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Abstract

Generative model learning is one of the key problems in
machine learning and computer vision. Currently the use
of generative models is limited due to the difficulty in effec-
tively learning them. A new learning framework is proposed
in this paper which progressively learns a target genera-
tive distribution through discriminative approaches. This
framework provides many interesting aspects to the liter-
ature. From the generative model side: (1) A reference
distribution is used to assist the learning process, which
removes the need for a sampling processes in the early
stages. (2) The classification power of discriminative ap-
proaches, e.g. boosting, is directly utilized. (3) The abil-
ity to select/explore features from a large candidate pool
allows us to make nearly no assumptions about the train-
ing data. From the discriminative model side: (1) This
framework improves the modeling capability of discrimina-
tive models. (2) It can start with source training data only
and gradually “invent” negative samples. (3) We show how
sampling schemes can be introduced to discriminative mod-
els. (4) The learning procedure helps to tighten the decision
boundaries for classification, and therefore, improves ro-
bustness. In this paper, we show a variety of applications
including texture modeling and classification, non-photo-
realistic rendering, learning image statistics/denoising, and
face modeling. The framework handles both homogeneous
patterns, e.g. textures, and inhomogeneous patterns, e.g.
faces, with nearly an identical parameter setting for all the
tasks in the learning stage.

1. Introduction
Generative model learning is one of the key problems in

machine learning and computer vision. Generative models
are desirable as they capture the underlying generation pro-
cess of a data population of interest. In the context of image
analysis, such a data population might be a texture or an
object category. However, it is usually very hard to learn a
generative model for data of high dimension since the struc-
ture of the data space is largely unknown. A collection of
data samples (ensemble) may lie on a very complex mani-
fold. Existing generative models include principle compo-

nent analysis (PCA) [20], independent component analysis
(ICA) [12], and mixture of Gaussians models [4]. These
models assume simple formation of the data, and they have
difficulty in modeling complex patterns of irregular distri-
butions. General pattern theory [9], though nice in prin-
ciple, requires defining complex operators and rules; how
amenable it is to modeling a wide class of image patterns
and shapes is still unclear.

Figure 1. Image patches sampled at different stages by our algorithm for learning
natural image statistics.

Discriminative models, often referred to as classification
approaches, have been widely used in the literature. Many
successful applications have been devised using methods
like support vector machines (SVM) [24] or boosting [6].
Though these discriminative methods have strong discrim-
ination/classification power, their modeling capability is
limited since they are focusing on classification boundaries
rather than the generation process of the data. Thus, they
cannot be used to create (synthesize) samples of interest.
Another disadvantage of the existing discriminative models
is that they often need both positive and negative training
samples, though a single-class classification was proposed
in [16] using special kernels. Negative samples may not
be obtained easily in some situations, e.g. it is very hard
to obtain negative shapes. Nevertheless, situations occur
where there is still room to improve the classification result
but there are no negatives to use. Recent active learning
strategies [1] help this problem slightly by including human
subjects in a loop.

The existing generative model learning frameworks [11,
3, 21, 23] have difficulty in capturing patterns of high com-
plexity. In this paper, a new learning framework is proposed
which progressively learns a target generative distribution
via discriminative approaches. The basic idea is to use neg-
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ative samples as ‘auxiliary’ variables (we call them pseudo-
negatives), either bootstrapped or sampled from reference
distributions, to facilitate the learning process in which dis-
criminative models are used. Our method is different from
the importance sampling strategy [17] in which a reference
distribution is used for sampling.

A given a set of image patches are treated as positives
samples. We have an image database (5,000 natural im-
ages) from which pseudo-negative samples are randomly
selected. We then use the positives and pseudo-negatives to
train a discriminative model, and recursively obtain pseudo-
negative samples either by bootstrapping or by sampling.
The algorithm converges when the training error is big-
ger than a certain threshold, indicating that pseudo-negative
samples drawn from the model are similar to the input pos-
itive samples. This learning framework provides several in-
teresting aspects to the existing generative and discrimina-
tive learning literature.

For the generative models:
1. A reference distribution (image database) is used to assist the gen-

erative model learning process. We make use of the image database
for bootstrapping pseudo-negative samples which removes the need
for sampling processes in the early stages (this was necessary
in [11, 3, 21]).

2. The discrimination/classification power of discriminative ap-
proaches, e.g. boosting, is directly utilized.

3. The ability of selecting/exploring features from a large candidate
pool allows us to make nearly no assumptions about the training
data. By using both position sensitive Haar features and position
insensitive histogram features, the algorithm is able to handle both
homogeneous and inhomogeneous patterns.

For the discriminative models:
1. This framework largely improves the modeling capability of exist-

ing discriminative models. Despite some recent efforts in combining
discriminative models in the random fields model [13], discrimina-
tive models mostly have been popular for classification.

2. Though starting from a reference distribution largely improves the
efficiency of our algorithm, our learning framework also works with
positive training data only, and gradually invent pseudo-negative
samples. Traditional discriminative models always need both pos-
itives and negatives.

3. We discuss various sampling schemes based on the discriminative
models.

4. Our model can also be viewed as a classification approach. Differ-
ent generative models learned are directly comparable if they use
the same reference distribution. The progressive learning procedure
helps to tighten the decision boundaries for the discriminative mod-
els, and therefore, improves their robustness. (we show this in the im-
age denoising case in the experiments, and more experiments in other domains
will be carried to further illustrate this point.)

Three other existing generative models are related to our
framework, namely, the induction feature model [3], the
MiniMax entropy model [21], and the products of experts
model (POE) [11, 2, 25]. These algorithms are somewhat
similar in that they are all learning a distribution from an
exponential family. A feature selection stage appears in
all these methods together with a sampling step to estimate
the parameters for combining the features. Our model dif-
fers from the existing generative models due to the explicit

adoption of discriminative models. The feature selection
and fusing strategy embedded in the boosting algorithm are
more efficient than those in these generative model learning
algorithms. This is due to two reasons:(1) The loss func-
tion in boosting is based on classification error. (2) Positive
and negative samples are given, and no sampling process is
needed in the feature selection stage. Our model is not re-
stricted on local cliques. By using both position sensitive
Haar features and position insensitive histogram features,
the algorithm is shown to be very flexible and general. The
contrastive divergence learning algorithms [2, 11] empha-
size on using less number of sampling steps to estimate the
model parameters. A large body of energy-based classi-
fication models [15] are mostly focused on discriminative
models. The purpose of hybrid models in [14] is to study
different priors over parameters.

Our algorithm is also closely related to the self-
supervised boosting algorithm by Welling et al. [26]. How-
ever, our algorithm differs from [26] in several aspects: (1)
We derive our generative models from the Bayesian theory
and give convergence proof. In this paper, we use boost-
ing as discriminative model. But any discriminative mod-
els, e.g. SVM, can be applied in our model. [26] is re-
stricted on Boltzmann distribution and boosting algorithm.
(2)Our model combines a sequence of strong classifiers,
whereas [26] focuses on the feature selection for weak clas-
sifiers, which makes it more closely related to [3]. We di-
rectly use boosting for feature selection and fusion. Our
model is thus faster than [26] since sampling is not needed
in training each weak classifier. (3)We provide many in-
sights from both generative and discriminative models. (4)
We use existing database and bootstrapping to improve the
speed which is not in [26, 21, 19].

In this paper, we show a variety of applications including
texture modeling and classification, non-photo-realistic ren-
dering, learning image statistics/denoising, and face model-
ing. The framework handles both homogeneous patterns,
e.g. textures, and inhomogeneous patterns, e.g. faces, with
nearly an identical parameter setting for all the tasks in the
learning stage.

2. Generative vs. discriminative models

Figure 2. Illustration of generative v.s. discriminative models. Discriminative mod-
els focus on classification boundaries between the positives and negatives, whereas
generative models emphasize the data generation process in each individual class.



Let x be data vector and y ∈ {−1, +1} its label, indicat-
ing either a negative or a positive sample. In a multi-class
problem with n classes y is in {1, ..., n}; in this paper, we
focus on two-class models. Given input data point x, a dis-
criminative model computes p(y|x), the probability of x be-
ing positive or negative. Of course we only need to compute
p(y = +1|x) since p(y = −1|x) = 1 − p(y = +1|x).

A generative model, on the other hand, often captures
the generation process of x by modeling p(x|y = +1) and
p(x|y = −1).1 Figure (2) gives an illustration of discrim-
inative model p(y|x) and generative model p(x|y). As we
can see, discriminative models are mostly focused on how
well they can separate the positives from the negatives. A
sample far from the decision boundary in the positive re-
gion may not look like a positive sample at all. But a dis-
criminative model will give a high probability to it being
positive. Generative models try to understand the basic for-
mation of the individual classes, and thus, carry richer in-
formation than discriminative models. Given the prior p(y),
one can always derive discriminative models p(y = +1|x)
from generative models based on Bayes rule by

p(y = +1|x) =
p(x|y = +1)p(y = +1)∑

y∈{−1,+1} p(x|y)p(y)
. (1)

However, generative models are much harder to learn than
discriminative models, and often, one makes simplified as-
sumptions about the data formation, e.g. orthogonal basis
in PCA.

It has been shown that AdaBoost algorithm and its varia-
tions [6] are approaching logistical regression [7] according
to

p(y|x) =
exp{∑T

t=1 αtyht(x)}∑
y exp{∑T

t=1 αtyht(x)} , (2)

where ht is a weak classifier. At each step, AdaBoost selects
ht from a set of candidate classifiers and estimates αt by
minimizing an exponential loss function.

Interestingly, generative models in [3, 21, 11] estimate a
similar exponential function by

p(x|y = +1) =
exp{−∑T

t=1 λtHt(x)}∑
x exp{−∑T

t=1 λtHt(x)}
, (3)

where Ht(x) is a feature of x.
As we can see, both eqn. (2) and eqn. (3) have a fea-

ture selection stage and a parameter estimation procedure.
However, it is much easier to learn eqn. (2) than eqn. (3)
because the normalization term in the discriminative model
is on y ∈ {−1, +1} whereas the generative models requires
integrating out over all possible x in the data space.

3. Learning framework
In this section, we show how to use discriminative mod-

els to derive generative models. For the remainder of this

1In the literature, one also uses p(x, y) to denote a generative model.

paper, the vector x represents an image patch. Our frame-
work, however, is applicable to other problems such as
shape, text, and medical data modeling.

3.1. From discriminative to generative models

Often, a positive class represents a pattern of interest and
a negative class represents the background patterns. Thus,
our goal is to learn a generative model p(x|y = +1). Rear-
ranging Eqn. (1) gives

p(x|y = +1) =
p(y = +1|x)p(y = −1)
p(y = −1|x)p(y = +1)

p(x|y = −1).

(4)
For notational simplicity, we assume equal priors (p(y =

+1) = p(y = −1)).

p(x|y = +1) =
p(y = +1|x)
p(y = −1|x)

p(x|y = −1). (5)

The above equation says that a generative model for the
positives p(x|y = +1) can be obtained from the discrim-
inative model p(y|x) and a generative model p(x|y = −1)
for the negatives. For clarity, we now refer to the distribu-
tion p(x|y = −1) = pr(x) as a reference distribution and
call a set of samples drawn from pr(x) pseudo-negatives.
We have

p(x|y = +1) =
p(y = +1|x)
p(y = −1|x)

pr(x). (6)

A trivial observation is that p(x|y = +1) = pr(x) when
p(y = +1|x) = p(y = −1|x). This is easy to under-
stand. The positive and pseudo-negative samples are from
the same distribution when a perfect classifier cannot tell
them apart.

However, learning p(x|y = +1) in eqn. (6) is a chal-
lenging task since we need pseudo-negative samples cover
the entire space of x. We can only learn an approximated
discriminative model q(y|x) ∼ p(y|x) on a given set of
positives and a limited number of pseudo-negatives sam-
pled from pr(x). Fig. (2) shows an illustration. Our ba-
sic strategy is to learn an approximated p(x|y = +1) and
then plugged it back into the right side of eqn (6). Since
p(x|y = +1) will be used to draw negatives, we write it in
the form of pr as well to make it less confusing. Next, we
give detailed explanations.

Let pr
1(x) be an initial reference model, e.g., a database

of natural images in which every image patch in every im-
age is a sample. We define:

pr
1(x) = β

(
1

|DB|
∑

xl∈DB

δ(x − xl)

)
+(1−β)U(x), (7)

where DB includes all image patches in the database, |DB|
is the size of the set, U(x) is the uniform distribution, and



Figure 3. An illustration of the learning algorithm. The left most figure shows a target distribution from which we want to learn a generative model. The top left figure shows a
reference distribution used, which is a uniform distribution. At each stage, samples are bootstrapped from the reference distribution and used as pseudo-negatives. The right most
figure shows the final generative model learned. Points shown in cross are samples drawn from the final model. They are overlayed with the training set.

δ is the indicator function. In case DB is not available, we
set β = 0 and pr

1(x) = U(x). (Drawing fair samples from pr
1(x) is

straightforward since it is a simple mixture model. Evaluating pr
1(x) is more time-

consuming. However, it is not necessary to compute pr
1(x) if the same reference

distribution is used in 9.)
Let SP be a set of samples from which we want to learn

a generative model. We randomly draw a subset of pseudo-
negatives, SN

1 , w.r.t to pr
1(x) to train a classifier q based on

SN
1 and SP . Thus, we obtain an updated generative model

pr
2(x) by

pr
2(x) =

1
Z1

q1(y = +1|x)
q1(y = −1|x)

pr
1(x), (8)

where Z1 =
∫ q1(y=+1|x)

q1(y=−1|x)p
r
1(x)dx. Note that Z1 = 1 if

q1(y|x) = pr
1(y|x). We compute Z1 using Monte Carlo

technique [17] based on SN
1 , which is a set of fair samples.

(This is an approximation and in practice, it is not critical for the overall model.)
Given pr

2(x), if we plug it back to the right side of
eqn. (8) to replace pr

1(x), we can compute pr
3(x) in an iden-

tical manner. Repeating the procedure n times, we get

pr
n+1(x) =

[ n∏
k=1

1
Zk

qk(y = +1|x)
qk(y = −1|x)

]
pr
1(x), (9)

where qk(y = +1|x) is the discriminative model learned by
the kth classifier. If a boosting algorithm is adopted, eqn. (9)
becomes

pr
n+1(x) =

n∏
k=1

1
Zk

exp{2αkt

∑
t

hkt(x)}pr
1(x). (10)

Our goal is to have

pr
n+1(x) → p(x|y = +1),

when the set of pseudo-negatives sampled from pr
n+1(x) are

indistinguishable from the training positive set.

Theorem 1 KL[p+(x)||pr
n+1(x)] ≤ KL[p+(x)||pr

n(x)]
where KL denotes the Kullback-Leibler divergence be-
tween two distributions, and p(x|y = +1) = p+(x).

Proof:

KL[p+(x)||pr
n(x)] − KL[p+(x)||pr

n+1(x)]

=

∫
p+(x) log

(
1

Zn

q(y = +1|x)

q(y = −1|x)
pr

n(x)

)
dx −

∫
p+(x) log[pr

n(x)]dx

=

∫
p+(x) log

1

Zn
dx +

∫
p+(x) log

q(y = +1|x)

q(y = −1|x)
dx

= log
1

Zn

+

∫
p+(x) log

q(y = +1|x)

q(y = −1|x)
dx ≥ 0 (11)

�.
It is easy to see that Zk =

∫ q1(y=+1|x)
q1(y=−1|x)p

r
1(x)dx ≤ 1

and
∫

p+(x) log q(y=+1|x)
q(y=−1|x)dx ≥ 0. Each classifier in aver-

age makes a better-than-random prediction. This theorem
shows that pr

n+1(x) converges to p(x|y = +1) by combin-
ing a sequence of discriminative models, and the conver-
gence rate depends on the classification error at each step.

We make several interesting observations from eqn. (10)
w.r.t. eqn. (3) and eqn. (2). Compared to eqn. (3): the
discriminative power of a strong classification model, e.g.
boosting, is directly used; the pr

1(x) term can be dropped
if we want to compare different learned generative models,
e.g. different texture patterns, since they share the same
reference distribution. Compared to eqn. (2): the negative
samples are not always given and our algorithm is able to
gradually invent new pseudo-negative samples. Note that
we assume enough positive samples are representative for
the true distribution. When the number of positives is lim-
ited, our model may overfit the data.

3.2. Sampling strategies

One key problem in our learning framework is to draw
fair samples w.r.t. pr

k(x) as pseudo-negatives in learning.
Next, we discuss five sampling strategies. A general prin-
ciple is to avoid sampling x from scratch since sampling is



often a time-consuming task. It is worth to mention that
some sampling strategies mentioned below, e.g. ICM and
constraint sampling, will not generate fair samples. How-
ever, we found that, in practice, getting difficult samples
allows the algorithm converge faster than fair samples. We
will study more efficient sampling methods in the future.
Bootstrapping
At early stages of the learning process, when k is small, we
bootstrap pseudo-negatives directly from the existing im-
age database. This is similar to the cascade strategies used
in [22], except that we are using a soft probability here.
Fig. (6) shows some pseudo-negative samples bootstrapped
from a database at different stages. As we can see, pseudo-
negatives become increasingly similar to the training posi-
tives. After several rounds, all the samples in the database
receive a low probability. We are forced to use a sampling
scheme to invent more pseudo-negatives.
Gibbs sampling
The objective of the sampling stage is to draw fair samples
w.r.t. pr

n+1(x) in eqn. (10). In the experiments reported in
this paper, each sample x is an image patch of size 23 ×
23. To speed up the sampling process, it usually starts from
pseudo-negatives used in the previous stage. For each pixel
(i, j) in the image patch, we compute

pr
n+1(x(i, j) = v, x(Λ/(i, j))|y = +1), ∀v, (12)

and randomly assign value v to pixel (i, j) accordingly.
Gibbs sampler [8] is used here. The potential function is
based on all the weak classifiers h which make decision on
both local and global information about x. Typically, sev-
eral sweeps are performed to sample values for all the pixels
in x.
Iterated conditional modes
We may use the Iterated Conditional Modes (ICM) [17]
method to speed up the Gibbs sampling. That is, instead of
sampling the value for each x(i, j) according to eqn. (12),
we directly choose the value which maximizes the proba-
bility. In practice, we run one sweep of Gibbs sampling
followed by 4 − 5 sweeps of ICM.
Constraints based sampling
The above two sampling schemes need to sample every
pixel in x for several sweeps. On the other hand, each weak
classifier hkt in eqn. (10) acts as a constraint, and the com-
bination of all the hs decide the overall probability of x.
Suppose each h is a real value on a filter response of x,
h = f(F (x)), instead of performing Gibbs sampling on
the x, we can treat all the hs as random variables and run
Gibbs sampler based on eqn. (10). Once the values of all
the hs are obtained, we use least-square to obtain x from
F · x = f−(h), where F denotes the liner transformations
corresponding to all the hs, and f− are inverse functions
of the weak classifiers in the boosting algorithm. Together

with ridge regression, we have

x = (FT F + λI)−FT (f−(h)).

Ridge regression is used to regularize x since all hs obtained
may not always be consistent with each other. Figure (10d)
shows some images sampled using this method. However,
this sampling method is not yet so effective because some
samples satisfying the constraints of the weak classifiers
may not be obtained from the closed-form solution.
Top-down guided sampling
For some regular patterns, e.g. faces, one can use a PCA
model (principle component analysis) as a reference distri-
bution. It is very fast to draw a sample out of a PCA model,
and we then use Gibbs/ICM sampler to perturb the image.
We quickly locate a promising sample and use Gibbs/ICM
sampler to drag it to a better state in terms of pr

n+1(x). This
works when we want to obtain a refined model for patterns
roughly following a regular distribution.

3.3. Outline of the algorithm
In this section, we give the outline of our learning frame-

work. We use the boosting algorithm as our discriminative
model in the rest of this paper.

1. Our goal is to learn a generative model for a set of trainings samples, SP .

2. Collect an image database, DB.

3. Randomly select a sub-set of samples from the database. This is our initial
pseudo-negative sample set SN

1 . If a database is not available, then draw
a set of samples of white noise.

4. Train a discriminative model using a boosting algorithm.

5. Bootstrap data from the database based on eqn. (10). If all the samples
receive low probability, then draw samples using one of the sampling
schemes discussed in Sect. (3.2).

6. Go back to step 4 until the training error for the discriminative model
reaches an upper threshold.

Figure 4. Outline of the learning algorithm.

Fig. (3) shows a toy example for the learning algorithm
outlined in Fig. (4). The left most figure shows the training
samples. The distribution has an irregular shape and it is
hard to fit a mixture of Gaussians to it. We use a uniform
distribution as our initial reference model and implement a
boosting algorithm (GentalBoost [7]). Features are projec-
tions to directional lines on the plane, and there are around
500 such lines. A sequence of discriminative models grad-
ually cut out the space for the generative models. Unlike
traditional PCA or mixture of Gaussians approaches, we do
not need to make any assumption about the shapes of the
target distribution. The algorithm utilizes the intrinsic gen-
eralization ability in boosting to achieve accuracy and ro-
bustness.

4. Experiments
We implemented a variety of applications using the

learning framework introduced in this paper, including
texture modeling/synthesis, texture classification, non-
photo-realistic rendering, learning natural image statis-
tics/denoising, and face modeling. To allow the framework



to deal with both homogeneous patterns e.g. textures, and
inhomogeneous patterns, e.g. faces, we use two types of fea-
tures. The first set of features are Haar wavelets, which are
similar to those used in [22]. These Haar filters are good
at capturing common components appearing at similar lo-
cations. It has been shown that the concept of texture ties
directly to the histogram of Gabor responses [21]. For each
image patch, we convolve it with a bank of Gabor wavelets
and obtain a histogram for each filter. Typically, each his-
togram has 30 bins. We use each histogram bin as a fea-
ture. The the boosting algorithm weights the importance
of every bin and combines them, and eventually constrains
the sampled images to have similar histograms to the train-
ing images. For an image patch of size 23 × 23, there are
around 35, 000 features including the Haars and histogram
bins. Typically, we use 40 features for each boosting strong
classifier. It is critical to have real-valued weak classifier
in the boosting algorithm to facilitate the sampling process.
We use the GentalBoost algorithm [7] in this paper. The
discrete AdaBoost algorithm [6] gives hard decision bound-
aries for each weak classifier, and thus, it is hard to respond
to small changes in the image. For all the experiments re-
ported below, we use nearly an identical parameter setting
in training. It usually takes a couple of days on a modern
PC to train.

4.1. Texture modeling

Training textures

Synthesized textures
Figure 5. Examples of texture modeling. The first row shows two training images
and the second row displays textures synthesized based on learned models.

An application for our framework is texture modeling.
The basic learning strategy has been discussed in the be-
ginning of this section. Fig. (6) shows some intermediate
results for modeling a texture shown in Fig. (5a). There
are around 25 layers of discriminative models learned and
we display the pseudo-negative samples for several of them.
Not surprisingly, almost all the features selected in the dis-
criminative models are histogram features. As we can see,
the pseudo-negative images look more and more like the
training images after bootstrapping. The third layer shows

the pseudo-negatives sampled based on eqn. (10). Interest-
ingly, these pseudo-negatives have passed all the classifica-
tion stages up to this layer, yet, they do not look like the
training positive samples at all. This echoes one of the ar-
guments made in this paper: discriminative models are fo-
cused on classifying the positives and pseudo-negatives, and
they do not necessarily correspond to the underlying forma-
tion of the patterns of interest. With the pseudo-negatives
gradually sampled, the model starts to converge and the
sampled pseudo-negatives become increasingly faithful to
the training samples. Compared to the FRAME model [21],
our method is more general and flexible. It handles both
homogeneous and inhomogeneous patterns. It converges
faster due to the use of an image database in the early stage
of the learning process and fast parameter estimation in
boosting. Also, each discriminative model may combine
different bins in different histograms, whereas the FRAME
model has to match entire histograms one by one. In this
case, our model learns a generative model for an image
patch. To synthesize an image like those shown in Fig. (5),
we sample patch by patch, but with an overlap of half the
size to avoid boundary effect between the patches. Our ap-
plications in image analogies and image denoising below
use the same strategy.

4.2. Texture classification
As stated in the paper, generative models learned sep-

arately by our framework are directly comparable if they
share the same reference distribution. Also, the comput-
ing and modeling processes are directly combined, and we
do not need to design additional data-driven techniques to
make inference. Fig. (7) shows a classification result on
two textures learned separately. We did not learn the back-
ground texture.

4.3. Image analogies
This learning framework allows us to learn very dif-

ferent generative models, which can be an artistic style.
Fig. (8) shows an example. We use a couple of “Van Gogh”
style images in [10] for training and one image is shown in
Fig. (8a). We use an identical learning strategy as in tex-
ture modeling. A slight difference with the texture synthe-
sis is that we add a likelihood term so that rendered image is
slightly constrained by the original image. Fig (8c) shows a
result rendered by our algorithm and Fig (8d) displays a re-
sult using the method in [10]. Unlike image analogies [10]
where a pair of images are required for learning a mapping
function, we directly learn a generative model (style) from
a set of training images.

4.4. Learning natural image statistics
Using the same algorithm, we can learn natural image

statistics. Our positive training images are from the Berke-
ley dataset [18]. The training process is the same as in
the texture modeling and image analogies cases. However,
the initial negatives samples are sampled from white noise.
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Figure 6. Illustration of the learning process for texture modeling. This is a similar
figure as Fig. (3) with a real application. There are a total of 25 layers of discrimina-
tive models learned and we show several of them here. The first two set of pseudo-
negatives are bootstrapped and the third and the last ones are obtained by sampling.

(a) (b) (c) (d)
Figure 7. Example of texture classification. (a) is an input image with two fore-
ground textures and a background texture. (b) shows a classification result. (c) and
(d) display the probability maps for the two foreground textures.

Fig. (1) shows patches sampled at different stages in the
learning process. We can use the generative model learned
from natural image statistics, as priors, to perform denois-
ing. Fig. (9) shows an example. We also train a discrimina-
tive model based on bootstrapping procedures only (without
the sampling stage). The negative images use the same im-
ages from [18] with added Gaussian noise. Fig. (9c) shows
a result by discriminative model only. The result by the
full model is shown in fig. (9d). This demonstrates that
our model improves the robustness of discriminative mod-
els in this domain. However, our result is still a bit worse

(a) Training image (b) Input image

(c) Result by our method (d) Result by image analogies
Figure 8. An example for none-photo-realist rendering. A generative model is
learned based on (a). A similar style image (c) is rendered from (b). (d) shows the
result in [10]

than that shown in Fig. (9e) [19], in which a generative
model for learning image prior was proposed. It appears
that the student-T distribution in [19] is important, and we
will adopt a similar model to adapt our algorithm for image
denoising in the future.

4.5. Face modeling

(a) (b) (c) (d) (e)
Figure 10. An example of face modeling. (a) shows some training images from
the FERET dataset [5]. Some image patches bootstrapped from natural images are
shown in (b). (c) displays images sampled after the bootstrapping stage. (d) shows
images sampled using the constraint sampling method discussed in Sec. (3.2). Some
samples drawn from the overall model are displayed in (e).

Our framework works both on homogeneous and on in-
homogeneous patterns. We apply it for face modeling and
fig (10) shows an example. The majority of features se-
lected are Haars in the bootstrapping stage. Fig (10.c)
shows some images sampled when all the negative samples
are exhausted from an image database after 12 layers of dis-
criminative models. These image patches, though they have
passed all the discriminative models, do not look like faces.
Fig (10.d) shows some images sampled using the constraint
sampling method discussed in Sec. (3.2). Some face images
sampled using the overall model are displayed in Fig (10.e).
In face detection, this method achieves result close to the
state of the art for face detection algorithms [22] on the MIT
dataset. The later stage of discriminative models, however,
do not further improve the detection result because they are
mostly focused on capturing natural image statistics.

5. Conclusion
In this paper, we have proposed a general generative

model learning framework, and it has a variety of applica-



(a) (b) (c) (d) (e)
Figure 9. An example for image denoising using learned generative model on natural image statistics. (a) is an original image. (b) shows an image by adding Gaussian nose
(σ = 25) to (a). (c) is the result based on discriminative model only. (d) shows the result by our algorithm. (e) is the result by the Fields of Experts Model [19].

tions in machine learning and computer vision. Although
low-level vision tasks are shown in this paper, our model
can be used in high-level tasks also, e.g. shape and object
modeling. For a long time there has been a debate about
the use of generative and discriminative model in the litera-
ture. We provide another view to this problem in this paper
and show that generative and discriminative models are not
necessarily all that different.

Our method has many advantages over existing genera-
tive model methods. Most significantly, we do not need to
define specific rules for different cases and the algorithm
naturally works for a variety of patterns (homogeneous, in-
homogeneous, and structured). Traditional discriminative
model approaches do not capture the generation process of
the data. Our model largely improves the modeling capa-
bility of existing discriminative methods and also improves
their robustness (shown in image denoising). We will con-
tinue our research to further illustrate this point in the future.

Though we have discussed various sampling procedures
in this paper, the sampling process is still slow and speed is a
major bottleneck to our approach. For most the experiments
shown in this paper, we use ICM with Gibbs sampling for
the first sweep. Our model also assumes enough positive
samples are always given. In the case with limited num-
ber of training samples, other generative models, e.g. PCA,
may be better than ours. Future research is needed to study
the performance of different model choices under different
situations.
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