increasing
amount of work has treated the tracking problem as a semi-supervised learning
problem [1–5]. Picking a target to track at the beginning provides supervised
data; the remaining of the frames for the tracker to explore do not contain label
information and thus is unsupervised. Due to the errors introduced in both the
prediction and model updating stage, nearly any tracker will eventually fail with
the errors being accumulated over the time.

Disagreement-based semi-supervised learning approaches [6], such as co-training
or tri-training [7, 8], provide a mechanism to allow classifiers trained on different
views or data samples to exploit unlabeled data. The learning process is a type
of ensemble learning [9–11]. It involves multiple classifiers which label the unla-
beled data to update and improve each other [12]. From a different angle, the use
of multiple classifiers can be viewed as a fusion problem and it has been shown
that fusing complementary features in a tracking system often leads to enhanced
performances [13–15]. However, less efforts have been made in learning to fuse
well-developed existing algorithms through semi-supervised learning; we will see
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later (in both theory and experiments) that a disagreement-based fusion signif-
icantly improves the performance over direct combination of features/systems
[14, 16, 17].

In this disagreement-based multi-system tracking approach, we seek a bal-
ance between the current tracker and the level of agreements among other track-
ers. Our intuition is to find the location where the current tracker is confident
but disagrees with other trackers, while other trackers reach a high degree of
agreement. We provide both theoretical and experimental evidence to our ap-
proach and show much improved results over the state-of-the-art techniques on
benchmark videos.

2 Related Work

A number of tracking methods have been proposed to perform fusion[13, 14, 18,
19, 16, 15, 17]. Different from [13, 17] where multiple parts were tracked and cor-
related, we deal with a single target. In [14, 16] multiple trackers were fused but
these trackers represent different features and they were directly combined. In
[18] the tracking approach was combined via the weighted combination of the
PDFs. Different from [18], our method does not perform direct multiplication
but seeks a balance between the PDF of one tracker and the degree of agreement
by the other trackers; also, in our method, each tracker performs prediction sep-
arately maintaining certain independence and patches at the agreed positions
can be recommended to update the other trackers. In [20], the tracking combi-
nation method is trained for specific scenarios. Different from [20], our method
is based on the disagreement-based semi-supervised learning and do not require
an off-line training process; also, it can be applied to general videos, and per-
forms very well on a fairly large benchmark dataset. In [21], mutual information
was used for the fusion. Here, the proposed fusion approach is based on the
disagreements among the trackers. The most related work to our approach is
[2], where the co-training idea was used to retrain classification-based trackers.
However, [2] followed the standard co-training implementation using one spe-
cific type of classifier, SVM. In [19] several tracking algorithms were combined
in a Bayesian framework whereas we here emphasize disagreement-based fusion
through semi-supervised learning.

In disagreement-based semi-supervised learning, much of the work has been
focused on using multi-view features [7] or different data samples [8]. The spirit
of all such kind of approaches [7, 22, 8, 23] is to train multiple classifiers with
disagreements, and then label the unlabeled instances for each other to up-
date/improve the model. [24] provided PAC bounds with multi-view features,
while [12] provided a sufficient condition for multi-view as well as single-view fea-
tures. Recently, a sufficient and necessary condition was proved for disagreement-
based semi-supervised learning, by establishing a connection between disagreement-
based and graph-based approaches [25].

In this paper, we emphasize taking advantages of having various well-developed
tracking algorithms. In the democratic co-learning framework [26], different al-
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gorithms are also used; however, their approach is for classification and a direct
voting of all the methods is used. A main difference between tracking and clas-
sification is that there is no labeling information provided once the tracking
process starts (it is a dynamic system), whereas most disagreement-based semi-
supervised learning algorithms can still use labeled data in retraining. Notice
that the existence of large disagreements among the classifiers is a premise for
the learning or tracking process to continue [12], while the prediction is made by
seeking the agreements among the classifiers. For example, in [22, 23], classifiers
are learned so that they not only fit the supervised data well, but also themselves
reach a high degree of agreement; the tri-training algorithm [8] uses confident
and agreed data from two classifiers to help the third classifier. Our agreement is
used in the prediction stage like the bootstrapping stage in [26], and we further
emphasize the consistency with the information provided by the current tracker.
Our work is also related to the active learning literature [27] but we do not have
humans in the loop.

3 Disagreement-Based Tracking

The problem of making predictions in a tracking system has its own unique
characteristic, and directly applying the standard co-training formulation [2]
may not necessarily yield a good solution. Instead, we take advantages of having
well-developed existing algorithms, experts, and combine them by exploiting the
disagreements among the experts. The differences in the intrinsic design of the
existing systems will naturally lead to a certain amount of biases/variations, a
property the disagreement-based approaches requires [12].

3.1 Prediction of Single Tracker

In this section, we first clarify our notations for a single tracker. A tracker can
be viewed as a learner denoted by ht = (A, f t, Xt) since it always updates itself.
Here, A is a specific tracking method e.g. mean-shift tracker [28], or particle
filtering [29]; f t is the underlying appearance model about the target at time t
which can be represented by a discriminative model [5], generative model [4], or
template matching [28]; Xt is the position of the target at time stamp t. Given a
new image It+1 at time stamp t+1, tracker ht makes a prediction, Xt+1, about
the position of the target and updates its underlying appearance model to f t+1.
We can view tracking a target of a tracker A as computing

qt+1

A (x) ≡ pA(yx = +1|It+1(x), f t) · p(Xt+1 = x, Xt)

and
∑

x

qt+1

A (x) = 1 (1)

Here yx = +1 indicates the occurrence of target at location x and It+1(x) is
an image patch centered at x. Motion coherence is assumed that the prediction
on the time stamp t + 1 is smooth w.r.t. to the prediction on the time stamp t,
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for example, p(Xt+1 = x, Xt) can be a constant within a neighborhood of Xt

and zero outside. This corresponds to the local search strategy adopted by most
of the trackers.

Now that qt+1

A (x) ∈ [0, 1] indicates how likely xt+1 is the correct position
for the target. For an existing tracking algorithm, it may not strictly follow the
formulation as in Eq. (1), but we still can use it so long as it outputs a probability
map for the prediction.

3.2 Disagreement of Trackers

Suppose we have a set of existing trackers (experts) for making a prediction in
a tracking system S = {hi, i = 1..n} with n ≥ 3 being the number of trackers
and each hi is a tracker trained by tracking algorithm Ai. Given an input It+1

at a time stamp t + 1, each tracker hi computes a qt+1

i (x) to make a prediction
of random variable X . Let pt+1(x) denote the ground probability map which
indicates how likely x is the correct position, our general objective is to combine
the probability maps by different trackers to obtain high probability modes in
the “ground-truth” pt+1(x).

A direct way to fuse the multiple trackers is by linearly combining the prob-
ability maps together [15]. Here, we call it direct tracker fusion (DTF), which
serves as a baseline algorithm:

q̄t+1(x) =
1

n

n∑

i=1

qt+1

i (x) (2)

with the hope that q̄t+1(x) → pt+1(x) as each tracker being unbiased and inde-
pendent. Algorithms like [15] perform in this way with an adaption in the weight-
ing parameters. The target location is retrieved by x̌t+1 = arg maxx q̄t+1(x). In
DTF, at each time, all trackers use the same prediction, x̌t+1, and each tracker
updates its appearance model to f t+1

i based on x̌t+1 separately and continues
the tracking process. Fusing trackers leads to improvement over the original
ones (see Section 3.2 and Section 4 for theoretical and empirical justification
respectively).

However, predicting the position for the target w.r.t. Eq. (2) has a big draw-
back, i.e., the average performance qt+1(x) of the n trackers may be degenerated
by one bad tracker in the group. Here we give an example to illustrate this: sup-
pose there are four trackers f1, f2, f3, f4 and two candidate positions x∗ and x

′

at
t+1, where x∗ is the correct position for the target. The outputs of the four track-
ers on the two candidate positions are q1(x

′

) = 0.9, q2(x
′

) = 0.4, q3(x
′

) = 0.4,
q4(x

′

) = 0.4 and q1(x
∗) = 0.1, q2(x

∗) = 0.6, q3(x
∗) = 0.6, q4(x

∗) = 0.6. The
tracker f1 is very confident but disagrees with other trackers and makes a wrong
prediction. To some extent, this kind of tracker which is confident but disagrees
with other trackers can be thought of as a outlier tracker. If we fuse the four
trackers with direct tracker fusion (DTF), the position x

′

will be predicted as
the position for the target according to x = arg maxx qt+1(x). Unfortunately,
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we get a wrong position x
′

due to the outlier tracker f1 at t + 1 although three
trackers make correct prediction with confidence larger than 0.5.

Let ζt+1 denote the probability mass on such an event that the average
performance qt+1(x) is degenerated by some outlier tracker fi, i.e., the other
n − 1 trackers agree with each other and predict the correct position with high
confidence while the DTF in Eq. (2) predict the position wrongly due to the
outlier tracker fi at t + 1. Next, we give the formulation for combining the
multiple trackers based on their disagreement to avoid this kind of event for
the purpose of robustness. Given n trackers, we still let each tracker perform
prediction separately. If the current tracker is confident but disagrees with other
trackers while other trackers reach a high degree of agreement, the current tracker
is prone to be drifted to the agreed position of other trackers to reach more
robust predictions. Our intuition is that we seek a balance between the generated
distribution qt+1

i (x) of the current tracker and the degree of agreement by the
other trackers as

Qt+1

i (x) = (1 − α)qt+1

i (x) +
α

n − 1
[

n∑

j=1,j 6=i

qt+1

j (x)] ·

δ(∀j 6= i, qt+1

j (x) ≥ TH)

(3)

and the specific location by the i-th tracker is x̃t+1

i = arg maxx Qt+1

i (x). TH is a
threshold corresponding to a confidence zone. α balances the importance of each
tracker’s own prediction and the influence from other trackers. The derivation
of TH and α will be given in Section 3.2.

Note that the second term is non-zero only when all the other trackers have a
high-degree agreement; this is different from the traditional fusion-based track-
ing [15] where weighted sum is performed; in addition, we emphasize that Eq. (3)
focuses mainly on the places with high probability and it is not necessary to fit
pt+1(x) at all xs as in the general statistical learning; our disagreement formu-
lation in Eq. (3) can take advantage of this property.

Eq. (3) can be understood as the following: if the current tracker disagree
with the other trackers while the other trackers are confident and agree with
each other, the prediction of the current tracker will be influenced towards the
agreed location (depending upon the overall probability map); otherwise, tracker
hi gives out a prediction as if there were no other trackers. In such a way, the
trackers can keep relative independence and also enable confident interactions
between each other. This makes our approach robust to outlier trackers. In addi-
tion, using the agreement of other trackers gives the overall system an ability to
be self-aware of when the system starts to drift. This happens when all trackers
have high entropy of qt+1

i (x) with large disagreement.
The overall output is then given by xt+1 ∗ = argmaxx Q

t+1(x) and

Qt+1(x) =
1

n

n∑

i=1

Qt+1

i (x) (4)
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Note that xt+1 ∗ is the output of the overall system but it does not participate
in the retraining of the individual trackers. The pseudo code of disagreement-
based tracking is shown in Fig. 1. Tracking based on the disagreements among
the trackers shows advantage over using a direct combination and we justify this
point both theoretically and empirically in the following sections.

Given n trackers {hi, i = 1..n}, each tracker hi = (Ai, f
t

i , Xt

i ) adopts a specific track-
ing method Ai. At the time stamp t = 0, a target is manually identified located at
X0. All trackers start with the same X0 and obtain their appearance model f0

i . Given
a new image It+1 at time stamp t + 1,

• Each tracker hi searches a local neighborhood around Xt

i and generate a proba-
bility map qt+1

i
using Eq. (1).

• Find modes of x̃t+1

i
for Qt+1

i
(x) as in Eq. (3). x̃t+1

i
keeps a balance between

the estimation of the current tracker and the level of agreements among other
trackers.

• Assign Xt+1

i
= x̃t+1

i
, sample patches around Xt+1

i
and update the appearance

model of each tracker to f t+1

i
using the embedded model updating/learning rule

in Ai

• Based on xt+1 ∗ = arg maxx

∑
i
Qt+1

i
(x), report the xt+1 ∗ as the tracking result

for disagreement-based tracking (DBT).

Fig. 1. Pseudo code of disagreement-based tracking.

Theoretical Justification We first show that a linear combination of multiple
trackers as in Eq. (2), direct tracker fusion (DTF), gains improvement over the
individual systems. Let pt+1(x) denote the ground truth which indicates how
likely x is the correct position, and let qt+1

i (x) ∈ [0, 1] be the output of algorithm
Ai.

Lemma 1. If we take an average of the predictions from all the experts: q̄t+1(x) =
1

n

∑n
i=1

qt+1

i (x) as in Eq. (2), then the average is bounded in a PAC sense.
We suppose that the n trackers are independent and unbiased: then qt+1(x) →
pt+1(x) as n → +∞.

Proof. For any small ǫ > 0, with Hoeffding inequality, we get that P (|qt+1(x)−
pt+1(x)| ≥ ǫ) ≤ 2 exp(−2nǫ2). ⊓⊔

Lemma 1 shows that qt+1(x) can converge to the ground truth pt+1(x)
exponentially. Let errort+1

i denote the error rate of the tracker fi at t + 1,
i.e., the probability that fi predicts a wrong position for the target at t + 1,
errort+1

min = mini{error
t+1

i } and errort+1
max = maxi{error

t+1

i }, we give the fol-
lowing theorem to show that fusing the multiple trackers according to Eq. (3) and
Eq. (4) will improve the performance at least ζt+1−n(errort+1

max)n−1, contrasting
to the direct tracker fusion (ζt+1 was defined in the previous section).
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Theorem 1. If we fuse the multiple trackers according to Eq. (3) and Eq. (4)
where α ≥ 2

3
and TH ≥ 1

2
, contrasting to the direct tracker fusion in Eq. (2), the

performance at t+1 can be improved at least ζt+1−n(errort+1
max)n−1, where ζt+1

is the probability of the event that the average performance qt+1(x) is degenerated
by some outlier tracker.

Proof. Let X t+1 denote the set of candidate positions at t + 1. If there is some
x∗ ∈ X t+1, at which qt+1

i (x∗) ≥ TH for all i ∈ {1, . . . , n}, it is easy to find
that such x∗ is unique, since TH ≥ 0.5 (Here we neglect the probability mass
on the event that at t + 1 there are two positions x and x

′

at which qt+1

i (x) =

qt+1

i (x
′

) = 1

2
). Considering Eq. (3) we get Qt+1(x∗) = 1

n

∑n

k=1
qt+1

k (x∗), and
x∗ will be selected as the tracking result, no matter whether argmaxQt+1(x)
or argmax qt+1 is used. If for any x ∈ X t+1 there are less than n − 1 track-
ers with qt+1

i (x) ≥ TH , then the second term of Eq. (3) is zero. So for any
x ∈ X t+1, Qt+1(x) = 1−α

n

∑n

k=1
qt+1

k (x). Predicting the tracing result according
to arg maxQt+1(x) is equal to predicting according to argmax qt+1. Next we
analyze the situation when there is some x̂ ∈ X t+1, at which qt+1

i (x̂) < TH and
qt+1

j (x̂) ≥ TH for all j 6= i. Obviously, such x̂ is also unique, since TH ≥ 0.5
and n ≥ 3.

Case 1: x̂ is the correct position for the target at t + 1. We will show that
even if qt+1

i (x̂) is very close to 0, i.e., tracker fi is an outlier at t + 1, it will not
degenerate the fusion of the multiple trackers due to Eq. (3). We obtain

Qt+1

i (x̂) = (1 − α)qt+1

i (x̂) +
α

n − 1

∑

j 6=i

qt+1

j (x̂) ≥ (1 − α)qt+1

i (x̂) + α · TH (5)

Qt+1

j,j 6=i(x̂) = (1 − α)qt+1

j (x̂) ≥ (1 − α) · TH

Thus,

n∑

k=1

Qt+1

k (x̂) ≥ (1 − α)qt+1

i (x̂) + α · TH +

(1 − α)(n − 1)TH (6)

For an incorrect position x′ 6= x̂, since
∑

x∈X t+1 qt+1

k (x) = 1, it is easy to see
that

Qt+1

i (x′) = (1 − α)qt+1

i (x′) ≤ (1 − α)(1 − qt+1

i (x̂))

Qt+1

j,j 6=i(x
′) = (1 − α)qt+1

j (x′) ≤ (1 − α)(1 − qt+1

i (x̂))

≤ (1 − α)(1 − TH) (7)

Therefore,

n∑

k=1

Qt+1

k (x
′

) ≤ (1 − α)(1 − qt+1

i (x̂))

+ (1 − α)(n − 1)(1 − TH) (8)
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We see that in general
∑n

k=1
Qt+1

k (x̂) ≥
∑n

k=1
Qt+1

k (x
′

) for α ≥ 2

3
and TH ≥ 1

2
.

This makes the correct position more robust, i.e., the prediction of the disagreement-
based tracking will never be influenced even if fi is a outlier tracker. So the
improvement is at least ζt+1.

Case 2: x̂ is not the correct position for the target at t + 1. Since qt+1

j (x̂) ≥

TH for all j 6= i and TH ≥ 1

2
, n − 1 trackers predict the wrong position x̂ as

the tracking result at t + 1. Now we bound the probability of such event. Since
errort+1

j ≤ errort+1
max and the multiple trackers are assumed to be independent,

the probability mass on the event that n−1 trackers predict the position mistak-
enly is at most n(errort+1

max)n−1. The worst situation is that the fusion according
to Eq. (3) performs worse than the direct tracker fusion in case 2 completely.
We get Theorem 1 proved. ⊓⊔

From Theorem 1 we know that the fusion will get benefit from Eq. (3) under
the situation that one bad tracker degenerates the direct tracker fusion. When n
(the number of the trackers) is large, it would be difficult for the remaining n−1
trackers to achieve some agreement (See the experiment “Non-Relax” in Section
4). In practice, we can relax this constraint, e.g., when two or more trackers
achieve agreement, the agreement term would take effect.

Note that the performance of Eq. (2) and Eq. (3) depends on the correlation
between the trackers. The correlation depends on two factors: (1) the intrinsic
design of the trackers; (2) the training samples used to train the trackers. Two
trackers with the same design trained on the same set of samples are highly
correlated, and two different types of trackers trained on the same set of samples
are more correlated than those trained on different set of samples. If the n
trackers are the same, then using Eq. (3) shows no advantage over Eq. (2).

In summary, Lemma 1 suggests that fusing the multiple experts directly
might gain exponential improvement, contrasting to the single tracker; Theorem
1 shows that our disagreement-based fusion method can provide more robustness
to the tracking system, which motivates the use of Eq. (3) by keeping a balance
between the current expert fi and the agreement from the other experts.

4 Experiments

In the experiments, we make a comprehensive comparison between the perfor-
mance of disagreement-based tracking, direct tracker fusion, and the individual
trackers. Four trackers are used and the experiment is conducted on 11 commonly
tested videos (listed in Table 1). The trackers used are MilTracker [5], the semi-
supervised on-line boosting tracker (semiBoost)[3], Incremental Visual Tracker
(IVT)[4], and Incremental Visual Tracker using edge information (IVTE).

Since the individual trackers perform prediction separately, the computa-
tional complexity of the proposed method only adds slight overhead over the
individual ones with the multi-core processor and parallel computing. Compared
with the large performance gain, this computational overhead is tolerable.

From the experiments, we observe that, statistically, each individual tracker
gets significantly improved by using Eq. (3): the average center location error
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has been reduced by more than 12 pixels and the success rate has increased by
20% ∼ 40%. The result of DBT (Disagreement-Based Tracking) also outperforms
the system by directly combining the original trackers, i.e., DTF, with 3.3 pixels
reduction in center location error and 4.4% improvement in success rate. DBT
also significantly outperforms PROST [30].

4.1 Implementation details

While a wealthy body of tracking papers/systems have been reported, we found
a few systems (with available source code) having decent performance on gen-
eral videos. Here, we provide brief descriptions for these trackers we used with
necessary changes made to them.

MilTracker adopts an online multiple instance learning algorithm to train a
discriminative classifier. In order to handle the ambiguity of sampled patches, a
bag of potentially positive image patches are extracted. MilTracker maintains a
pool of Haar features and the online boosting mechanism is adopted.

SemiBoostTracker also adopts an online boosting mechanism and it formu-
lates the update process in a semi-supervised fashion combined with a given
prior. This helps to alleviate the drifting problem.

The IVT incrementally learns a low dimensional eigenspace representation
to model the appearance changes of the object. In IVT model, the target is
represented as a vector of gray-scale value, and the motion is modeled by an
affine image warping. To propagate sample distributions over time, a particle
filter framework is adopted. Since both MILTracker and SemiBoostTracker do
not support affine transformation, we disabled the scaling and rotating ability
of IVT. IVTE is similar to IVT, except that it uses level set as the feature.

The forms of the 4 tracking systems’ outputs are rather different. MILTracker
and SemiBoostTracker produce scores on local search regions; IVT and IVTE
propagate probabilities via particles. In the experiment, we map the scores of
MILTracker and SemiBoostTracker to the range [0, 1] to produce probability
maps qMIL and qSBT (The probability maps are normalized to make sure that∑

x qt+1

A (x) = 1). For IVT and IVTE, we keep the position entries (ai, bi) of
the particle and use a parzen window approach to estimate the probability for
prediction. For a point x = (a, b) on the image, its probability is calculated as

qIV T (x) =
∑M

i=1
wi ∗ max{0, 1 −

√
(a − ai)2 + (b − bi)2/L}. In our experiment,

L is set to 15. A map qIV TE is produced similarly as qIV T for IVTE.
Based on qMIL, qSBT , qIV T , and qIV TE we respectively compute the corre-

sponding QMIL, QSBT , QIV T , and QIV TE using Eq. (3) (Since 4 trackers are
used, we relaxed Eq. (3) that when 2 trackers achieve confident agreement, the
agreement term will take effect) and thus, each tracker makes its own prediction
separately. As we have mentioned before, x̃t+1

i found by mean shift algorithm
[28] can represent multiple points (modes). For each tracker, e.g., MILTracker,
the one mode with the maximum value is reported as its prediction, significant
modes found are used to retrain the tracker and as the seeds for further search
at the next time stamp. For the results reported in our experiment, α is set to
be 0.67 as suggested by the theoretical section. The threshold TH in Eq. (3) is
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set as 0.8/(Λ/3) (Λ is the size of the search window). For each tracker, 2 modes
are kept.

4.2 Quantitative Results

The average center location error The average center location error is a
commonly used metric to measure the performance of tracking and is defined
as the average error between the predicted locations to the ground truth. In
Table 1, we summarize the results of the average center location error on all
the 11 videos. It’s clear that our disagreement based tracker outperforms the
individual trackers, Direct tracker fusion, and the co-training scheme. For non-
relax (using Eq. (3) directly without relaxation), it’s less possible for the trackers
to achieve some agreements, and the chance of interaction between trackers is
reduced. Still the result is better than the individual trackers.

Table 1. Comparison of Average Center Location Error. Non-Relax indicates to use
Eq. (3) directly without relaxation;Co-Training stands for the results using co-training
method.

videos MilT IVT IVTE SBT DTF Co-Training Non-Relax DBT

Girl 31.9 25.2 18.1 19.3 20.6 39.8 23.3 13.4

CokeCan 20.5 55.3 11.0 14.9 9.3 49.0 7.9 6.6

Tiger1 15.9 71.9 56.6 20.9 37.7 64.1 49.0 31.2
Sylv 10.9 44.0 19.5 16 19.5 31.7 7.3 10.8

StatOcc 27.8 3.3 4.8 74.4 2.5 41.2 26.2 3.0
David 22.9 4.9 16.9 26.4 7.0 9.2 7.9 4.1

Cliffbar 12.0 31.4 78.6 29.9 27.1 45.6 16.7 8.5

Surfer 9.2 6.7 23.9 67.6 5.1 4.7 5.1 4.8
faceocc2 20.1 14.2 9.1 17 6.5 12.4 12.0 6.1

Indoor 17.2 30.2 193.5 116.5 4.7 61.9 10.7 4.5

faceocc 27.1 11.8 11.3 6.8 8.9 23.3 7.6 9.7

In all 20.8 21.8 22.3 37.3 11.5 32.7 15.8 8.2

The success rate If the location error on one frame is less than a pre-
specified threshold, the prediction is regarded as a successful prediction. The
success rate is defined as the ratio of successful predictions over all the predic-
tions. To compute the success rate, we set T as certain ratio of the average width
of the target, i.e., T = β ∗ (w + h)/4, where, w and h are the width and height
of the target respectively. Conceptually, this is similar to the overlap score eval-
uation used in [30] and thus, success rate is conceptually similar to the tracked
percentile in [30]. We observe that, the trackers can not track the target precisely
at all times, if there is no overlap but the prediction of the tracker is not far
from the target or within the search area of the tracker, it’s often possible for
the tracking process to recover. Our evaluation measurement can reflect such
a phenomenon. We compare the success rate in Table 2 and from Table 2, the
DBT achieves the highest success rate.
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Table 2. Comparison of success rate when β = 0.5.

MilT IVT IVTE SBT DTF Non-Relax DBT

0.596 0.733 0.753 0.592 0.862 0.84 0.900

Comparison of probability maps In Fig. 2, we show how the probability
maps are generated in Eq. (2) and Eq. (3) on a testing video, Tiger1. DTF
drifts from the 30th frame; on this frame, the predictions of the trackers are
rather diverse. In DTF, however, the individual tracker’s prediction is not fully
respected and it has to comply with the voted prediction; this is the primary
reason for drifting and getting trapped; using Eq. (3) however leads to a more
robust prediction. As we can see from the second figure, on the 30th frame,
MILTracker and Semiboost tracker achieves certain agreement, but IVT and
IVTE still complies with its own prediction since the agreement is weak. On
the 35th frame, when MILTracker, IVT and Semiboost tracker achieve confident
agreement, IVTE is pulled back to the agreed position and the four trackers
merge again. The benefit of our disagreement-based tracking is obvious: the
trackers then keep their relatively different traces and the risk of getting trapped
is reduced.

(a) (b) (c)

Fig. 2. Illustration of the probability maps where four trackers (experts) are adopted
(the figures have been scaled for visualization). (a) shows the results by DTF. (b)
and (c) display the probability maps generated by disagreement-based tracking. The
probability maps inside the dashed yellow rectangle are shown below the screen shots.
Underneath each figure, from left to right, the probability maps are IVT, IVTE, MIL-
Tracker, Semiboost tracker respectively (see the discussions about these trackers in
the experiments). For DTF in (a), the fifth probability map is the combined map. For
disagreement-based tracking in (b) and (c), the first rows shows the original probability
maps, and the second row shows the Qt+1

i
computed by Eq. (3).

Comparison with other methods PROST [30] is another fusion based
tracking algorithm that adopts 3 trackers (a template model, an optical-flow
based mean-shift tracker and an online random forest tracker). Table 3 and Ta-
ble 4 compare the average location errors and the tracked percentage (computed
using the overlap score in [30]) with PROST. From the two tables, we can ob-
serve that, our disagreement-based tracking outperforms PROST and achieves
better tracked percentages on most of the videos.

The best experimental performance of Democratic Integration in [15] was
achieved by using uniform qualities, which assigned equal weights to all the
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Table 3. Comparison of average center location error with [30]

Method Girl tiger1 sylv David faceocc faceocc2

[30] 19.0 7.2 10.6 15.3 7.0 17.2
Ours 13.4 31.2 10.8 4.1 9.7 6.1

Table 4. Comparison of tracked percentage with [30]

Method Girl tiger1 sylv David faceocc faceocc2

[30] 89 79 73 80 100 82
Ours 97 30 83 100 100 100

clues, and corresponded directly with DTF. In addition, we implemented the
quality measure of normalized saliency and the performance was not as good as
DBT: their average center location error is 13.8 with success rate 0.87.

We did not get the implementation of [2]. Nevertheless, we did experiment on
some videos used in [2] and the results of DBT are better than [2] qualitatively
(skipped here due to page limit). Moreover, we indeed implemented co-training
and reported the result in Table 1 (average center location error 32.7), which is
much worse than DBT.

Table 5. Performance by varying α and TH (TH = R/(Λ/3))

R/α 0.8/0.3 0.8/0.67 0.8/0.85 0.7/0.67 0.9/0.67

Average Error 10.0 8.2 9.8 9.95 9.8
Success Rate 0.875 0.90 0.895 0.87 0.89

Robustness by varying the parameters In table 5, we summarize the
performance of disagreement-based tracking by varying the parameters α and
TH , which are the two key parameters in Eq. (3). We can see from this table,
by varying TH and α, the results (especially the success rate) do not change too
much. This demonstrates the robustness of disagreement-based tracking. The
average center location error has relatively larger change because on portions
of the videos Tiger1 and Indoor, disagreement-based tracking gets distracted to
positions distant from the targets. In such cases, the success rate does not vary
too much, but the center location error is increased.

Screenshots of the results In Fig. 3, we compare the tracking results on
the video Girl. This video undergoes several challenges: fast appearance change
and occlusion. Although both MILTracker and IVTE can track the face of the
girl successfully, the tracking process is not very stable. IVT drifts from the face
at the 20th frame. From the 391th frame, direct tracker fusion also drifts and
get trapped at the background of the images. As can be seen from both the
screen shots and the error plot on the right of Fig. 3, we find that disagreement-
based tracking tracks most robustly and accurately. In Fig. 3, we can also find
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Fig. 3. Comparison of tracking results on the video Girl. The first row on the left shows
the results of disagreement-based tracking; the second row on the left shows the results
of 4 individual trackers and direct tracker fusion; the right plot shows the comparison
of center location error (the number of the x axis denotes the number of predictions).
The coloring scheme is: dotted green: IVT, dotted black: MILTracker, dotted blue:
IVTE, dotted yellow: Semiboost tracker, solid Red: disagreement-based tracking, and
solid magenta: Direct tracker fusion.

a very nice property of democratic tracking that, the traces of the four trackers
are similar but not exactly the same, thus, they can explore different spaces,
recommend confident samples to other trackers, and thus avoid to be trapped
at an incorrect position.

5 Conclusion

In this paper, we have introduced a disagreement-based tracking method which
fuses multiple existing tracking systems in the following way that seeks a bal-
ance between the coherence of the current tracker and the degree of agreements
among other trackers. In such a way, it enables the interaction between track-
ers and keeps the appealing characteristics of the trackers at the same time. As
illustrated in the experiments, the balance complies with the characteristic of
tracking. Disagreement-based tracking can be built on top of various existing
well-developed tracking systems utilizing their intrinsic biases. Adopting several
state-of-the-art tracking algorithms, our approach is able to improve each of
them by a large margin on widely used benchmark videos in the literature
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