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Abstract

The Conditional Random Fields (CRF) model, using
patch-based classification bound with context information,
has recently been widely adopted for image segmenta-
tion/labeling. In this paper, we propose three components
for improving the speed and accuracy, and illustrate them
on a recently developed auto-context algorithm [28]: (1)
a new coding scheme for multiclass classification, named
data-assisted output code (DAOC); (2) a scale-space ap-
proach to make it less sensitive to geometric scale change;
and (3) a region-based voting scheme to make it faster and
more accurate at object boundaries. The proposed multi-
class classifier, DAOC, is general and particularly appeal-
ing when the number of class becomes large since it needs a
minimal number of �log2 k� binary classifiers for k classes.
We show advantages of the DAOC classifier over the exist-
ing algorithms on several Irvine repository datasets, as well
as vision applications. Combining DAOC, the scale-space
approach, and the region-based voting scheme for auto-
context, the overall algorithm is significantly faster (5 ∼ 10
times) than the original auto-context, with improved accu-
racy over many of the existing algorithms on the MSRC [24]
and VOC 2007 [7] datasets.

1. Introduction
In an image segmentation/labeling task, each training

image comes with a label map in which every pixel is
assigned a label of interest. Many existing algorithms
[11, 24, 23] perform labeling using the Conditional Random
Fields (CRF) model [12], in which patch-based classifica-
tion is bound with context information. A recently proposed
auto-context algorithm [28] targets the posterior probability
directly. It integrates image appearances together with con-
text information by learning a series of classifiers. There
are two types of features for the classifier to choose from:
(1) image features computed on the local image patches
centered at the current pixel, and (2) context information
on the classification maps. Initially, the classification maps
are uniform over class labels, and thus the context features
are not selected by the first classifier. The trained classi-

fier then produces new classification maps which are used,
along with local patch features, to train a successive classi-
fier.

In this paper, we propose three components and illus-
trate them on the auto-context algorithm: (1) a new multi-
class classifier, DAOC; (2) a scale-space approach; and (3)
a region-based voting scheme.

1. The CRF type of algorithms are not bound to any par-
ticular choice of classifier. However, the type of classifier
used also largely decides the overall performance (accuracy
and speed) of the algorithm. We first propose a new mul-
ticlass classifier to boost efficiency in training and testing,
without sacrificing much accuracy. It is particularly appeal-
ing in dealing with large number (tens or even hundreds) of
classes, which is typical in many of the recent learning and
vision applications.

Traditionally, the design of multi-class classifier has
been mostly driven by reducing the test error (small train-
ing error + good generalization). When dealing with a large
number of classes on large scale datasets, we are also con-
cerned about the training and testing complexity. In this pa-
per, we focus on the error-correcting output code (ECOC)
[1, 6, 9] direction due to its potential of having small com-
putational overhead. ECOC combines several binary classi-
fiers (base learners) through an output coding scheme [1]
to produce a coding matrix M k×l, whose entries are in
{1,−1} 1. Each column of M is a binary partition of the k
classes, and each row is an output code for one class. Then,
l binary base learners are trained according to the partitions.
A test sample is associated with the class label whose out-
put code is “nearest” to the response vector returned by base
learners.

Depending on how the coding matrix is designed, the
existing approaches can be roughly divided into 3 cate-
gories: (1) Code-oriented design [6, 21, 9, 25], which
pursues codes with optimal error-correcting capability; (2)
Classifier-driven code design [4], which proposes codes
given a set of given base learners to achieve a lower empir-
ical loss; (3) Code-classifier joint design [2, 18, 13], which
makes an effort to simultaneously design codes and train

1It is also possible to incorporate a “don’t care” symbol 0.
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base learners, at the cost of significant computational over-
head.

Although in principle, one needs a minimal number of
�log2 k� classifiers in dealing with a k-class problem (as
opposed to k classifiers in one-vs-all [19]) using ECOC,
most of the existing coding methods produce code length
l much larger than k. This is mainly because the codes
and classifiers are lacking in the awareness of each other,
and accordingly are not cooperating in a harmonic way. To
bring the advantage of output coding scheme into full play,
we propose a data-assisted coding scheme DAOC to better
balance code-optimality and classifier-amicability at a very
small computational overhead.

2. Existing segmentation and labeling approaches using
Conditional Random Fields [11, 10, 24] or the auto-context
algorithm [28] classify image patches at a fixed scale, which
are sensitive to large scale-change of objects. In this paper,
we make an effort to automatically explore the scale infor-
mation of the image patch.

3. Performing image labeling based on each pixel is not
efficient because it has to scan every pixel in the image and
it also produces fuzzy labels on the object boundary due to
ambiguity. This “border leakage” effect is undesirable and
we try to avoid it by considering region affinity and using a
region-based voting scheme in classifying each pixel.

Combining all these three components, we are able to
improve the efficiency (both in training and testing) and ef-
fectiveness of the auto-context algorithm. We obtained en-
couraging results on the MSRC [24] and VOC 2007 [7] im-
age segmentation/labeling datasets with 5 ∼ 10 times faster
than the original algorithm.

2. Data Assisted Output Code
One aim of this paper is to propose a new data-assisted

output code (DAOC) scheme for multiclass classification.
The features of our scheme are as follows: (1) As opposed
to design codes blind to data, our output codes are incre-
mentally proposed from the underlying data distribution.
In this way, we avoid searching in an exponentially large
code space and avoid many unnecessarily hard classifica-
tion problems due to the blindness (see Fig. 1 for an il-
lustration); (2) We pursue each code sequentially based on
good data separation, along with good row- and column-
separation of the coding matrix. Thus we attain a balance
between code-optimality and base-learner-amicability at a
small overhead; (3) A probability-based decoding scheme
is also proposed in this paper, which further improves the
overall classification accuracy. Combining all these fea-
tures, our scheme can give satisfactory results over a wide
range of code lengths, in particular in the cases where
l < k. This ability is crucial to applications with hundreds
of classes. It is noted that in this paper we use AdaBoost as
our base learner, but our scheme is general and other classi-
fiers can be used as well.
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Figure 1. An example of data-assisted output code strategy. The
problem is to classify the 4 classes given the two features using
binary base learners. Here shows the design for the first bit. A
strategy without looking at the data may introduce a XOR problem
(in the middle) which is much harder to deal with than the coding
by looking at the data (shown in the third column).

2.1. Literature Review
As mentioned in Section 1, we divide the existing output

code designs into three categories. Next, we will give a
brief review of these methods, along with several possible
decoding strategies.

Notations {(x1, y1), · · · , (xm, ym)} are training sam-
ples, where xi belongs to some input domain X , and
yi ∈ Y = {1, · · · , k} is the class label. Coding matrix
M ∈ {−1, 1}k×l, where l is the code length, column μs

(s = 1, · · · , l) is a binary partition of the k classes, and
row τT

v (v = 1, · · · , k) is an output code for class v. Base
learners give response g(x) = (g1(x), · · · , gl(x)) for a test
sample x, where g(x) ∈ {−1, +1}.

The error-correcting output codes (ECOC) scheme was
first proposed by Dietterich and Bakiri [6]. They suggested
to borrow good error-correcting codes from the coding the-
ory. To comply with the independence assumption across
bits, they insisted on two criteria in selecting coding matrix:
row separation for strong error-correcting property and col-
umn separation to decorrelate bits. Although they empiri-
cally demonstrated the good performance of their method,
the results were obtained under long code bits (for exam-
ple, 207 bits for a 26-class problem). They concluded that
the code-oriented design is robust to particular assignment
of codewords to classes. This statement, however, was only
validated empirically on the NETtalk task. On the con-
trary, other work showed that the blindness to data does
have an impact on performance [1, 18, 13]. Another ex-
ample of code-oriented design is AdaBoost.OC [22] and its
variations [9, 25]. AdaBoost.OC combines the benefits of
AdaBoost’s reweighing and ECOC’s relabeling by defining
joint weights over samples and incorrect labels. It incre-
mentally generates partitions and trains base learners until
a specified round limit is achieved. Unfortunately, finding
optimal partition is an instance of MAX-CUT problem, and
hence is NP-complete. Another problem is that extremely
hard binary problems may arise during the process [13]. For
these reasons, researchers usually turn to a random parti-



tioning strategy [22], with very long code bits (l ≥ 500).
Crammer and Singer [4] made an attempt to learn a cod-

ing matrix given a set of binary base learners. They showed
the original discrete problem is NP-complete and turned to
solving a relaxed problem. Indeed, the design of output
codes and the training of base learners are chicken-and-egg
problem, and breaking this naturally interleaving process
will inevitably make the classifier-driven code design sub-
optimal. Our approach is very different from [26], in which
the number of classifiers is linear to the class number. Fea-
tures are naturally shared in our DAOC classifier.

It seems promising to jointly optimize coding matrix and
base learners simultaneously. However, as stated before,
this problem is NP-hard and generally only local optimal so-
lutions can be obtained. An early attempt in code-classifier
joint design was made by Alpaydin and Mayoraz [2], where
they showed this strategy is equivalent to a two-layer multi-
layer perceptron, when base learners are restricted to a lin-
ear form and Hamming-decoding is used. More recently,
Rätsch et al. [18] proposed an algorithm which utilizes al-
ternating method to achieve the joint optimization of cod-
ing matrix and base learners. Therefore, less bits might
be needed since codes and base learners are more mutually
aware. On the other hand, their optimization is a batch pro-
cedure, and thus a slight change of code length will require
a re-training from scratch. Li [13] incorporated a similar al-
ternating strategy into each round of AdaBoost.ECC, which
is a variant of AdaBoost.OC. The drawbacks of alternating
method are (1) only local optimum is guaranteed; and (2)
significant overhead is involved.

Along the line of decoding/testing of an unseen sample
x, there are also several methods in the literature. Perhaps
the simplest method is to choose the class label v∗ which
has the minimum Hamming distance to the base learners’
responses:

dH(τv, g(x)) =
l∑

s=1

(
1 − sign(τv(s)gs(x))

2

)
(1)

The disadvantage of Hamming decoding is that it ignores
the confidence of each base learner. One remedy is to incor-
porate a weighted Hamming strategy:

dWH(τv, g(x)) =
l∑

s=1

αs

(
1 − sign(τv(s)gs(x))

2

)
(2)

where weight αs reflects sth base learner’s error rate on the
training set. AdaBoost.OC [21] and Maximum Likelihood
Decoding [9] adopt this method. Another way is to take
into account the margin information of each base learner if
possible, which gives the loss-based decoding strategy [1]:

dLoss(τv, g(x)) =
l∑

s=1

exp(−τv(s)gs(x)) (3)

2.2. The DAOC algorithm
Given a training set {(x1, y1), · · · , (xm, ym)} with yi ∈

Y = {1, · · · , k}, the task is to find the best classifica-
tion with coding matrix M and l binary classifiers. Ideally,
one would exhaustively search through all possible coding
strategies with the corresponding binary classifiers trained.
This requires to train a total number of 2k×l × l classifiers,
which is computationally infeasible. Our data-assisted out-
put code (DAOC) performs training in the following way:
(1) Each code bit is assigned sequentially; (2) For each bit
we look at the data feature and choose the best solution to
balance data-, row-, and column-separation (we also keep
an option to use designed code when no data feature meets
the requirement of row- and column-separation).

2.2.1 Data-Assisted Code Pursuit
As discussed in Section 2.1, one of the major difficulties in
existing designs is that codes and base learners cannot co-
operate in a harmonic way at a small computational over-
head. Next we tackle this problem using a data-assisted
approach. In this paper, we use AdaBoost as base binary
learner. Nevertheless, the approach is general and one can
use other classifiers as well.

In general, test error for a classifier is bounded by its
training error and VC dimension, and the training error ε in
AdaBoost is bounded by

ε ≤ 2T
T∏

t=1

√
εt(1 − εt), (4)

where T is the total number of weak classifiers. Indeed,
we can further show that εt+1 is bounded by the error in the
previous round, εt [29].

At step t, let the error for a candidate weak hypothesis
h(j) be ε

(j)
t =

∑m
i=1 Dt(i)

[
μ(yi) �= h(j)(xi)

]
and εt be the

best error achieved. Apparently, εt ≤ ε
(j)
t ; ∀j. εt = 0 when

the hypothesis perfectly classifies the data and εt = 1
2 when

it makes random guesses: 1
2 ≥ εt ≥ 0. Then, the best weak

hypothesis picked for t + 1 can best achieve:
εt+1 ≥ εt

2(1 − εt)
. (5)

The above fact shows that for AdaBoost, the error for
the next round is lower-bounded by the error for the current
round. This implies that to facilitate the training of Ad-
aBoost, one effective way is to reduce the data complexity
so that the error rate for its first weak hypothesis is as low
as possible (and consequently subsequent weak hypotheses
are less bounded). This is possible in the context of output
coding scheme by feeding AdaBoost a well chosen partition
μ. Another observation is that marginal class separability
along each feature is a good indicator for the difficulty of the
resulting binary classification problem. Our experimental
results show that similar improvement can be observed for
AdaBoost using decision stump and decision tree as weak



classifiers. We expect that a similar conclusion might still
hold for other types of classifiers.

Based on these observations, our data-assisted approach
examines two marginal histograms:

qL
j (v) =

m∑
i=1

[v = yi] [fj(xi) ≤ θ] (6)

qR
j (v) =

m∑
i=1

[v = yi] [fj(xi) > θ] (7)

and the weighted marginal entropy measures the class sep-
arability along feature fj at a particular threshold θ:

WEnt(fj , θ) = ZL
j × Entropy(qL

j /ZL
j )

+ ZR
j × Entropy(qR

j /ZR
j ) (8)

where ZL
j and ZR

j are normalization constants for qL
j and

qR
j respectively. Intuitively, the smaller WEnt is, the bet-

ter classification accuracy a decision-stump could achieve,
and this in turn implies a better overall performance of Ad-
aBoost according to the above fact. This criterion is in-
spired by the information gain used in decision tree [16]. It
is noted that this search is linear to the number of data fea-
tures and can be done very efficiently. The candidate output
code proposed by fj and θ is:

μ(v) =
{ −1 if qL(v) ≥ qR(v)

+1 otherwise
∀v = 1, · · · , k (9)

The above data-assisted candidate codes reflect the notion
of classifier-amicability. To further reflect the optimality of
codes, we consider the following criteria when incremen-
tally augmenting the sth column μs to coding matrix M :

CSep(μs) = min
s′<s

{dH(μs, μs′), dH(μs, μ̄s′)} (10)

RSep(μs) = min
v,v′

dH(τv(μs), τv′ (μs)) (11)

where μs′ (s′ < s) are the previously chosen columns and
μ̄s′ denotes the bitwise complement of μs′ . CSep mea-
sures the minimum Hamming distance of μs to any previ-
ously selected code and its complement, and RSep mea-
sures the minimum Hamming distance among all pairwise
augmented class codes τv (v = 1, · · · , k) at round s. These
two measures reflect the column- and row-separation re-
quirements for a strong error-correcting code design. Fi-
nally, the optimal partition is chosen by:

μ∗
s = argmin

µs

(λ · WEnt − CSep(μs) − RSep(μs))

s.t. CSep(μs) > 0 and RSep(μs) > 0 (12)

where λ is a parameter to balance classifier-amicability and
code-optimality. The hard constraints are to keep us away
from particularly bad code designs.

The data-assisted approach effectively returns good out-
put codes without invoking base learners by focusing on
more promising area in the exponentially large code space.
The down side is that due to the incompleteness of data-
assisted code space, occasionally the hard constraints in
(12) may rule out every proposed code. In this case, we
turn to a random partitioning strategy as in [1]. Our experi-
ment, however, shows that this situation seldom happens in
practice.

2.2.2 Probability-Based Decoding
In this part, we introduce our probability-based decoding
method. Compared with other methods reviewed in Section
2.1, this method interprets the output of AdaBoost as esti-
mates of posterior probabilities [8], and combines their re-
sponses within the more principled probability framework.

Based on the assumption that code bits are independent
of each other, which is partly validated by the constraints in
(12) during training, our predicted class label is:

v∗ = argmax
v

l∏
s=1

(
exp(2τv(s)gs(x))

1 + exp(2τv(s)gs(x))

)
(13)

Like (3), our decoding considers the margin information
given by AdaBoost. The major difference lies in that in
(13), each AdaBoost’s confidence is normalized, and thus
different voices are combined in a more fair way. In the
next section, we will show that this approach does improve
accuracy over other decoding methods.

2.3. Experiments
To better evaluate the DAOC scheme, we did five de-

voted experiments on UCI repository. The descriptions of
used datasets are summarized in Table 1. For the encod-
ing part, we compare DAOC with traditional data-blinded
ECOC [21, 1, 19]. We use a scheme to chooses μs at ran-
dom, but ensuring an approximately half/half partition of
all class labels. Although this scheme targets good error-
correcting property, it does not look at the data and suffers
from the blindness problem. Also, we compare DAOC with
one-vs-all strategy. It is noted that the latter is only applica-
ble for l = k, and becomes unaffordable when k is large. Fi-
nally, to have a comparison with fine-tuned error-correcting
codes, we include a fixed ECOC scheme for the 10-class
problem optdigits. The 15-bit fixed code is borrowed
from Table 3 of [6]. For the decoding part, we compare
Hamming-based, loss-based, and probability-based decod-
ing strategies. All methods use AdaBoost as base learner,
with 100 weak hypotheses (both stump and decision-tree
are tested, and conclusions are consistent). The parameter
λ is fixed to 0.2 for all the experiments.

Ten trials are conducted for each algorithm and dataset.
In each trial, we randomly sample a training set and use
the remaining data as test set. Results on optdigits and



isolet with stump and decision-tree as weak hypotheses
are shown in the first three columns of Fig. 3. It can be seen
that DAOC produces satisfactory results over a wide span of
code lengths. It performs consistently better than the data-
blinded ECOC scheme, and its error rate is comparable to
the fine-tuned codes at its fixed code length. One-vs-all per-
forms slightly better than DAOC at its fixed code length. We
emphasize that the advantage of DAOC lies in the region
l < k, which will be shown later. It is also observed that the
probability-based decoding achieves lower error than loss-
based decoding, which in turn outperforms simple Ham-
ming decoding. For the limit of space, only probability-
based decoding results are plotted for satimage, ecoli,
and vowel, in the fourth column of Fig. 3. The observa-
tions on these three datasets are consistent with the above
experiments.

Since the performance metric error rate does not reflect
the computational cost (the number of binary classifiers
used, i.e. l) in training and testing, here we design a dif-
ferent performance score as follows:

S(l, εl) = σ(εl) + σ(β × (l/k)) (14)

where l denotes the current code length, ε l is the error rate
under l, and σ(x) = 1/(1 + e−x) is the logistic function.
Note that score S (the smaller the better) reflects both ef-
fectiveness (first term) and efficiency (second term) and β
is a balancing parameter (we use β = 0.5 in this paper). In
the last column of Fig. 3, results on optdigits, vowel,
and isolet are plotted based on score S. Under this met-
ric, it can be seen that DAOC maintains a good balance
between effectiveness (low test error) and efficiency (short
code length, or fewer binary classifiers).

Table 1. Description of the datasets
name k # attribute # train # test

satimage 6 36 4000 2435
ecoli 8 8 200 136

optdigits 10 64 3500 2120
vowel 11 10 500 490
isolet 26 617 6000 1797

Figure 2. Illustration of the scale space image patches in training.

3. Scale Space Image Patch
The scale-space problem in image analysis has been

a long standing problem [14]. Existing image segmen-
tation/labeling approaches using patch-based classification
[11, 10, 24, 28] works on fixed size, which are sensitive to
big scale changes. To achieve scale-invariance is not a triv-
ial task, since even in the training images, no scale “ground
truth” is provided explicitly for each pixel. Recent popular
feature extraction algorithms [15] try to find the most infor-
mative scale automatically and another method [5] studies
the best scale for a particular task through empirical studies.
We aim to build an efficient automatic algorithm to explore
the scale space, both in training and testing. Since we do
not know what the right scale is at each pixel, one interest-
ing approach to try is the multiple instance learning (MIL)
methods. At each pixel, we may collect a bag in which
there are many patches at different scales. A MIL method
then should be able to successfully find the right scale by
minimizing the error for all the bags. In our task of im-
age segmentation/labeling, we found it not very effective,
probably due to the large intra-class variation. In this ex-
ercise, we simply collect image patches at several scales (3
scales: 21 × 21, 41 × 41, 61 × 61) as the training samples.
According to the margin theory of classifier, samples with
high confidence should have large margin and those confus-
ing ones are mostly on the decision boundary. Therefore, by
simply augmenting the volume of training samples, we let
the classifier automatically explore the right scale. Fig. 2
shows an illustration. In testing, one can either assign the
probability to each pixel with the most confident one, or av-
erage the confidences across all the scales. For the MSRC
dataset, we see an improvement from 61% to 64% by us-
ing the scale space image patch with both using otherwise
the same setting (the same DAOC classifier on the same set
of features and measured on patch-based classification only
with no context information).

4. Region Based Voting Scheme
Performing image labeling based on each pixel is not ef-

ficient because it has to scan every pixel in the image and
it also produces fuzzy labels on the object boundary due
to ambiguity. In other systems [17, 30], classification is
performed on interest points/features extracted from seg-
mented regions. However, segmentation is often not stable
(though using multiple segments [20] might help a bit) and
feature extraction methods are not always satisfactory. In
this paper, we take a different approach, which is a region-
based voting scheme. Given an image, we use the mean-
shift algorithm [3] to perform over-segmentation. A set of
pixels (usually 5% ∼ 8%) are then randomly selected in
each region to perform classfication. The overall discrim-
inative probability (often a vector) is simply the average
of the probabilities of these sampled pixels. We achieve
three goals by doing this: (1) speed up testing since only
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Figure 3. Results on UCI datasets. The first two columns show the results on optdigits and isolet using different decoding strategies
with decision-stump as weak hypothesis. The third column shows results on isolet using decision-tree as weak hypothesis. The fourth
column shows results on satimage, ecoli, and vowel using probability-based decoding. The last column shows the results on
optdigits, vowel, and isolet based on score S, which reflects both effectiveness and efficiency of a classifier under different code
lengths. DAOC achieves the best overall performance.

a fraction of pixels are tested; (2) obtain improved accu-
racy on the boundaries since the final result is complied
with intensity-based segmentation; (3) have the possibility
to use region-based features such as shape, in addition to
features computed from the image patch. Compared to the
approaches directly classifying segmented regions, our ap-
proach is less dependent on the segmentation result and the
robustness of the feature extraction algorithms. Patch-based
features are still able to be used. It is noted that we still use
the full set of pixels in the training stage to leave the max-
imum amount of information for the classifiers. Fig. (4)
shows an illustration of our approach.

randomly sampled pixels in each region
probability mapsscale space

Figure 4. Pixels are randomly sampled in segmented regions by
the mean-shift algorithm in testing.

5. Outline of The Algorithm

Here we give the outline of our algorithm.
In training, given a set of images with the correspond-

ing label maps of k classes: (1) Start with initial probability
maps of uniform distribution for all the images. (2) Collect
image patches of different scales (typically 3), and these

are the training samples. (3) Compute both the appearance
features, from the image patch, and the context features,
from the probability maps [28]. (4) Train a DAOC multi-
class classifier (typically �log2k� plus 2 additional bits for
the error correction). (5) Update the probability maps us-
ing trained classifier. (6) Go back to step 2 and repeat the
procedure (auto-context).

In testing: given a test image: (1) Start with initial prob-
ability maps of uniform distribution. (2) Perform segmenta-
tion using the mean-shift algorithm (takes about 0.1s). (3)
For each region, randomly select a set of pixels (5% ∼
8%). (4) Perform classification on different scales of im-
age patches centered at the pixel. (5) Compute the average
probability vector from all scales (one could also use the
probability vector which has the smallest entropy but aver-
aging gives better result). (6) Assign each region with the
discriminative probability vector averaged over all sampled
pixels. (7) Go back to step 3 and repeat the procedure for
the number of iterations trained for the auto-context.

6. Experimental Results

We illustrate the proposed algorithm on two widely used
and tested datasets: the MSRC dataset [24] and the VOC
2007 dataset [7]. In both the cases, we use the identical
set of training and test images provided by the dataset de-
signer. The accuracy of the labeling results are shown in
Fig. (7) and Fig. (8). As we stated before, three com-
ponents are proposed to improve both efficiency and accu-



racy: (1) a new multi-class classifier (DAOC); (2) a scale-
space approach for classification; and (3) a region-based
voting scheme. Compared with the original auto-context
algorithm with PBT [27] as binary classifiers, DAOC effec-
tively reduces the training and testing time by a significant
level (about 5 ∼ 10 times), without sacrificing much accu-
racy. The scale-space approach positively affects the final
results and the region-based voting scheme not only leads
to a faster testing stage, but also sharpens the object bound-
aries. It takes around 10 seconds to segment/label an image
in testing.

For the MSRC dataset, the overall per-pixel accuracy is
78%, which is the same as the original auto-context algo-
rithm. However, there was a post-process smoothing stage
in the auto-context and the result before smoothing was
74.5%. In addition, the segmentation by the proposed al-
gorithm has much more accurate boundaries than those by
the auto-context algorithm. After a careful examination, we
found that many of the ground truth labels in the MSRC
dataset are not accurate, which may bring about unfair com-
parison between algorithms. There are mainly two types of
inaccuracies in the ground truth labels: (1) Humans are bi-
ased towards “more important objects” and tend to favor
a high false positive and an extremely low false negative
rate of these objects. The result is a lot of background pix-
els (e.g. grass, sky) are labeled as foreground objects (e.g.
cow, bird); (2) Humans are sometimes not consistent them-
selves. The result is sometimes an area of background pix-
els is not labeled or the “void” region between different ob-
jects is fairly wide. To rectify these two effects, we take an
effort to refine the labels of the test images. Some examples
are shown in Fig. 5. Performing measurement based on the
refined labels, our new algorithm achieves a per-pixel accu-
racy of 81%, with the original auto-context achieving 76%
and 79% before and after post-processing respectively.

On the VOC2007 and VOC2008 datasets, we use the
identical parameter setting for the training and testing, as
those in the MSRC dataset. The overall average segmenta-
tion accuracy across all classes is 30%, which is better than
24% reported in [23], and comparable to the best reported
TKK algorithm [7], which is specifically designed for this
task. Also, our per-pixel accuracy is much higher, 41%
than that in TKK, 24%. The per-pixel accuracies for Shot-
ton et al., Brookes, TKK, and ours are respectively 58%,
21%, 24%, and 41%. However, the background has 71.5%,
and therefore a default algorithm which simply assigns all
the pixels is not bad on per-pixel measure. Nevertheless,
our algorithm achieves the-state-of-the-art performance av-
eraged based on all classes, while having good per-pixel
performance. In Fig. (8), we also report the result on the
VOC2008 dataset using 4336 training images and 512 test
images provided by the organizers (without using external
data). The accuracy measures in VOC2007 and VOC2008

are different.

Figure 5. Illustration of manually refined ground truth for the test
images.

water

grass
cow

road

dog
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tree
face

body
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Figure 6. Results on some test images of MSRC. The first row shows the
input images. The second shows the results reported in [28] and the third
row shows the results by our algorithm. As we can see, the segmentation
boundaries are much more accurate with improved recognition rates.

7. Conclusion
In this paper, we have proposed three components which

improved efficiency, as well as accuracy, for the auto-
context algorithm. We anticipate the same performance
gain for many CRF-based vision applications. The new
data-assisted output coding (DAOC) scheme effectively re-
duces the training and testing complexity of the existing
multi-class classifiers, by seeking a balance between code-
optimality and classifier-amicability at a small overhead.
DAOC is general and can be used as a generic multi-class
classifier. We have illustrated its advantages on both the
traditional machine learning datasets and vision applica-
tions. A scale-space approach was also included to make
patch-based classification more robust to scale-change of
objects. Finally, a region-based voting scheme was used
to improve the accuracy and drastically reduce the testing
time. Equipped with all these components, our new system
attains state-of-the-art segmentation/labeling results on the
MSRC and VOC2007, with significant reduction (5 ∼ 10
times) in training and testing time than the original auto-
context algorithm. It typically takes about 10 seconds per-
image to perform segmentation/labeling in testing. The al-
gorithm by Shotton et al. [23] using random forest achieves
nearly real-time in testing, and is also faster in training than
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Shotton et al. 49 88 79 97 97 78 82 54 87 74 72 74 36 24 93 51 78 75 35 66 18 72 67 
Auto-context 69 96 87 78 80 95 83 67 84 70 79 47 61 30 80 45 78 68 52 67 27 78 69 

Ours 53 97 83 70 71 98 75 64 74 64 88 67 46 32 92 61 89 59 66 64 13 78 68 

  On refined ground truth labels     

Auto-context 71 93 88 81 83 94 89 67 89 72 78 48 64 31 80 48 78 70 55 70 28 79 70 

Ours 58 96 86 83 78 98 81 66 80 66 91 70 50 36 92 67 90 61 71 69 14 81 72 
 

Figure 7. MSRC segmentation/labeling results.

Figure 8. VOC2007 and VOC 2008 segmentation/labeling results. Note that the accuracy measures in VOC2007 and VOC 2008 are different. For each
class, in VOC2007, accuracy=(true positive)/(ground truth), whereas in VOC2008, accuracy=(true positive)/(ground truth + false positive + false negative).

our algorithm. However, we have significantly better accu-
racies. Our result on the VOC2007 and VOC2008 datasets
is still far from being fully satisfactory. This suggests that
future research is required to probably study more explict
models.
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