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Abstract

Cancer tissues in histopathology images exhibit abnor-
mal patterns; it is of great clinical importance to label a
histopathology image as having cancerous regions or not
and perform the corresponding image segmentation. How-
ever, the detailed annotation of cancer cells is often an am-
biguous and challenging task. In this paper, we propose
a new learning method, multiple clustered instance learn-
ing (MCIL), to classify, segment and cluster cancer cells in
colon histopathology images. The proposed MCIL method
simultaneously performs image-level classification (cancer
vs. non-cancer image), pixel-level segmentation (cancer vs.
non-cancer tissue), and patch-level clustering (cancer sub-
classes). We embed the clustering concept into the multi-
ple instance learning (MIL) setting and derive a principled
solution to perform the above three tasks in an integrated
framework. Experimental results demonstrate the efficiency
and effectiveness of MCIL in analyzing colon cancers.

1. Introduction

High resolution histopathology images provide reliable
information differentiating abnormal tissues from normal
ones, and thus, it is a vital technology for recognizing and
analyzing cancers [21, 19, 9, 15]. Recent development in
specialized digital microscope scanners makes digitization
of histopathology readily accessible. Several systems for
classifying and grading cancer histopathology images have
been recently proposed. These methods focus on feature de-
sign of various types, such as fractal features [11], texture
features [12], and object-level features [5]. Various clas-
sifiers (Bayesian , KNN and SVM) are used for prostate

∗indicates equal contributions

cancer [11] recognition.
There is also a rich body of literature on supervised

learning for image segmentation and classification [22, 23].
However, supervised approaches require a large amount
of accurately annotated data; usually, high-quality man-
ual delineations are not only labor-intensive and time-
consuming to obtain, but also intrinsically ambiguous. This
situation is more conspicuous for cancer tissue classifica-
tion/segmentation in histopathology images, where obtain-
ing the very detailed annotation is a challenging task even
for pathologists. Unsupervised learning methods [7], on the
other hand, ease the burden of manual annotation, but often
at the cost of inferior results.

In the middle of the spectrum is the weakly supervised
learning scenario. The idea is to use coarse-grained anno-
tations to aid automatic exploration of fine-grained infor-
mation. In our case, it is relatively easy for a pathologist
to label a histopathology image as having cancer or not.
Our goal is to automatically learn the image models from
weakly supervised histopathology images to recognize can-
cers. The weakly supervised learning direction is closely
related to semi-supervised learning problems in machine
learning [28]. One particular form of weakly supervised
learning is multiple instance learning (MIL) [16, 2] where
a training set consists of a number of bags; each bag in-
cludes many instances and the bag-level label is given but
not the instance-level label; the goal of MIL is to learn to
predict both bag-level and instance-level labels.

The current literature in MIL assumes single
model/cluster/classifier for the target of interest [24],
single cluster within each bag [3, 26], or multiple com-
ponents of the same object [6]. Here, we aim to develop
an integrated system to perform pixel-level segmentation
(cancer vs. non-cancer) and image-level classification;
moreover, it is desirable to discover/identify the subclasses



of various cancer tissue types as a universal protocol for
cancer tissue classification[11] is not all available; this
results in patch-level clustering of the cancer tissues;
however, the existing MIL frameworks are not able to
do these tasks altogether. In this paper, we derive a
principled approach, named multiple clustered instance
learning (MCIL), to simultaneously perform classification,
segmentation, and clustering.

Common histopathology cases include colon, prostate,
breast, and neuroblastoma cancers. Here, we focus on colon
histopathology images but our method is general and it can
be applied to other image types.

2. Related Work
Related work can be broadly divided into two categories:

(1) medical image classification and segmentation in the
medical imaging field, and (2) multiple instance learning
in the learning and vision field.

As mentioned before, methods developed in the medical
imaging field are mostly focused on feature design in su-
pervised settings. Fractal features are used in prostate can-
cer detection [11]; Kong et al. proposed a multi-resolution
framework to classify neuroblastic grade using texture in-
formation [12]; color graphs were applied in [1] to de-
tect and grade colon cancer in histopathology images;
Boucheron et al. proposed a method using object-based in-
formation for histopathology cancer detection [5]; multiple
features including color, texture, and morphometric cues at
the global and histological object levels were adopted in
prostate cancer detection [21].

Due to the intrinsic ambiguity and difficulty in obtaining
human labeling, MIL approaches have its particular advan-
tages in automatically exploiting the fine-grained informa-
tion and reducing efforts in human annotations. The MIL
method has also been adopted in the medical domain [10]
with the focus mostly on the medical diagnosis. A multi-
ple instance learning approach was used in [4] to detect ac-
curate pulmonary embolism among the candidates; a com-
puter aided diagnosis (CAD) system [14] was developed for
polyp detection with the main focus on supervised learn-
ing features, which were then used for multiple instance
regression; MIL [8] was adopted for cancer classification
in histopathology slides. However, these existing MIL ap-
proaches are for medical image diagnosis and none of them
perform segmentation, which is crucial in medical image
analysis and a specific advantage of our method. More-
over, the integrated classification/segmentation/clustering
tasks have not been addressed.

From another perspective, Zhang et al. [26] developed
a multiple instance clustering (MIC) method to learn the
instance clusters as hidden variables. MIC however takes
no negatives and each bag contains one cluster only. In
our case, multiple clusters of different cancer types might

exist within one bag (histopathology image). Babenko
et al. [3] assumed a hidden variable, pose, to each face
(only one) in an image. In [6], multiple components were
studied for a single object class, which also differs from
our method since we have multiple instances and multiple
classes within each bag. The MIL assumption was inte-
grated into multiple-label learning for image/scene classifi-
cation in [27, 25]. However, multi-class labels were given
for supervision in their method while in MCIL, multiple
clusters are hidden variables to be explored in an unsuper-
vised way. In [20], the clusters and segmentations were ex-
plored for the configuration of object models, which is quite
different to the problem setting here. Again, MCIL is able
to perform classification, segmentation, and clustering alto-
gether. In addition, our method can be applied in other MIL
tasks other than medical imaging applications.

(a) cancer image (b) non-cancer image

Figure 1: Examples of bags and instances in our problem: (a) positive
bag (cancer image); (b) negative bag (non-cancer image). Red rectangles:
positive instances (cancer tissues); Green rectangles: negative instances
(non-cancer tissues).

3. Methods

We follow the general definition of bags and instances in
the MIL setting [24]. In this paper, we treat cancer and non-
cancer images as positive and negative bags respectively;
the image patches densely sampled from the images thus
correspond to the instances. Figure 1 shows the definition
of positive/negative bags and positive/negative instances. In
this problem, a bag is labeled as positive if the bag con-
tains at least one positive instance (cancer tissue); similarly,
in histopathology cancer image analysis, if a small part of
image is considered as cancer tissues, the histopathology
should be diagnosed as positive by pathologists.

An advantage brought by MIL is that if an instance-
level classifier is learned, automatic pixel-level segmenta-
tion could be performed; bag-level (image-level) classifier
could be directly obtained under the MIL setting. The main
difference between the case in medical imaging and previ-
ous weakly supervised object/face detection [24, 3] is that
objects are distinct while tissues in histopathology images
form segmentations with no clear boundary shapes.



In the following sections, we first overview the MIL liter-
ature, especially recent gradient decent boosting based MIL
approaches. Then we integrate the clustering concept into
the MIL setting and derive a new formulation, MCIL, under
the boosting framework; properties of MCIL with various
variations are provided. We also show how classification,
segmentation and clustering could be simultaneously con-
ducted in our MCIL algorithm, which is the key contribu-
tion of our method.

3.1. Multiple Instance Learning

Here we briefly discuss the MIL problem formulation
and study boosting based [17] MIL approaches[24, 3],
which serve as the basis for MCIL. In MIL, training data
is represented by a set of m vectors1, often called a bag,
Xi = {xi1, . . . , xim} while each bag is associated with a
label yi ∈ Y = {−1, 1}. Each instance xij ∈ X in a bag
Xi ∈ Xm has a true label yij ∈ Y as hidden variable, which
remains unknown during training. In the binary case, a bag
is labeled positive if and only if at least one instance in the
bag is positive, which could be formulated as:

yi = max
j

(yij) (1)

where max is essentially equivalent to an OR operator since
for yij ∈ Y , maxj (yij) = 1 ⇐⇒ ∃j, s.t. yij = 1.

The goal of MIL is to learn an instance-level classifier
h(xij) : X → Y . A bag-level classifier H(Xi) : Xm → Y
could be built with the instance-level classifier:

H(Xi) = max
j

h(xij) (2)

Viola et al. [24] first introduced MIL-Boost by combin-
ing MIL cost functions and AnyBoost framework [17].
Babenko et al. [3] re-derived and generalized it later. Here
we adopt the loss function defined in the AnyBoost:

L(h) = −
n∑

i=1

wi(1(yi = 1) log pi + 1(yi = −1) log (1− pi))

(3)
1(·) is an indicator function. The loss function is the stan-
dard negative log likelihood. pi ≡ p(yi = 1|Xi) and wi is
the prior weight of the ith training data. It is often useful to
train with an initial distribution over the data, e.g. if more
positive than negative training data we are available.

A softmax function, a differentiable approximation of
max, is then introduced. We summarize four models used
in MIL-Boost and MCIL in Table 1: noisy-or (NOR), gen-
eralized mean (GM), log-sum-exponential (LSE), and in-
tegrated segmentation and recognition (ISR). Parameter r
controls sharpness and accuracy in LSE and GM model:

1Although each bag may have different number of instances, for clarity
of notation, we use m for all the bags here.
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Table 1: Four softmax approximations gl(vl) ≈ maxl(vl)

gl(vl)→ v∗ as r →∞. For m variables v = {v1, . . . , vm},
softmax function gl(vl) is defined as follows:

gl(vl) ≈ max
l

(vl) = v∗,
∂gl(vl)

∂vi
≈ 1(vi = v∗)∑

l 1(vl = v∗)
(4)

m = |v|. Note that for the rest of the paper gl(vl) indicates
a function g which takes all vl indexed by l; gl(vl) is not a
function merely on vl.

The probability pi of bag Xi is computed as the softmax
of probability pij ≡ p(yij = 1|xij) of all the instances
xij : pi = gj(pij) = gj(σ(2hij)) where hij = h(xij) and
σ(v) = 1

1+exp (−v) is the sigmoid. The weights wij and the
derivatives ∂L

∂hij
could be written as:

wij = −
∂L
∂hij

= − ∂L
∂pi

∂pi
∂pij

∂pij
∂hij

(5)

3.2. Multiple Cluster Assumption

Histopathology cancer images include multi-
ple types, which are not addressed by the single
model/cluster/classifier in the previous MIL algorithms.

Except for annotation difficulty, unclear definition of
cancer tissue type in medical research also motivates us
to propose MCIL. There are many individual classification,
segmentation and clustering approaches in the computer vi-
sion and medical imaging community; however, most of the
existing algorithms are designed for one particular purpose
and therefore do not fit our task. Here, we simultaneously
perform three tasks in an integrated learning framework un-
der the weakly supervised scenario.

We are still given a training dataset containing bags
Xi = {xi1, . . . , xim} and bag labels yi ∈ Y = {−1, 1};
here, we integrate the clustering concept into the MIL set-
ting by assuming the existence of hidden variable ykij ∈ Y
which denotes whether the instance xij belongs to the kth

cluster. Similar to MIL constraints, if one instance belongs
to one of K clusters, this instance could be considered as a
positive instance; and only if at least one instance in a bag
is labeled as positive, the bag is considered as positive. This
forms the MCIL assumption, which could be formulated as
follows:

yi = max
j

max
k

(ykij) (6)



Figure 2: Distinct learning goals of supervised learning, MIL and MCIL.
MCIL could perform image-level classification (xi → {−1, 1}), pixel-
level segmentation (xij → {−1, 1}) and patch-level clustering(xij →
{y1ij , . . . , yKij }, ykij ∈ {−1, 1}).

Again the max is equivalent to an OR operator where
maxk (y

k
ij) = 1 ⇐⇒ ∃k, s.t. ykij = 1.

The goal of MCIL is to learn K instance-level classi-
fiers hk(xij) : X → Y for K clusters. Corresponding
bag-level classifier for the kth cluster could be built as
Hk(Xi) : Xm → Y . The overall cancer classifier could
be constructed as H(Xi) : Xm → Y:

H(Xi) = max
k

Hk(Xi) = max
k

max
j

hk(xij) (7)

Figure 2 illustrates the distinction between standard super-
vised learning, MIL and MCIL.

3.3. Multiple Clustered Instance Learning

In this section, based on the previous derivations, we give
the full formulation of our MCIL method. The probability
pi is computed as the softmax of pij ≡ p(yij = 1|xij) of all
the instances and the instance probability pij could be ob-
tained by softmax of pkij = p(ykij = 1|xij) which measures:

pi = gj(pij) = gj(gk(p
k
ij)) (8)

where the pkij means the probability of the instance xij

belonging to the kth cluster. We use softmax to rewrite the
MCIL assumption (eqn. (6)) and give the Remark 1:

gj(gk(p
k
ij)) = gjk(p

k
ij) = gk(gj(p

k
ij)) (9)

Again, functions of gk(pkij) can be seen in Table 1; it in-
dicates a function g which takes all pkij indexed by k; sim-
ilarly, functions of gjk(pkij) could be understood as a func-
tion g including all pkij indexed by k and j. Remark 1 can
be checked with care and we put the verification into the
appendix.

Based on the above equation, we could rewrite eqn. (8)
as follows:

pi = gj(gk(p
k
ij)) = gjk(p

k
ij) = gjk(σ(2h

k
ij)), h

k
ij = hk(xij)

(10)
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Table 2: MCIL wk
ij/wi with different softmax functions

σ is the sigmoid function mentioned before. Therefore, we
give the weights wk

ij and derivatives − ∂L
∂hk

ij

could be given
as:

wk
ij = −

∂L
∂hk

ij

= − ∂L
∂pi

∂pi
∂pkij

∂pkij
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ij

(11)
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∂pkij
∂hk

ij

= 2pkij(1− pkij) (14)

Thus, we summarize the weight wk
ij/wi in Table 2. Re-

call that wi is the given prior weight for the ith bag. Details
of MCIL are demonstrated in Algorithm 1. Notice that the
outer loop is for each weak classifier while the inner loop is
for the kth strong classifier.

We introduce the latent variables ykij , which denote the
instance xij belonging to the kth cluster, and we encode
the concept of clustering by re-weighting the instance-level
weight wk

ij . If the kth cluster can explain some instances
well, the weight of instances and bags for other clusters de-
crease in re-weighting. Thus, it forms a competition among
clusters.

4. Experiments
In the experiments, we apply our method on several can-

cer image datasets. The advantage of our integrated MCIL
framework is evident in image-level classification com-
pared with Multiple Kernel Learning (MKL) [23], MIL-
Boost[24], standard Boosting[17], mi-SVM[2], and MI-
SVM[2], in pixel-level segmentation compared with MIL-
Boost and standard Boosting, and in patch-level cluster-
ing compared with Boosting + K-means[7] and MIL + K-
means.



Algorithm 1 MCIL-Boost

Input: Bags {X1, . . . , Xn}, {y1, . . . , yn},K, T
Output: h1, . . . , hK

for t = 1→ T do
for k = 1→ K do

Compute weights wk
ij = − ∂L

∂hk
ij

Train weak classifiers hk
t using weights |wk

ij |
hk
t = argminh

∑
ij 1(h(x

k
ij) ̸= yi)|wk

ij |
Find αt via line search to minimize L(., hk, .)
αk
t = argminα L(.,hk + αhk

t , .)
Update strong classifiers hk ← hk + αk

t h
k
t

end for
end for

NC MTA LTA MA SRC
Binary 30 30 0 0 0
Multi1 30 15 9 0 6
Multi2 30 13 9 8 0

Table 3: Number of images in the datasets. The “Binary”
dataset contains only one class of cancer images (MTA).

Datasets: We study three colon cancer image datasets:
binary, multi1, and multi2. Table 3 shows the con-
stituents of datasets. In binary, we demonstrate the ad-
vantage of the MIL formulations against the state-of-the-art
supervised image categorization approaches. In mulit1 and
multi2, we further show the advantage of MCIL in an inte-
grated framework.
Cancer Types: Five types of colon cancer images are used:
Non-cancer (NC), Middle tubular adenocarcinoma (MTA),
Low tubular adenocarcinoma (LTA), Mucinous adenocarci-
noma (MA), and Signet-ring carcinoma (SRC). We use the
same abbreviations for each type in the following sections.
Annotations: All the histopathology images are labeled
as cancer or non-cancer images by two pathologists inde-
pendently. If there exists a disagreement for a certain im-
age between two pathologists, two pathologists together
with the third senior pathologist discuss the result until fi-
nal agreement is reached. We also ask them to label the
instance-level segmentation (cancer tissues) and the patch-
level clustering (different type) for test data. Instance-level
and patch-level annotations also follow the above process to
ensure the quality of the ground truth.
Settings: After downsampling the histopathology images
by 5×, we densely extract 64×64 patches from images. The
overlap step size is 32 pixels for training course and 4 pixels
for testing. The softmax function we use here is GM model
and the weak classifier we use is Gaussian function. All the
results are reported in a 5-fold cross validation. For param-

eters, we set r = 20, K = 4 and T = 200. With respect
to patch representation, generic features for object classi-
fication rather than ones specifically designed for medical
imaging are used including L∗a∗b∗ Color Histogram, Local
Binary Pattern [18], and SIFT [13]. It is worth noting that
we focus on our integrated learning formulation rather than
the feature design in this work. We use the same setting for
MCIL, MIL-Boost[24], standard Boosting[17], mi-SVM[2]
and MI-SVM[2] in the following three experiments.

4.1. Image­level Classification

We first measure the bag-level classification (cancer vs.
non-cancer). The standard learning baseline is MKL [23]
which obtains very competitive results and wins the PAS-
CAL Visual Object Classification Challenge 2009. We use
their implementation and follow the same features and pa-
rameters reported in their paper. We use all the instances xij

to train a standard Boosting [17] by considering instance-
level labels derived from bag-level labels (yij = yi, i =
1, . . . , n, j = 1, . . . ,m). For the MIL baselines, we use
MI-SVM [2], mi-SVM [2], and MIL-Boost [24].

Figure 3(a) shows the receiver operating characteristic
(ROC) curves for different learning methods in the three
datasets. In dataset binary, both MCIL and MIL out-
perform well developed MKL algorithm [23] and standard
Boosting[17], which shows the advantage of the MIL for-
mulation to the cancer image classification task. MCIL
and MIL-Boost achieve similar performance on the binary
dataset of one class/cluster; however, when applied to
datasets multi1 and multi2, MCIL significantly outper-
forms MIL, MKL and Boosting, which reveals multiple
clustering concept integrated in MCIL framework success-
fully deals with the complex situation in cancer image clas-
sification.

Notice that MKL utilizes more discriminative features
than that we use in MIL and MCIL. For the computational
complexity, it takes several days to use MKL [23] to train
a classifier for a dataset containing 60 images while it only
takes about two hours using MCIL to achieve a significantly
improved result.

We also compare performance based on different soft-
max models. Figure 3(b) shows that LSE model and GM
model fit the cancer image recognition task best.

Different cancer types, experiment settings, benchmarks,
and evaluation methods are reported in the literature. As far
as we know, the code and images used in [11, 21, 9] are not
publicly accessible. Hence, it is quite difficult to make a
direct comparison between different algorithms. Below we
only list their results as references. In [11], 205 pathological
images of prostate cancer were chosen as evaluation which
included 50 of grade 1-2, 72 of grade 3, 31 of grade 4, and
52 of grade 5. The highest correct classification rates based
on Bayesian, KNN and SVM classifiers achieved 94.6%,



binary

multi1

multi2
(a) classification results (b) different softmax models

Figure 3: Comparisons of image (bag)-level classification
results with state-of-the-art methods on the three datasets.
(a) shows the ROC curves and our proposed method (MCIL
in red) has apparent advantages. (b) demonstrates the effect
of using different soft-max functions.

94.2% and 94.6% respectively. In [21], 367 prostate im-
ages (218 cancer and 149 non-cancer) were chosen to de-
tect cancer or non-cancer. The highest accuracy was 96.7%.
268 images were chosen to classify gleason grading. The
numbers of grades 2-5 are 21, 154, 86 and 7, respectively.
The highest accuracy was 81%. In [9], a total of 44 non-
cancer images and 58 cancer images were selected to detect
cancer or non-cancer. The sensitivity of 90%-95% and the
specificity of 86%-93% were achieved according to various
features.

4.2. Pixel­level Segmentation

We now turn to instance-level experiment. Since it
is both time-consuming and intrinsically ambiguous for
pathologists to label detailed cell annotations for all the im-
ages and MCIL does not require any instance-level supervi-
sion, we report instance-level results in a subset of multi1.
In particular, we randomly select 11 cancer images and 11
non-cancer images to construct the subset. Pathologists pro-

vide careful instance-level annotations for cancer images.
MCIL generates a probability map Pi for each bag Xi

(image). We use the F-measure for segmentation mea-
surement. Given the ground truth map Gi, Precision =
|Pi ∩ Gi|/|Pi|, Recall = |Pi ∩ Gi|/|Gi| and F-measure =
2Precision×Recall
Precision+Recall .

The segmentation baselines are MIL-Boost [24] and
standard Boosting [17] we mentioned before. Unsuper-
vised segmentation techniques cannot be used in compar-
ison since they do not output labels for each segment. The
F-measures of MCIL, MIL-Boost, and standard Boosting
are 0.588, 0.231, and 0.297 respectively, which suggests
the great advantage of MCIL against previous supervised
and MIL-based segmentation approaches. Figure 4 shows
some results of test data. Standard Boosting tends to de-
tect non-cancer tissues as cancer tissues since it considers
all the instances in positive bags as positive. Even explic-
itly formulated as an MIL scheme, MIL-Boost is based on
a single class/model/classifier assumption and can not ex-
plain all the clusters among positive bags, which limits its
application on multi-cluster multi-instance tasks like cancer
image recognition.

4.3. Patch­level Clustering

MCIL obtains the clustering results at the same time.
On the same test data mentioned in pixel-level segmenta-
tion, we demonstrate the advantage of MCIL for exploring
unknown patterns of cancer images in this section. Here
we build two baselines: MIL-Boost [24] + K-means and
standard Boosting [17] + K-means. Particularly, we first
run MIL-Boost or standard Boosting to perform instance-
level segmentation and then use K-means to obtain K clus-
ters among positive instances (cancer tissues). Since we
mainly focus on clustering performance here, we only in-
clude true positive instances as measured data by removing
the influence of poor segmentation results of MIL-Boost
and standard Boosting. Purity is used as evaluation mea-
sure. The purity of MCIL is 99.70% while the purities of
MIL + K-means and Boosting + K-means are only 86.45%
and 85.68% respectively. The experiment shows an inte-
grated learning framework of MCIL is better than two sep-
arate steps of instance-level segmentation and clustering.

MCIL is able to successfully discriminate cancer types
since different types of cancer images are mapped to dif-
ferent clusters (See Figure 4). The SRC cancer image is
mapped to red; the MTA cancer images are mapped to green
and yellow; and the LTA cancer image is mapped to blue.
Both MIL-Boost + K-means and standard Boosting + K-
means divide one type of cancer images into several clus-
ters and the results are not consistent between multiple im-
ages. The reason why MTA cancer images are divided into
two separate clusters is that lymphocytes (green area) are
strongly related to cancer cells (yellow area). Lymphocytes



MTA

MTA

LTA

SRC

NC

NC

(a) (b) (c) (d) (e)

Figure 4: Image Types: from left to right: (a): The original images. (b), (c), (d): The instance-level results (pixel-level segmentation and patch-level
clustering) for standard Boosting + K-means, MIL + K-means, and our MCIL. (e): The instance-level ground truth labeled by three pathologists. Different
colors stand for different types of cancer tissues. Cancer Types: from top to bottom: MTA, MTA, LTA, SRC, NC, and NC.

have the ability to be resistant to cancer cells. When can-
cer cells appear, lymphocytes can quickly gather together
to defend against cancer cells. In cancer images, the pur-
ple regions around cancer are lymphocytes. For some pa-
tients, it is common that lymphocytes occur around the can-
cer cells and seldom appear around non-cancer tissues (in
our dataset, no lymphocytes appear in non-cancer images)
although lymphocytes itself are not considered as cancer tis-
sues in medical research.

The main reason we set K = 4 clusters rather than 3 (the
number of cancer types) is to show the MCIL’s potential for
exploring new subclasses from a vision perspective. Our
method divides MTA cancer images into two clusters (green

and yellow area) owning to different vision patterns. Since
a clear definition of all subclasses is still not available, our
method shows the promising potential of discovering a new
classification standard for cancer research.

5. Conclusion

In this paper, we have introduced an integrated learning
framework for classifying histopathology cancer images,
performing segmentation, and obtaining cancer clusters via
weakly supervised learning. The advantage of MCIL is ev-
ident over the state-of-the-art methods that perform the in-
dividual tasks. Experimental results demonstrate the effi-
ciency and effectiveness of MCIL in detecting colon can-
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A. Verification for Remark 1
We verify Remark 1 (eqn. (9)): gj(gk(p

k
ij)) = gjk(p

k
ij) =

gk(gj(p
k
ij)) for each model. Given the number of clusters K and the

number of instances m in each bag, we develop derivations for four
models respectively:

For the NOR model:

gkgj(p
k
ij) = 1−

∏
k

(1− (1−
∏
j

pkij))

= 1−
∏
k

(
∏
j

pkij) = 1−
∏
j,k

pkij = gjk(p
k
ij)

(15)

For the GM model:

gkgj(p
k
ij) = (

1

K

∑
k

(pki )
r)

1
r = (

1

K

∑
k

((
1

m

∑
j

(pkij)
r)

1
r )r)

1
r

= (
1

Km

∑
j,k

(pkij)
r)

1
r = gjk(p

k
ij)

(16)

For the LSE model:

gkgj(p
k
ij) =

1

r
ln (

1

K

∑
k

exp (rpki ))

=
1

r
ln (

1

K

∑
k

exp (r
1

r
ln (

1

m

∑
j

exp (rpkij))))

=
1

r

1

Km

∑
j,k

exp (rpkij) = gjk(p
k
ij)

(17)

For the ISR model:

gkgj(p
k
ij) =

∑
k

pki
1− pki

/(1 +
∑
k

pki
1− pki

) (18)

∑
k

pki
1− pki

=
∑
k

∑
j

pkij

1−pkij
/(1 +

∑
j

pkij

1−pkij
)

1−
∑

j

pkij

1−pkij
/(1 +

∑
j

pkij

1−pkij
)

=
∑
j,k

pkij

1− pkij

(19)

gkgj(p
k
ij) =

∑
k

pki
1−pki

1 +
∑

k
pki

1−pki

=

∑
j,k

pkij

1−pkij

1 +
∑

j,k

pkij

1−pkij

= gjk(p
k
ij) (20)

Now we show gjk(p
k
ij) = gkgj(p

k
ij) for each softmax

models. gjk(p
k
ij) = gjgk(pij

k) could also be given in
the same way. Thus Remark 1 (eqn. (9)) could be veri-
fied.
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