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Abstract

The notion of using context information for solving high-
level vision problems has been increasingly realized in the
field. However, how to learn an effective and efficient con-
text model, together with the image appearance, remains
mostly unknown. The current literature using Markov Ran-
dom Fields (MRFs) and Conditional Random Fields (CRFs)
often involves specific algorithm design, in which the mod-
eling and computing stages are studied in isolation. In this
paper, we propose an auto-context algorithm. Given a set
of training images and their corresponding label maps, we
first learn a classifier on local image patches. The discrimi-
native probability (or classification confidence) maps by the
learned classifier are then used as context information, in
addition to the original image patches, to train a new clas-
sifier. The algorithm then iterates to approach the ground
truth. Auto-context learns an integrated low-level and con-
text model, and is very general and easy to implement. Un-
der nearly the identical parameter setting in the training,
we apply the algorithm on three challenging vision applica-
tions: object segmentation, human body configuration, and
scene region labeling. It typically takes about 30 ∼ 70 sec-
onds to run the algorithm in testing. Moreover, the scope
of the proposed algorithm goes beyond high-level vision. It
has the potential to be used for a wide variety of problems
of multi-variate labeling.

1. Introduction
It has been noted that context and high-level information

plays a vital role in object and scene understanding [2, 22].
Yet, a principled way of learning an effective and efficient
context model, together with the image appearance, is not
available. Context comes into a variety of forms and it can
be referred to as Gestalt laws in middle level knowledge,
intra-object configuration, and inter-object relationship. For
example, a clear horse face may suggest the location of its
tail and legs, which are often occluded or not easy to iden-
tify. The strong appearance of a car might well suggest the
existence of a road, and vice versa [8].

From the Bayesian statistics point view, context is repre-

sented by the joint statistics of the multi-variate in the pos-
terior probability, which is decomposed into likelihood and
prior. In vision, likelihood and prior are often referred to as
appearance and shape respectively. However, there are still
many technological hurdles to overcome and the difficulties
can be summarized into two aspects: modeling and comput-
ing. (1) Difficulty in modeling complex appearances: Ob-
jects in natural images observe complex patterns. There are
many factors contributing to the complexity such as texture
(homogeneous or inhomogeneous), lighting conditions, and
occlusion. (2) Difficulty in learning complicated shapes.
(3) Difficulty in computing for the optimal solution: The
optimal solution is often considered as the one which maxi-
mizes a posterior (MAP), or equivalently, minimizes an en-
ergy. Searching for the optimal solution for the combination
of the appearance and shape models is an non-trivial task.

From the energy minimization point of view, models like
Markov Random Fields (MRFs) [6], conditional Markov
Random Fields (CRFs) [9], and computing algorithms such
as Belief Propagation (BP) [15, 30], have been widely used
in vision [21]. However, these models and algorithms share
somewhat similar disadvantages: (1) the choice of functions
used are quite limited so far; (2) they usually rely on a fixed
topology with very limited neighborhood relation; (3) they
are slow in solving many real vision problems, whereas bio-
logical vision systems can identify and understand complex
objects/scenes very rapidly; (4) they are only guaranteed to
obtain the optimal solution for a limited function families.
Hidden Markov models (HMM) [12] studies the depen-
dencies of the neighboring states, which is in a way similar
to the MRFs. HMM is also limited to short range context
information and usually is time consuming in learning the
parameters and computing for the solutions.

From the point of view of using context information,
there have been a lot of recent work proposed in object
recognition and scene understanding [8, 19, 16, 22, 18, 28,
7, 20]. A pioneering work was proposed by Belongie et
al. [2] which uses shape context in shape matching.

In this paper, we make an effort to address some of the
questions mentioned above by proposing an auto-context
model. The algorithm targets the posterior distribution di-
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rectly in a supervised approach. Like in the BP algo-
rithm [30], the goal is to learn/compute the marginals of
the posterior, which we also call classification maps for the
rest of this paper. Each training image comes with a label
map in which every pixel is assigned with a label of interest.
A classifier is first trained to classify each pixel. There are
two types of features for the classifier to choose from: (1)
image features computed on the local image patches cen-
tered at the current pixel (we use image patches of fixed
size 11 × 11 in this paper), and (2) context information on
the classification maps. Initially, the classification maps are
uniform, and thus, the context features are not selected by
the first classifier. The trained classifier then produces new
classification maps which are used to train another classi-
fier. The algorithm iterates to approach the ground truth un-
til convergence. In testing, the algorithm follows the same
procedure by applying the sequence of learned classifiers to
compute the posterior marginals.

The auto-context algorithm integrates the image appear-
ances (observed data) together with the context information
by learning a series of classifiers. Unlike many the energy
minimization algorithms where the modeling and comput-
ing stages are separated, auto-context uses the same proce-
dures in the two (this is a property of many classifiers since
they get close-form solutions). The difference between the
results in training and testing is the generalization error of
the trained classifiers. Therefore, there is no explicit en-
ergy to minimize in auto-context. This alleviates the bur-
den in searching for the optimal solution. Auto-context
uses deterministic procedures, but it carries the uncertain-
ties without the need of making any hard decisions. This
makes the auto-context algorithm significantly faster than
most the existing energy minimization algorithms. Com-
pared to MRFs, CRFs, auto-context no longer works on a
fixed neighborhood structure. Each pixel (sample) can have
support from a large number of neighbors, either short or
long range. It is up to the learning algorithm to select and
fuse them. The classifiers in different stages may choose
different supporting neighbors to either enhance or suppress
the current probability towards the ground truth. Also, the
appearance (likelihood) and prior (context and shape) are
directly combined in an implicit way and the balance be-
tween the two is naturally handled.

Two pieces of work directly related to auto-context are:
Boosted Random Fields (BRFs) [22] and SpatialBoost [1],
which both use boosting algorithm to combine the contex-
tual information. However, both the algorithms use con-
textual beliefs as weak learner in the boosting algorithm,
which is time-consuming to update. Possibly due to this
reason, SpatialBoost was only illustrated on an interactive
segmentation task. BRFs learns the message update rules
in the belief propagation algorithm, and the main focus of
SpatialBoost is to propose an extended algorithm for the

boosting algorithm. The auto-context is a general algorithm
and the classifier of choice is not limited to boosting al-
gorithms. It directly targets the posterior through iterative
steps, resulting in a simpler and more efficient algorithm
than BRFs and SpatialBoost. Under nearly the same set of
parameters in training, we demonstrate several applications
using the auto-context, which are not available in [22, 1].
A feed forward way of including context with appearance
was proposed in [28] for object detection. However, their
method is not to iteratively learn a posterior. More impor-
tantly, their findings lead to the conclusion that the help
from context is negligible (unless the image quality is re-
ally poor). Our experimental results in Fig. (3.a) suggest
it differently. One possible reason might be that the image
segmentation/parsing task is different from the object de-
tection problem focused in [28]. Others [16] also showed
that explicit context information improves region segmen-
tation/labeling results greatly.

Compared to the traditional Bayesian approach for im-
age understanding [25] , auto-context is much easier to train
and it avoids heavy algorithm design. It is significantly
faster than many the existing algorithms in this domain.
Compared to the algorithms using context [16, 8, 26], it
learns an integrated model. There is no hard decision made
in the intermediate stages and uncertainties are all carried
through posterior marginals.

We demonstrate the auto-context algorithm on challeng-
ing high-level vision tasks for three well known datasets:
horse segmentation in the Wizemann dataset [3], human
body configuration in the Berkeley dataset [13], and scene
region labeling in the MSRC dataset [19]. The proposed
algorithm is general and very easy to implement. Its scope
goes beyond high-level vision tasks. Indeed, it has the po-
tential to be used for many problems for multi-variate label-
ing where the joint statistics needs to be modeled.

2. Problem formulation
In this section, we give the problem formulation for the

auto-context model and briefly discuss some related algo-
rithms.

2.1. Objective

Let the data vector be X = (x1, ..., xn). In the case of
2D image, X = (x(i,j), (i, j) ∈ Λ) where Λ denotes the
image lattice. For notational clarity, we do not distinguish
the two and call the both ‘image’. In training, each image
X comes with a ground truth Y = (y1, ..., yn) where yi ∈
{1..K} is the label of interest for each pixel i. The training
set is then S = {(Yj , Xj), j = 1..m} where m denotes the
number of training images. The Bayes rule says p(Y |X) =
p(X|Y )p(Y )

p(X) , where p(X |Y ) and p(Y ) are the likelihood and
prior respectively. Often, we look for the optimal solution



maximizing a posterior (MAP)

Y ∗ = argmax p(Y |X) = argmax p(X |Y )p(Y ).

As mentioned before, the main difficulties for the MAP
framework come from two aspects. (1) modeling: it is very
hard to learn accurate p(X |Y ) and p(Y ) for real-world ap-
plications. Both of them have high complexity and usually
do not follow independent identical distribution (i.i.d.). (2)
computing: The combination of the p(X |Y ) and p(Y ) is
often non-regular. Besides many recent advances made in
optimization and energy minimization [21], a general and
immediate solution yet remains out of reach.

Instead of decomposing p(Y |X) into p(X |Y ) and p(Y ),
we study the posterior directly. Moreover, we look at the
marginal distribution P = (p1, ...,pn) where pi, as a vec-
tor for discrete labels, denotes the marginal distribution of

p(yi|X) =
∫
p(yi, y−i|X)dy−i, (1)

where y−i refers to the rest of y other than yi. This is seem-
ingly a more challenging task as it requires to integrate out
all the dy−i. Next, we discuss how to approach this.

2.2. Traditional classification approaches

A traditional way to approximate eqn. (1) is by treat-
ing it as a classification problem. Usually, a classifier is
considered to be translation invariant. The training set be-
comes S = {(yji, Xj(Ni)), j = 1..m, i = 1..n}. Instead
of using the entire image Xj , the training set includes im-
age patch centered at each i, Xj(Ni). Ni denotes all the
pixels in the patch. In the context of boosting algorithms, it
was shown [5, 4] that one can learn the posterior based on
logistic regression

p(y = k|X(N)) =
eFk(X(N))

∑K
k=1 e

Fk(X(N))
,

K∑
k=1

Fk(X(N)) = 0.

(2)
Fk(X(N)) =

∑T
t=1 αk,t · hk,t(X(N)) is the strong classi-

fier on a weighted sum of selected weak classifier hk,t for
label k. The learned posterior marginal, p(y = k|X(N)),
is a very crude approximation to eqn. (1) and it only uses
some context implicitly through image patch X(N). Due
to this limitation, the well-known CRFs or Discriminative
Markov Random Fields (DRFs) model [9] tries to explic-
itly include the context information by adding another term
p(yi1, yi2|X(Ni1), X(Ni2)). Though CRFs has been suc-
cessfully applied in many applications [9, 10, 17], it still has
the limitations similar to those in the MRFs as discussed in
Sect. (1). CRFs still uses fixed neighborhood structure with
fairly limited number of connections. The computing com-
plexity explodes on a large neighborhood (clique) structure.
This limits their modeling capability and only short-range

context is used in most cases (the long-range context model
in [10] uses a few connections). Also, it limits their comput-
ing capability since the interactions are slowly propagated
through pair-wise relations.

2.3. Auto-context

classifier 1training
X)|P(y

classifier 2 classifier n

X)|(yP(0) X)|(yP(1) X)|(yP 1)-(n
X)|(yP(n)

X

Figure 1. Illustration of the classification map updated at each round for the horse
segmentation problem. The red rectangles are those selected contexts in training.

To better approximate the marginals in eqn. (1) by in-
cluding a large number of context information, we propose
an auto-context model. As mentioned above, a traditional
classifier can learn a classification model based on local im-
age patches, which now we call

P(0) = (p(0)
1 , ...,p(0)

n )

where p(0)
i is the posterior marginal for each pixel i learned

by eqn. (2). We construct a new training set

S1 = {(yji, Xj(Ni),P(0)
j (i)), j = 1..m, i = 1..n}, (3)

where P(0)
j (i)) is the classification map for the jth training

image centered at pixel i. We train a new classifier, not only
on the features from the image patch Xj(Ni), but also on

the probabilities, P(0)
j (i)), of a large number context pix-

els. These pixels can be either near or very far from i, and
Fig. (1) shows an illustration. It is up to the learning algo-
rithm to select and fuse important supporting context pixels,
together with features about image appearance. Once a new
classifier is learned, the algorithm repeats the same proce-
dure until it converges. The algorithm iteratively updates
the marginal distribution to approach

p(n)(yi|X(Ni),P(n−1))→ p(yi|X) =
∫
p(yi, y−i|X)dy−i.

(4)
In theorem 1 we show that the algorithm is asymptotically
approaching p(yi|X) without doing explicit integration. A
more direct link between the two, however, is left for future
research.

In fact, even the first classifier is trained the same way
as the others by giving it a probability map of uniform dis-
tribution. Since the uniform distribution is not informative
at all, the context features are not selected by the first clas-
sifier. In some particular applications, e.g. medical image



segmentation, the positions of the anatomical structures are
roughly known. One then can use a probability atlas as the
initial P(0).

Given a set of training images together with their label maps, S =
{(Yj , Xj), j = 1..m}: For each image Xj , construct probability maps

P(0)
j with uniform distribution on all the labels. For t = 1, ..., T :

• Make a training set St = {(yji, (Xj(Ni),P(t−1)
j (i))), j =

1..m, i = 1..n}.

• Train a classifier on both image and context features extracted

from Xj(Ni) and P(t−1)
j (i))) respectively.

• Use the trained classifier to compute new classification maps

P(t)
j (i) for each training image Xj .

The algorithm outputs a sequence of trained classifiers
for p(n)(yi|X(Ni),P(n−1)(i))

Figure 2. The training procedures of the auto-context algorithm.

Theorem 1 The auto-context algorithm monotonically de-
creases the training error.
Proof: For notational simplicity, we consider only one im-
age in the training data and use X(i) to denote X(N(i)).
In the AdaBoost algorithm [5], the error function is taken
by ε =

∑
i e

−yiH(X(i)) for yi ∈ {−1,+1}, which can be
given an explanation as the log-likelihood model [4]. At
different steps,

εt = −
∑

i

log p(t)(yi|X(i),P(t−1)(i)), and

εt−1 = −
∑

i

logp(t−1)
i (yi),

where

p(t)(yi|X(i),P(t−1)(i)) =
eF

(t)
k

(X(i),P(t−1)(i))

∑K
k=1 e

Fk(t)(X(i),P(t−1)(i))
.

(5)
F

(t)
k (X(i),P(t−1)(i)) includes a set of weak classifiers se-

lected for label class k. It is straightforward to see that we
can at least make

p(t)(yi|X(i),P(t−1)(i)) = p(t−1)
i (yi)

since the equality can be easily achieved by making

F
(t)
k (X(i),P(t−1)(i)) = logp(t−1)

i (k)).

The boosting algorithm (or almost any valid classifier)
choose a set of F (t)

k in minimizing the total error εt, which

should at least do better than p(t−1)
i (yi) Therefore,

εt ≤ εt−1. �

The convergence rate depends on the amount of error re-
duced εt−1 − εt. Intuitively, the next round of classifier

tries to select features both from the appearances and the
previous classification maps. A trivial solution is to use
the previous probability map for the classifier. This also
shows that the optimal classifier is at a stable point. Of
course, this requires to have the feature of its own proba-
bility in the candidate pool, which is not hard to achieve.
Fig. (1) gives an illustration of the procedures of the auto-
context. Several rays are shot from the current pixel and we
sparsely sample the context locations (both individual pix-
els and windows) to use their classification probabilities as
features. Each round of training will select different sets of
context pixels, either short range or long-range.

2.4. Understanding auto-context

We first take a look at the Belief Propagation algo-
rithm [15, 30] since it also works on the marginal distribu-
tion. For directed graph, BP is guaranteed to find the global
optimal. For loopy graph, BP computes an approximation.
For a model on a graph

p(Y ) =
1
Z

∏
(i,j)

ψ(yi, yj)
∏

i

φi(yi)

where Z is the normalization constant, ψ(yi, yj) is the pair-
wise relation between sites i and j, and φi(xi) is a unary
term. The BP algorithm [30] computes the belief (marginal)
pi(yi) by

pi(yi) =
1
Z
φi(yi)

∏
j∈N(i)

mji(yi), (6)

where mji(xi) are the messages from j to i,

mij(yj)←
∑
yi

φi(yi)ψi,j(yi, yj)
∏

k∈N(i)\j

mki(yi). (7)

Similarly, the auto-context algorithm updates the marginal
distribution by eqn. (5). The major difference between BP
and auto-context are: (1) On the graphical model, every pair
of ψi,j(yi, yj) on all possible labels need to be evaluated
and integrated in eqn. (7). Therefore, BP can only work
with a limited number of neighborhoods to keep the compu-
tational burden under check. For auto-context, it evaluates
a sequence of learned classifiers, F (t)

k (X(i),P(t−1)(i)),
which is computed based on a set of selected features.
Therefore, auto-context can afford to look at a much longer
range of support and it is up to the learning algorithm to se-
lect and fuse the most supportive contexts and appearance
information. Also, there is no integration between the pair
yi and yj . (2) BP works on a fixed graph structure and the
update rule is the same. auto-context learns different clas-
sifiers on different set of features at different stages, which
allows it to make use of the best available set of informa-
tion each time. (3) In BP, there is often separate stages to



design the graphical model, and learn ψ(yi, yj) and φi(yi).
Auto-context is targeted to learn the posterior marginal di-
rectly and its inference stage follows the identical steps in
the learning phase. The difference between the learning and
test stages is the generalization error of the classifiers which
can be studied by the VC dimension or margin theory [27].
However, BP has the advantage that it uses the same mes-
sage passing rule for different forms of pi(yi) in eqn. (6),
whereas auto-context requires to learn a different set of clas-
sifiers for different tasks.

A question one might ask is: “How different is it between
learning a recursive model p(t)(yi|Xi,P(t−1)(i)) and learn-
ing p(yi|X) directly?”. A classifier can be learned by using
the entire image X rather than the image patch X(i). A
major issue is that p(yi|X) should be a marginal distribu-
tion by integrating out the other is as shown in eqn. (1).
The correlation between different pixels needs to be taken
into account, which is hard by learning one classifier for
p(yi|X). It also builds a feature space too big for a clas-
sifier to handle and might lead to severe overfitting. Wolf
and Bileschi [28] suggested that using label context might
achieve the same effect as using image appearance con-
text, in object detection. Moreover, in both the situations
where contexts were used, the improvements were small.
We conducted an experiment to train a system with im-
age appearance, instead of the probabilities, for the pixels
sparsely sampled on the rays, as suggested in [28]. The
results are shown in Fig. (3.a) and the conclusions are dif-
ferent from [28] in two aspects: (1) having appearance con-
text even gives worse result than using features from patches
only (due to overfitting); (2) label (in probabilities) contexts
greatly improve the segmentation/labeling result.

There have been many algorithms along the line of using
context [2, 16, 8, 22, 1]. Auto-context makes an attempt to
recursively select and fuse context information, as well as
appearance, in a unified framework. The first round of clas-
sifier is based purely on the local appearance. Objects with
strong appearance cues often achieve high probabilities on
their labels. These probabilities then start to make influence
to the others, if there are strong correlations between them.
Themselves are also getting support from the others. Dur-
ing the iterations, the algorithm learns to suppress the strong
probabilities, if wrong, and improve the low ones to the tar-
get distribution. Context information not only comes from
between-objects, they are also from within-objects (parts),
even the parts may be far from each other spatially. Auto-
context uses a very general and simple scheme by avoiding
heavy manual algorithm design.

3. Experiments
We illustrate the auto-context algorithm on three chal-

lenging high-level vision tasks: horse segmentation, human
body configuration, and scene parsing/labeling. In these

three tasks, the system uses nearly an identical parameter
setting, mostly generic ones such as the number of weak
classifiers and the stopping criterion. The system can be
used for a variety of tasks with given training images and
label maps.

3.1. Horse segmentation

We use the Weizmann dataset consisting of 328 horse
images [3] of gray scale. The dataset also contains manu-
ally annotated label maps. We split the dataset randomly
into half for training and half for testing. The training stage
follows the steps described in Fig. (2). Two main implemen-
tation issues we have not talked about are the choices of: (1)
classifiers, (2) features. Boosting algorithms appear to be a
natural choice for the classifier as they are able to select and
fuse a set of features from a large candidate pool to approx-
imate the target posterior marginal. However, our algorithm
is not tied to any specific classifier and one can choose oth-
ers such as SVM [27]. Since each pixel is a training sample,
there consists of millions of positive and negative ones. It
is hard to build a single node boosting algorithm to perform
the classification. We adopt the probabilistic boosting tree
(PBT) algorithm [23] as it learns and computes a discrimi-
native model in a hierarchical way by

p(y|X) =
∑
l1

p(y|l1, X)p(l1|X)

=
∑

l1,..,ln

p(y|ln, ..., l1, X), ..., p(l2|l1, x)p(l1|X),

where p(li|) is the classification model learned by boosting
node in the tree. The details can be found in [23]. In our im-
plementation of the PBT, we further improve it by using a
criterion in [14] for the choice of tree branches. We choose
not to discuss the details as it is not the major focus of this
paper. A nice thing about PBT is that two-class and multi-
class classification problems are treated in an identical way
with two-class being a special case. Therefore, our algo-
rithm handles two-class and multi-class labeling problems
naturally without any change.

Image features are computed on the patch (size of 21 ×
21) centered on each pixel i and we use around 8,000 in-
cluding Canny edge results at a low scales (1.5), Haar fil-
ter responses, and gradients. The context features are the
probability values of different pixels relative to the current
pixel. For each current pixel, we shoot out many rays and
sparsely choose the pixels on these rays. Fig. (1) shows an
example. The features can be probability directly on these
pixels or the mean probability around them, or even other
high order statistics. In total, we use around 4, 000 of the
context features. The training algorithm starts from proba-
bility maps of uniform distribution, and then it recursively
refines the maps until it converges. The first classifier does



not choose any context features as they are not informative
at all. Starting from the second classifier, nearly 90% of the
features selected are context features with the rest being the
image features. This demonstrates the importance of using
the context information in clarifying the ambiguities.
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test (Auto−Context−cascade)
training (Auto−Context−PBT)
test (Auto−Context−PBT)
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(a) (b)
Figure 3. (a) shows the training and test errors at different stages of auto-context
for horse segmentation. (b) gives the precision-recall curves by different algorithms
and PBT based auto-context algorithm achieves the best result, particularly in the
high-recall area.

Fig. (3.a) shows the F − value =
Precision×Recall

2(Precision+Recall) [17] for the different stages of the
auto-context algorithm. Since cascade of AdaBoost al-
gorithm is widely used in computer vision, we illustrate
the auto-context algorithm using a cascade of AdaBoost
and PBT classifiers. Moreover, we conduct an experi-
ment, as suggested in [28], to train the system with the
appearance, rather than probabilities, of the context pixels.
Several observations we can make from this figure: (1) the
auto-context algorithm significantly improve the results
over patch-based classification methods; (2) auto-context
model is effective on both types of classifiers; (3) using
appearance context does not improve the result (even
slightly worse); (4) The second stage of the auto-context
usually gives the biggest improvement.

Fig. (2) gives the procedures of the auto-context algo-
rithm in which all the uncertainties are carried out in a prob-
abilistic fashion with no hard thresholding. One might think
that if the previous classifier has already made a firm deci-
sion on a particular sample, then it is probably a waste to
include this sample in the next step. We design a variation
to the auto-context algorithm, called auto-context-th which
is similar to auto-context. The only difference is that if any
pixel for i for any label k if p(yi = k|X) ≥ th where th is a
threshold, then this pixel will not be used in the next round
of training. The training time of auto-context-th does appear
to be less, but the performance is slightly worse than auto-
context. Fig. (3.b) gives the full precision-recall curves for
various algorithms. The final version of PBT based auto-
context achieves the best result. It significantly outperforms
the CRFs model based algorithm (shown as L+M (Ren et
al.)) in Fig. (3.b) and it also shows improvement than hybrid
model algorithm [11]. Training takes about half a day for
auto-context using cascade and a couple of days for auto-
context using PBT, with both having 5 stage of classifiers.

In testing, it takes about 40 seconds to compute the final
probability maps. Fig. (4) shows some results and the bot-
tom two are the images with the worst scores. As we can
see, even these results are not too bad. Though our pur-
pose is not to design a specific horse segmentation algo-
rithm, our algorithm outperforms many the existing algo-
rithms reported so far [17, 11, 3, 26]. Also, auto-context
model is very general and easy to implement. There is no
need to design specific features, which makes the system di-
rectly protable to a variety of other applications. However,
pursing feature design by human intelligence is still a very
interesting and promising direction.

Figure 4. The first and the fifth column displays some test images from the Weiz-
mann dataset [3]. Other columns show probability maps by the different stages of the
auto-context algorithm. The last row shows two images with the worst scores.

The Weizmann dataset contains one horse in each image
and they are mostly centered. To further test the perfor-
mance of a trained auto-context on other images, we col-
lect some images from Google in which there are multiple
horses at various scales. Fig. (5) shows the input images and
the results by auto-context. Notice that the small horse next
to the big one in the second figure of Fig. (5.a) is labeled as
the background.

(a) (b)
Figure 5. The first row in (a) shows some images searched by Google by typing
key word “horses”. The second row displays the final probability map by the auto-
context algorithm trained on the Weizmann dataset [3]. (b) is the confusion matrix
on the test images from the Berkeley human body dataset [13]. The head, main body,
left thigh and right thigh can be mostly detected correctly.

3.2. Human body configuration
To further illustrate the effectiveness of the auto-context

algorithm, we apply it on another problem, human body
configuration. Each body part is assigned with a label.



This is now a multi-class labeling problem rather than
foreground-background segregation. As stated before, PBT
based auto-context algorithm treats two-class and multi-
class problem in an identical way. We collect around 130
images for training, and use the same set of features as in the
horse segmentation problem on image patch of size 21×21
(designing some specific features for this task might further
improve our result).

Fig. (6) shows the results at different stages of the auto-
context on the test images in [13]. Fig. (5.b) gives the con-
fusion matrix. As we can see, the main body, the head, the
left thigh, the right thigh and the feet can be labeled ro-
bustly in most cases. The arms appear to be confused with
the main body and the background. The speed on these
test images are about the same as in the horse segmenta-
tion case. The existing algorithms in the problem often
have a pre-segmentation stage [13, 24], which is prone to
errors by the low-level segmentation algorithms. For exam-
ple, the procedures described by [13, 24] can merge seg-
mented regions into big ones but can not break them. This
may cause problem where there is no clear boundary be-
tween the parts. The auto-context algorithm computes the
posterior marginals for each pixel directly.

We illustrate our algorithm on gray scale images, and
color images used in [13]. The results are better than
those shown in [24] in which a BP algorithm was imple-
mented. BP computes the marginals by propagating mes-
sages through local connected neighbors, whereas auto-
context can take long-range context information directly.
This results in significant speed improvement. Similar to
the argument made in the horse segmentation case, our al-
gorithm is more general than [13, 24]. However, a thorough
comparison of the auto-context algorithm with the state of
art algorithms (BP, Graph-Cuts, CRFs), in terms of both
quality and speed, remains as future research.

Further procedures are still required to explicitly extract
the body parts since the auto-context algorithm only outputs
probability maps. This is probably the place where more ex-
plicit shape information can be used in the Bayesian frame-
work.

3.3. Scene parsing/labeling
We also applied our algorithm on the task of scene pars-

ing/region labeling. We used the MSRC dataset [19] in
which there are 591 images with 21 types of objects manu-
ally segmented and labeled (there are two additional types
in the new dataset). There is a nuisance category labeled as
0. The setting for this task is similar as before, and the only
difference is that we use color images in this case. Shot-
ton et al. did not have the background model to learn the
regions of 0 label, whereas it is not a problem in our case.
However, to obtain a direct comparison to their result, we
also exclude the 0 label both in training and testing. We use
the identical training and testing images as in [19]. Fig. (7)

Figure 6. The first row displays some test images. The second, third and forth
row shows the classification map by the first, third and fifth stage of the trained auto-
context algorithm.

shows some results and the confusion matrix. The results
by auto-context are the marginal probabilities for each pixel
belonging to a specific class. We simply assign the label
with the highest probability to each pixel. The accuracy by
the first stage of auto-context, classification method PBT
only, achieves 50.4%. The overall pixel-wise accuracy by 4
layers of auto-context is 74.5% which is better than 72.2%
reported in [19]. However, a careful reading at the confu-
sion matrices by both the algorithms shows that our result
is more consistent and the mistakes made are more “rea-
sonable”. For example, boat is mostly confused with car
and building whereas boat was mis-classified to many other
classes in [19] such as water, bike, and tree.

Our algorithm is more general and easier to imple-
ment. The speed reported in [19] was 3 minutes per image
whereas ours is around 70 seconds. Notice that the classifi-
cation results are a bit scattered. Another level of algorithm
to enforce region-based consistency is still needed. With a
post-processing stage to encourage the neighboring pixels
to have the same lable, the accuracy improves to 77.7%.

Y ∗ = argmin−
∑

i

log p(yi|X) + α
∑
(i,j)

δ(yi �= yj),

where α = 2.0 for the results in this paper.
It is noted that almost all the algorithms we compare

to, on the horse segmentation, human body configuration,
and scene labeling use the context or high-level informa-
tion. CRF models are indeed context based. A direct com-
parison to the algorithms reported on the MSRC dataset is
given in table (1). [16] gave the accuracy measure on seg-
mented regions rather than pixels with a score 68.4%. Using
auto-context with a post-processing achieves 77.7%.

Algorithm TextonBoost [19] [29] Auto-Context AC+post
Accuracy 72.2% 75.1% 74.5% 77.7%

Table 1. Comparison to other algorithms on the MSRC dataset. AC+post refers to
the result by auto-context with a post-processing for smoothing and the post process-
ing takes about 0.1 second.
3.4. Conclusions

In this paper, we have introduced an auto-context algo-
rithm to learn a unified low-level and context model. We



 Bu Gs Tr Co Sp Sk Ap W Fc Ca Bi Fl Sn Bi Bk Ch Rd Ct Dg Bd Bt 
Building 69 1 5 0 0 1 1 3 1 1 2 2 1 1 5 0 4 1 0 2 0  

Grass 0 96 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  

Tree 3 5 87 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0  

Cow 0 5 1 78 1 0 0 0 1 0 0 0 1 0 0 0 0 1 5 7 0  
Sheep 1 5 3 3 80 0 0 0 0 0 0 0 0 2 0 3 2 0 0 0 0  
Sky 3 0 0 0 0 95 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
Airplane 11 2 2 0 0 1 83 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
Water 5 5 2 0 0 2 0 67 0 3 3 0 0 1 0 0 9 0 0 1 2  
Face 1 0 0 1 0 0 0 0 84 0 0 0 0 0 1 0 0 0 1 10 0  
Car 14 0 1 0 0 2 3 1 0 70 0 0 1 1 1 0 4 0 0 1 2  
Bike 12 0 2 0 0 0 0 1 0 1 79 0 0 0 0 0 2 0 0 2 0  
Flower 1 1 2 7 2 0 0 1 3 0 0 47 0 3 17 0 0 1 1 12 0  
Sign 34 0 1 0 0 0 0 0 0 0 0 0 61 0 2 0 1 1 0 0 0  
Bird 9 7 3 5 10 3 0 13 1 6 0 0 0 30 0 1 2 2 6 1 0  
Book 8 1 1 0 0 0 0 0 1 0 0 3 0 0 80 2 1 0 0 2 0  
Chair 25 2 8 1 0 0 0 1 3 0 4 2 0 0 4 45 1 1 0 2 0  
Road 11 0 1 0 0 1 0 6 0 1 0 0 0 0 0 0 78 0 0 1 0  
Cat 1 0 4 0 0 0 0 11 2 0 0 0 0 4 0 1 3 68 5 0 0  
Dog 4 2 5 4 3 0 0 2 7 0 0 0 0 9 0 1 3 5 52 2 0  
Body 6 1 1 2 0 0 0 1 5 0 0 1 1 2 5 1 2 3 2 67 0  
Boat 28 0 0 0 0 1 3 15 0 13 9 0 0 1 0 0 2 0 0 2 27 

 
(a) (b)

Figure 7. (a) shows some difficult test images (same as shown in [19]) and a couple of typical ones, with their corresponding classified labels. (b) displays the legend and
confusion matrix. The overall pixel-wise accuracy is 74.5%. The result by PBT only achieves 50.4%. The number reported in [19] was 72.2%, and using auto-context with a
post-processing stage achieves 77.7%.

target the posterior distribution directly, and thus, the test
phase shares the same procedures as those in the training.
The auto-context algorithm selects and fuses a large number
supporting contexts which allow it to perform rapid mes-
sage propagation. We introduce iterative procedures into
the traditional classification algorithms to refine the classi-
fication results by taking effective context information.

The proposed algorithm is very general. Under nearly a
same set of parameters, we illustrate the auto-context algo-
rithm on three challenging vision tasks. The results show
to significantly improve the results by patch-based classi-
fication algorithms and demonstrate improved results over
almost all the existing algorithms using CRFs and BP. It
typically takes about 30 ∼ 70 seconds to run the algorithm
of size around 300 × 200. However, a full scale of com-
parison with various choices of the algorithm, like that con-
ducted in [21], is needed. The scope of the auto-context
model goes beyond vision applications and it can be ap-
plied in other problems of multi-variate labeling in machine
learning and AI.

The limitations for the auto-context model are: (1) the
features on the context information are still somewhat lim-
ited and more explicit shape information is still required;
(2) different auto-context models need to be trained for dif-
ferent applications; (3) the training time takes a bit long (a
few days) for the scene parsing.
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