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Abstract

Codebook learning is one of the central research topics

in computer vision and machine learning. In this paper,

we propose a new codebook learning algorithm, Random-

ized Forest Sparse Coding (RFSC), by harvesting the fol-

lowing three concepts: (1) ensemble learning, (2) divide-

and-conquer, and (3) sparse coding. Given a set of training

data, a randomized tree can be used to perform data par-

tition (divide-and-conquer); after a tree is built, a number

of bases are learned from the data within each leaf node

for a sparse representation (subspace learning via sparse

coding); multiple trees with diversities are trained (ensem-

ble), and the collection of bases of these trees constitute the

codebook. These three concepts in our codebook learning

algorithm have the same target but with different emphasis:

subspace learning via sparse coding makes a compact rep-

resentation, and reduces the information loss; the divide-

and-conquer process efficiently obtains the local data clus-

ters; an ensemble of diverse trees provides additional ro-

bustness. We have conducted classification experiments on

cancer images as well as a variety of natural image datasets

and the experiment results demonstrate the efficiency and

effectiveness of the proposed method.

1. Introduction

A large number of applications in machine learning,

medical image classification, and computer vision deals

with the fundamental representation problem where the data

are high-dimensional and live in complex manifolds. With

their intrinsic and mathematical properties gradually un-

folded, research in three general directions has led to signif-

icant progress on classification, recognition, and compres-

sion: (1) ensemble learning, (2) divide-and-conquer, and

(3) sparse coding. More specifically, four concepts have

emerged as being essential to the three directions: (1) vot-

ing, (2) randomizing, (3) partitioning, and (4) sparsity.

Ensemble learning approaches such as bagging [3],

boosting [13], and random forests [4] have shown to be

among the best choices for classifiers [7, 6]. The superior

robustness of these ensemble methods comes from the vot-

ing/averaging of multiple independent/complementary ex-

perts (weak learners). Certain randomness in the data and

feature selection stage leads to additional robustness, as

shown in the random forests [4] where multiple trees are

learned from multiple randomly drawn subsets with the

splitting criterion being locally optimal on some random

features. In Extremely Randomized Trees [16] and Ran-

dom Projection Trees [9], the full data sets are used since

the randomization in both feature/basis and threshold selec-

tion already provide sufficient diversities.

As real data are of high dimension and they typically do

not live in a well-regularized space, assuming a Gaussian

type distribution leads to limited representational power

[28]. When it is hard to fit a global model to the data, di-

vided sub-problems are often easier to deal with. This is a

divide-and-conquer strategy [2]. In machine learning, de-

cision tree [25] is a standard approach where training data

are recursively partitioned into subsets. The random forests

method also has this step in training the individual tree clas-

sifier. In addition to tree node splitting, other logic rules

such as And/Or can be used as well [8]. The random pro-

jection tree [9] also has recursive data partition based on

randomly generated bases.

More recently, sparse representations such as com-

pressed sensing [5] and LASSO [27] have gained a great

deal of popularity. One message emerging from sparse rep-

resentation is that high-dimensional data within intrinsic

lower dimension can be well represented by sparse samples

of high dimension. The robustness of the sparse represen-

tation often assumes a subspace of certain regularity, e.g.

well-aligned data [32].

In this paper, we tackle the problem of codebook learn-
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ing for high dimensional visual data. Inspired by the above

observations, we propose a randomized forest sparse coding

(RFSC) method. Given a large set of visual data, we train

an ensemble of random splitting/projection trees (when we

are not sure about the form of the whole data population, it

is desirable to perform random partition with certain local

optimality); for each leaf node in the tree, we learn a set of

bases to best represent the data with sparse coefficients. The

overall codebook is a collection of all the bases from all the

tree leaves. RFSC carries the ideas of voting, randomizing,

partitioning, and sparse coding in a natural way. It’s appli-

cable to applications such as natural image classification,

and modern cancer diagnosis.

Modern cancer diagnosis largely benefits from high reso-

lution histopathology images, which provide distinctive and

reliable cues for discriminating abnormal tissues from nor-

mal ones. Therefore, automatic recognition and analysis of

cancer in histopathology images are very important assis-

tant means for doctors. In this paper, we verify our algo-

rithm on a collection of colon cancer images. As shown in

the experiment section, promising results are obtained.

2. Related Works

As we have discussed, our approach is inspired by

the literature in ensemble learning [3, 13, 4], divide-and

conquer approaches [2, 25, 8], and sparse representation

[5, 27, 32, 21]. Two types of work are particularly related to

our approach: tree based splitting/projection methods, e.g.,

Extremely Randomized Trees [16] and Random Projection

Trees [9], and sparse coding based codebook learning tech-

niques [33, 17, 15].

Extremely Randomized Tree (ERT) [16] is a variant of

random forest. ERTs randomize both the feature selection

and the quantization threshold searching process, making

the trees less correlated. When used for visual codebook

learning (ERC-Forest) in [22], the generated trees are not

treated as an ensemble of decision trees, instead, they are re-

ferred to as an ensemble of hierarchical spatial partitioners.

The samples (image patches) in each leaf node are assumed

to form a small cluster in the feature space. The leaves in

the forest are uniquely indexed and serve as the codes for

the codebook. When a query sample reaches a leaf node,

the index of that leaf is assigned to the query sample. A

histogram is formed by accumulating the indices of the leaf

nodes, which serves as a Bag of Words (BOA) represen-

tation. Similar to ERC-Forest, [26] introduces a semantic

texton forest using ERT to perform image classification and

segmentation.

Random Projection Tree [9] is a variant of k-d tree. The

k-d tree splits the data set along one coordinate at the me-

dian and recursively builds the tree. Though widely used

for spatial partitioning, it suffers from the curse of dimen-

sionality problem. Based on the realization that, high di-

mension data often lies on low-dimensional manifold, RPT

splits the samples into two roughly balanced sets according

to a randomly generated direction. This randomly gener-

ated direction approximates the principal component direc-

tion, and can adapt to the low dimensional manifold. The

RPT naturally leads to tree-based vector quantization and

an ensemble of RPTrees can be used as a codebook.

We use Extremely Randomized Trees/Random Projec-

tion Trees to partition the samples. But instead of splitting

the samples till we cannot split any more, we stop early ac-

cording to certain criterion and find some bases that can best

reconstruct all the samples in that node. These bases serve

as codes of the codebook.

There are already some methods using sparse coding for

codebook learning. In [33], the authors generalize vector

quantization to sparse coding, and construct the histogram

using multi-scale spatial max pooling. Each patch can be

assigned to several (sparse) codes, and thus the reconstruc-

tion error can be reduced. Also, this method extends the

Spatial Pyramid Matching method [17] to a linear SPM ker-

nel. In [15], Laplace sparse coding preserves the consis-

tency in the sparse representation and alleviates the prob-

lem in [33] that similar patches may be assigned to different

codes. In [31], a locality-constrained linear coding scheme

is proposed that utilizes the locality constraints to project

descriptors to their local-coordinate system. This scheme

can preserve the property of local smooth sparsity. Com-

pared with these methods, the advantages of RFSC is obvi-

ous. One advantage is the efficiency. Utilizing techniques

such as ERT and RPT, the sparse coding is performed only

in subspaces and the computational burden is greatly re-

duced.

The second advantage is the potential promotion of the

discriminative ability. The label information can easily be

used into the tree splitting process (ERT) and the codebook

created could have more discriminative power.

3. Randomized Forest Sparse Coding

3.1. Problem Formulation

Suppose we are given a set of training data S = {xi}
n
i=1

and xi ∈ R
D (in a supervised setting, each xi is also

associate with a label yi ∈ Y = {0, ...,K} and thus

S = {(xi, yi)}
n
i=1), our goal is to learn a codebook (set

of basis) B = {bi}
m
i=1 and bi ∈ R

D such that

minB,w

∑n

i=1

∥

∥

∥
xi −

∑m

j=1 wijbj

∥

∥

∥

2

2

s.t. ∀i,
∑

j |wij | ≤ τ (1)

The first term in Eqn. (1) minimizes the reconstruction er-

ror and the second term gives the sparsity constraints on the

reconstruction coefficients. Eqn. (1) actually includes two

coupled optimization problems: (1) given w, find the opti-
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mal codebook B; (2) given a codebook B, find the best re-

construction coefficients w. A similar formulation appears

in [33].

After an optimal basis set B∗ is found, for a new sample

x, we can compute its reconstruction coefficients w via:

minw

∥

∥

∥
x−

∑m

j=1 wjbj

∥

∥

∥

2

2

s.t.
∑

j |wj | ≤ τ (2)

The vector w can be used to characterize the sample x. In

codebook learning, each bj serves as a code, and the recon-

struction coefficients with respect to the codes are pooled to

form a histogram.

In Eqn. (1), the norm of bj can be arbitrarily large,

making wij arbitrarily small. Further constraints should be

made on bj . In our paper, we make a reasonable constraint

that all the basis in the codebook should be from the train-

ing set S, i.e., B ⊂ S. With this constraint, Eqn. (1) can be

transformed into

minv,w

∑n

i=1

∥

∥

∥
xi −

∑n

j=1 wijvjxj

∥

∥

∥

2

2
(3)

s.t.
∑

j vj ≤ m, vj ∈ {0, 1}

∀i,
∑

j |wij | ≤ τ (4)

Here, vj serves as an indicator value ∈ {0, 1} and B =
{xj : xj ∈ S, vj = 1}. Eqn. (3) is seemingly more com-

plex than Eqn. (1) with the introduction of v. However, it

can be solved more efficiently since the search space for the

basis is greatly reduced.

Learning a codebook of size greater than e.g. 5, 000 from

tens of thousands of samples is computationally demand-

ing. However, recent research reveals that data of real-world

complexity often live in complex manifolds. As motivated

before, we could perform a divide-and-conquer strategy to

partition the data space into local subspaces. Within a sub-

space, it is then much more efficient to learn bases for a

sparse representation.

3.2. Randomized Forest Data Partition

In this section, we take the Extremely Randomized Tree

(ERT) [16] and Random Projection Trees (RPT) as exam-

ples to illustrate the data projection process. Both ERT and

RPT partition the samples recursively in a top-down man-

ner. ERT adopts the label information and uses normalized

Shannon entropy as the criterion to select features. RPT is

unsupervised and it does not need any label information; it

splits the data via a hyperplane normalized to each individ-

ual randomly generated projection bases.

3.2.1 Discriminative Partition via Extremely Random-

ized Tree

Given a labeled sample set S = {(xi, yi)}
n
i=1, ERT pro-

ceeds by randomly selecting a subset of features from the

feature pool {fi, 1 ≤ i ≤ D}. For each selected feature fi,
a threshold θi is sampled according to a uniform distribu-

tion (in [22], a Gaussian distribution adapted to the feature

values in that dimension). Based on the features selected

and thresholds sampled, boolean tests {Ti : x(i) < θi} can

be used to split the set S. If Ti = true, x goes to the left

branch S1, else, x goes to the right branch S2.
To select the best boolean test for splitting, the normal-

ized Shannon entropy was used:

Score(S, Ti) =
2 · IY,Ti

(S)

HY(S) +HTi
(S)

(5)

where, IY,Ti
(S) = HY(S) −

∑2

p=1

np

n
HY(Sp). IY,Ti

(S)
is the information gain, a non-negative scalar denoting

the uncertainty reduced by the test Ti. HY(S) =
−
∑

y∈Y
ny

n
log2(

ny

n
) denoting the entropy of class

distribution of the original set S. HTi
(S) =

−
∑2

p=1

np

n
log2(

np

n
) denotes the entropy for the test Ti that

splits the data into two branches. The Ti with the largest

Score(S, Ti) is selected.

The use of HTi
(S) as a normalization term in Eqn. (5)

was first introduced in [25] to resolve the bias problem: the

criterion IY,T (S) will be biased towards the attributes lead-

ing to more branches. In codebook learning, since we are

using binary splitting, this bias problem is not a concern. In

fact, the use of HTi
(S) as a normalization term will favor

uneven splitting, making the forest more unbalanced.
In our randomized forest sparse coding scheme (RFSC),

it is desirable to have balanced trees, so we use a slightly
modified form of Eqn. (5):

Score(S, Ti) =
2 · IY,Ti

(S)

HY(S) + 1−HTi
(S)

(6)

Since HTi
(S) is a concave function and it achieves the

maximum value 1 when the numbers of samples in S1 and

S2 are the same, this criterion can make the trees more bal-

anced.

3.2.2 Unsupervised Splitting via Random Projection

Tree (RPT)

At each node, RPT chooses a random unit projection b ∈
R

D, and splits the samples into two roughly equal-sized

sets. The random projection and thresholding also serve as

a type of boolean test. We use the splitting criterion as

T := x
T
b ≤

(

median(zTb : z ∈ S) + δ
)

.

Here δ is a random perturbation that adapts to the structure

of S. Splitting around the median value makes the split-

ting balanced while the perturbation δ introduces certain

randomness [9].

Since RPTs can automatically adapt to the low dimen-

sional manifold of the dataset S, the samples in the leaf
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Figure 1. Illustration of the idea of RFSC using Random Projection Tree (best viewed in color). (a) The forest consists of ensemble of

random projection trees; (b) The spatial partition of the dataset by one tree (A copy from [12]). A cell stands for a leaf node. The width of

the separation line indicates the level of the tree. (c) For RFSC, it does not build the tree to fine level. At certain level when local manifold

structures are found, bases (indicated by the red stars) are learned for the local structure in each cell. (d) For the samples in each cell, their

reconstruction coefficients with respect to the bases are different.

nodes observe local subspaces. The local structures of all

the leaf nodes thus collectively comprise the global struc-

ture of the data set S (Fig. 1 (b)).

3.2.3 Basis Pursuit at the Leaf Nodes

Both ERT and RPT build the trees to the fine scale and use

the leaf nodes as the codes. Instead of building the trees of

very deep level, RFSC stops at some relatively higher level

(e.g., when the number of samples is less than M ). At such

nodes, the local manifold structure is assumed to be rela-

tively simple and regularized. RFSC seeks a set of bases

to sparsely represent the subspaces at those nodes. This

process can be illustrated using Random Projection Tree in

Fig. 1 in which a visualization is displayed and RPT tends

to split the data along the principal component direction

(Fig. 1 (b)). For RFSC, when the local structure is relatively

regularized, it seeks some bases (the red stars) to sparsely

represent the local subspace. Different from RPT or ERT

that use the mean of the local subspace or a single index to

represent the cell, the information conveyed via the recon-

struction coefficients with respect to each basis (Fig. 1 (d))

is richer and more informative. Note that the bases in differ-

ent clusters could be spatially close to each other. As an il-

lustration, see the two bases on the bottom right in Fig. 1(c).

From this point of view, the number of basis and the redun-

dancy would increase. However, multiple graphs [29] could

help to smooth the boundaries of the overall data representa-

tion, and thus, lead to enhanced overall performance. Also,

according to Theorem 1 in the justification part, the total

number of bases in all the leaf nodes is bounded. Since at

each node when the splitting process stops, there are gen-

erally 80 ∼ 200 samples (depending on the codebook size)

and 3 ∼ 10 bases, the computational overhead of subspace

learning is not significant compared with directly pursuing

basis from the entire sample set.

3.3. Optimization Scheme

The constraint that vj ∈ {0, 1} makes Eqn. (3) a hard

problem. In this subsection, we present two schemes to

solve this optimization problem. The first one is to relax vj
to a real value and use coordinate descent algorithm to op-

timize on w and v iteratively. The second one is a greedy

pursuit approach that selects the bases one by one.

Convex Relaxation The first optimization scheme is to

relax the values of vj to real numbers and use ℓ1 constraint
∑

j |vj | ≤ m instead of ℓ0 like constraint in Eqn. (3).

Putting this constraint as a regularization term, we can

transform this problem into an equivalent form:

1

2

n
∑

i=1

∥

∥

∥

∥

∥

∥

xi −
n
∑

j=1

wijvjxj

∥

∥

∥

∥

∥

∥

2

2

+ λ1

∑

i,j

|wij |+ λ2

∑

j

|vj |

(7)

Here, vj ∈ R. λ1 and λ2 are regularization parameters that

make the trade-offs between the residue and the norms of

the weight vectors.

There are two sets of variables w and v in Eqn. (7). To

optimize Eqn. (7), we adopt an EM-like algorithm that iter-

ates by fixing one set of variables and optimize on the other

set using coordinate descent algorithm [14].

By fixing w, we can get the updated value ṽj of vj as:

ṽj =
shrink (

∑

iwijβij , λ2)
∑

i w
2
ijx

T
j xj

(8)

Here, βij = x
T
j

(

xi −
∑

k 6=j wikvkxk

)

. shrink(f, λ) is an

operator to shrink the value of f toward 0:

shrink(f, λ) =







f − λ if f > λ

0 if − λ ≤ λ ≤ λ

f + λ if f < −λ

(9)

By fixing v, we get the updated value w̃ij of wij as:

w̃ij =
shrink (vjβij , λ1)

v2jx
T
j xj

(10)
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For the sake of efficiency, in practice, instead of using the
pathwise coordinate descent algorithm [14] that sweeps all
the variables sequentially,we adopt an adaptive and greedy
sweeping version [19] that sweeps the variable that de-
creases the objective function most at each iteration. For
wij and its updated value w̃ij , the decrease of the objective
function is

∆Rwij
= 1

2
v2j ‖xj‖

2

2
(wij − w̃ij)

(

wij + w̃ij −
2vjβij

v2

j‖xj‖
2

2

)

+λ1(|wij | − |w̃ij |) (11)

For vj and its updated value ṽj , the decrease of the ob-
jective function is

∆Rvj =
∑n

i=1

1

2
w2

ij ‖xj‖
2

2
(vj − ṽj)

(

vj + ṽj −
2wijβij

w2

ij‖xj‖
2

2

)

+nλ2(|vj | − |ṽj |) (12)

At each iteration, the updating rule is to select the vari-

able that leads to the largest decrease in the objective func-

tion. Thus, when fixing v to optimize on w,

w∗
ij = argmax

wij

∆R(wij) (13)

and when fixing w to optimize on v

v∗j = argmax
vj

∆R(vj) (14)

In our experiment, the adaptive and greedy sweeping proves
efficient for practical use. After the optimization process
converges, we rank the samples according to their vj . The
first m samples with the largest non-zero vj are selected as
the basis.
Greedy Pursuit Approach Starting from an empty basis
collection, the greedy pursuit approach selects the basis one
by one. Suppose some l samples Bl = {xsi , 0 ≤ i ≤
l, 1 ≤ si ≤ n} have been selected from the n samples,
i.e., vsi = 1. To select the (l + 1)th basis, we optimize the
following function:

sl+1 = min
k/∈{si}

1

2

n
∑

i=1

∥

∥

∥

∥

∥

∥

xi −
∑

j∈{si}

wijxj − wikxk

∥

∥

∥

∥

∥

∥

2

2

+λ1

n
∑

i=1

∑

j∈{si}

|wij |+ λ1

n
∑

i=1

|wik| (15)

According to Eqn. (15), the sample that reconstructs all the

n patches together with the first l selected basis is selected

as the (l + 1)th basis.

The greedy approach finds suboptimal solution to

Eqn. (3). But it’s more efficient than the convex relaxation

approach, and in practice, we find that its performance is

comparable with the convex relaxed solution. Thus in some

of our experiments, we only use this greedy approach.

3.4. Theoretical justification

In this section, we give some theoretical justification to

our approach. Our institution is to show that the three steps

in randomized forest sparse coding: (1) ensemble of trees,

(2) randomized projection tree, and (3) sparse coding leads

to the same complexity level in the number of basis as to

the original data.

Given S = {xi, i = 1..n} with xi ∈ R
D, assume that xi

lives in the intrinsic lower dimension d ≪ D. It can be seen

that the number of basis needed to reconstructS is bounded.

Following the definition of Assouad dimension [1] [9]:

Definition: For any point x ∈ R
D and r > 0, let B(x, r) =

{||x − z|| ≤ r} denote the closed ball of radius r centered

at x. The Assouad dimension of S ∈ R
D is the small-

est integer d such that for any ball B(x, r) ∈ R
D, the set

B(x, r) ∩ S can be covered by 2d balls of radius r/2.

Theorem 1 The number of basis needed to reconstruct

S by Randomized Forest Sparse Coding (RFSC) is

O(2d log d).
Proof:

Fixing radius r, suppose we want to create a codebook

such that each basis function covers r/2, a size of O(2d)
codebook is required to cover the entire dataset S, accord-

ing to the definition of Assouad dimension.

The main result in [9] shows that O(d log d) levels of

a random projection/partition tree would reach cells with

radius r/2. Therefore, the number of cells is O(2d log d).
Suppose there are k trees in the forest, and in each leaf node,

l basis are found, then the number of the basis becomes

O(kl2d log d). As k and l are generally small and can be

kept constant, the bound still reduces to:

O(2d log d).

Although RFSC slightly increases the size of the code-

book compared to O(2d), since d is generally small (d ≪
D), this is reasonably bounded.

4. Experiments

To evaluate the effectiveness of the proposed codebook

learning algorithm, we conducted extensive classification

experiments on a collection of cancer images and a variety

of natural image datasets: Graz-02 image set, the INRIA

Horse dataset, and the PASCAL 2005 image set.

As the baselines, we obtained the source code for ERC-

Forest from the authors of [22] and implemented the RPTs

according to [9]. In our experiments, the feature vectors

are used without any normalization, which is sometimes

done in subspace learning and sparse coding (we found

that performing normalization does not affect the overall

performance in the experiments reported here). For each

leaf node, 5 bases are learned. For the Graz-02 image set,

λ1 = 2 and λ2 = 6, while for the INRIA Horse dataset and
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Figure 2. Cancer image examples. The images in the green box are nor-

mal samples. i.e. there are no cancerous cells. The images in the red box

are abnormal samples, i.e. there are cancerous cells.

the PASCAL 2005 image set, λ1 = 15 and λ2 = 6. To

solve the subspace learning problem via sparse coding de-

fined in Eqn. (3), 10 iterations between w and v are enough

to find a good sparse solution.

In the following, we use RFSC to denote subspace learn-

ing via sparse coding under Extremely Randomized Trees;

RPT-SC denotes subspace learning on Random Projection

Trees. For RFSC and RPT-SC, the postfix “-Cvx” refers to

using the convex relaxation version and “-Gdy” regards to

using the greedy basis pursuit version. For the classification

task of Cancer Images, the performance is measured using

the Area under the curve of the ROC curve, while for natu-

ral image classification, the performance is measured using

the classification accuracy at the Equal Error Rate and the

reported accuracies are the averages of 10 rounds of exe-

cution. As can be seen from the experiments, our method

achieves comparable or superior performance with the al-

ternatives.

4.1. Experiments on Cancer Images

Dataset: We used a histopathology image data set with

60 colon images (30 cancer images and 30 non-cancer im-

ages). Some example images from this dataset are shown

in Fig. 2. The images are in the resolution of 1280× 1024.

All the images are labeled as cancer or non-cancer by two

pathologists independently. If disagreement happens for a

certain image, these two pathologists together with a third

senior pathologist will carefully examine and discuss until

final agreement. Experimental Setup: Before feature ex-

traction, the original images are down-sampled with a fac-

tor of 2. Since no obvious spatial regularities are observed

from the images (Fig. 2), we didn’t densely compute local

features and construct Bag-of-Features (BOF) vectors. In-

stead, we randomly sample N = 200 local patches (32×32)

for each image. Each patch is represented by Lab color his-

togram, Local Binary Pattern [23], and SIFT [20]. For the

proposed method, each patch is encoded by the proposed

coding schemes RFSC or RPT-SC; for the baseline, we use

the raw feature. Random Forests [4] is adopted as the strong

classifier for its simplicity and high performance. The over-

all classification score of an image is the mean of the scores

of all the patches. Half of the images in the dataset are

chosen randomly for training and the rest for testing. We

run the experiments 5 times for each method and report the

averaged performance. For RFSC and RPT-SC, the con-

vex relaxation versions are used. We compare the Area un-

der the ROC curve between RPT-SC, RFSC, ERC-Forest,

RPT, and raw feature. The Area Under Curve (AUC) for

the methods are RPT-SC 0.98, RFSC 0.987, RPT 0.927,

ERC-Forest 0.95, and raw feature 0.967 respectively; our

method performs better than the alternatives.

4.2. Experiments on Natural Images

The reconstruction coefficients are pooled in the natural

image classification task. To pool the reconstruction coef-

ficients, unless otherwise stated, max-pooling is used as in

[33]. The pooled reconstruction coefficients of the trees are

concatenated to form a histogram leaving the voting pro-

cess till the classification step. SVM is used as the classifi-

cation model, and the linear kernel is used. To understand

better the behavior of the competing codebook learning al-

gorithms, in all the following image classification experi-

ments, we do not include the adaptive saliency map pro-

cess. This makes the image classification performance of

ERC-Forest slightly worse than that reported in [22]. How-

ever, this performance degeneration is understandable and

in accordance with the case illustration in [22]. Focusing

on the core codebook learning part helps to better validate

the underlying benefits of our method against the competing

algorithms.

GRAZ-02 dataset [24] GRAZ-02 image set consists of

three object categories and one counter-category: Bicycles

(365 images), Cars (420 images), Person (311 images) and

None (380 images). For each category, the categorization

task is to distinguish the object category from the counter-

category, None. Similar to [22], we also pick the two hard-

est cases: Cars vs. None and Bikes vs. None. Patches are

sampled from the images and 768-D wavelet feature vectors

are used as the descriptors.

To make a direct comparison with [22] and [24], we con-

duct the experiment according to the setting in [22]: the first

300 images of each category are used and 5 trees are trained.

We use the greedy version of RFSC and vary the codebook

size from 5000 to 9000. From Table 1 and Table 2, we ob-

serve that, RFSC-Gdy performs better than ERC-Forest and

the method in [24]. Although RPT-SC-Gdy does not outper-

form ERC-Forest, it still performs better than RPT on both

of the two cases. RFSC-Gdy outperforms RPT-SC, indicat-

ing the promotion of the discriminative ability by introduc-

ing the label information in the divide-and-conquer process.

Even without the adaptive saliency map process, the accu-

racy (83.9%) of RFSC-Gdy on the case of Bikes vs. None

approaches that reported in [22] (84.4%). Note that we only

use 5 bases in each leaf node to represent a 768 dimensional
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Table 1. Comparison of the accuracy on the case of Cars vs. None

in the GRAZ-02 images [24].

size of codebook 5000 6000 7000 8000 9000

[24] 70.5%

ERC-Forest 71.3% 73.5% 74.5% 74.7% 74.8%

RPT 66.5% 66.6% 65.3% 67.7% 66.9%

RFSC-Gdy 73.4% 74.3% 75.7% 74.9% 74.3%

RPT-SC-Gdy 68% 69.8% 69% 69.5% 68.2%

Table 2. Comparison of the accuracy for Bikes vs. None in the

GRAZ-02 images [24].

size of codebook 5000 6000 7000 8000 9000

[24] 77.8%

ERC-Forest 78.8% 78% 78.5% 78.5% 78.5%

RPT 73.3% 74.3% 74.1% 75.1% 74.4%

RFSC-Gdy 80.7% 83.9% 80.8% 81.3% 80%

RPT-SC-Gdy 76.5% 76.8% 76.1% 76.7% 76%

Table 3. Comparison of the accuracy using all the images for Cars

vs. None in the GRAZ-02 images [24].

size of codebook 5000 6000 7000 8000 9000

ERC-Forest 67.2% 67% 68.6% 68.8% 71.3%

Leaf-Kmeans 68.2% 70.9% 73% 72.6% 73.2%

RFSC-Cvx-1tree 72.6% 72.2% 71.4% 75% 75%

RFSC-Cvx 75% 75% 73.7% 73.1% 75.2%

RFSC-Gdy 74.3% 75.5% 74.5% 74.8% 75.5%

Table 4. Comparison of the accuracy using all the images for Bikes

vs. None in the GRAZ-02 images [24].

size of codebook 5000 6000 7000 8000 9000

ERC-Forest 77.8% 78.3% 78.3% 79.1% 78.8%

Leaf-Kmeans 75.1% 74.4% 79.7% 78.7% 79.5%

RFSC-Cvx-1tree 77.8% 78.2% 78.6% 79.5% 79.5%

RFSC-Cvx 80% 82.2% 82.6% 81.4% 81.8%

RFSC-Gdy 81.5% 80.3% 81.5% 80.8% 80.9%

feature space; the large improvement in classification accu-

racy not only proves the relative regularity in the local sub-

spaces, but also supports the formulation in Eqn. (1) and the

effectiveness of the sparse representation.

We also conduct the experiments using all the images in-

stead of the first 300 images. Average-pooling is adopted

here and the results are reported in Table 3 and Table 4. The

performance of the two optimization schemes is similar: for

the case of Cars vs. None, RFSC-Gdy achieves the best ac-

curacy 75.5% and for Bikes vs. None, RFSC-Cvx achieves

the best accuracy 82.6%. RFSC-Cvx-1tree refers to using

one randomized tree instead of the forest, an ensemble of

trees. It performs worse than RFSC. This justifies the bene-

fit of using ensembles and is in accordance with the spirit in

ensemble learning: the randomized partition process pro-

vides sufficient diversities among codes of the forest, and

the concatenated codebook produces better and more robust

results via voting.

We do not compare RFSC and RPT-SC with directly per-

Table 5. Comparison of the accuracy on the INRIA Horse dataset

[11].

method ERC-Forest RPT RFSC-Gdy RPT-SC-Gdy

Accuracy 79.2% 75.7% 85.9% 80.4%

size of Codebook 9000 7000 5000 8000

Table 6. Comparison of the accuracy on PASCAL 2005 image set

[10].

method motobikes cars bikes person

ERC-Forest 96% 95% 89% 90.9%

RFSC-Gdy 96.4% 95.3% 90.6% 91.4%

forming dictionary learning on the image classification task

since solving Eqn. (1) directly when m = 5, 000 or 9, 000
is time consuming. However, benefiting from the divide-

and-conquer process, it takes less than 1 hour for RFSC

and RPT-SC to build a forest with 5 trees and 9, 000 codes.

This improvement in efficiency stems from seeking a small

amount of bases from hundreds of patches instead of seek-

ing thousands of bases from tens of thousands of training

patches. Other efficient algorithms such as [18] can be used

to solve Eqn. (1), but the conclusion of the improvement in

efficiency induced by the divide-and-conquer process still

holds. RFSC and RPT-SC are also very efficient at the test-

ing stage. It takes about 0.5 second to process an image

and pooling the reconstruction coefficients. As a compari-

son, it would take around 30 seconds for K-Means to assign

patches to the codes for an image when the feature vector is

of dimension 768 and the codebook size K is 5, 000.

INRIA Horse Dataset [11] INRIA horse dataset con-

tains 170 horses taken from the Internet with different sizes

and poses. The training/splitting ratio of this dataset and the

size of the codebook were not reported in [22], so we ran-

domly selected 85 horse images for training and varied the

size of codebook from 5, 000 to 9, 000. The SIFT descriptor

is used to describe the patches and we used the dense SIFT

implementation in [30]. The greedy pursuit approach was

used. In Table 5, we report the best accuracy of each method

and the size of the codebook at which the best accuracy is

achieved. From Table 5 we observe that, RFSC-Gdy per-

forms better than ERC-Forest and RPT-SC-Gdy performs

better than RPT. The performance of ERC-Forest has the

potential to be improved if the size of the codebook in-

creases. We did not carry out the experiment, since even

without estimating the saliency map and with small code-

book, RFSC-Gdy has already achieved better result (85.9%)

than that reported in [22] (85.3%).

PASCAL 2005 image set [10] We also compare our

method with ERC-Forest on PASCAL 2005 image set. The

results are shown in Table 6. RFSC-Gdy achieves better

results on all of the 4 categories than ERC-Forest.
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5. Conclusion

In this paper, we have introduced a codebook learning

method called randomized forest sparse coding that inte-

grates three concepts: ensemble, divide-and-conquer and

sparse coding. Justifications for the effectiveness and ef-

ficiency of our method are also provided. The proposed

scheme is applied to both the Cancer Image Classification

and natural image classification and observes significant im-

provement in performance. Future work includes the fol-

lowing issues: first, we will investigate other means of fea-

ture representation. Second, the spatial pyramid representa-

tion of RFSC will be investigated. Third, since there exists

certain redundancy in RFSC, we will improve the coding

schemes to reduce the redundancy.
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