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Abstract

Automatic polyp detection is an increasingly important
task in medical imaging with virtual colonoscopy [15] be-
ing widely used. In this paper, we present a 3D object de-
tection algorithm and show its application on polyp detec-
tion from CT images. We make the following contributions:
(1) The system adopts Probabilistic Boosting Tree (PBT)
to probabilistically detect polyps. Integral volume and 3D
Haar filters are introduced to achieve fast feature compu-
tation. (2) We give an explicit convergence rate analysis
for the AdaBoost algorithm [2] and prove that the error
at each step εt+1. is tightly bounded by the previous er-
ror εt. (3) For a 3D polyp template, a generative model is
defined. Given the bound and convergence analysis, we an-
alyze the role of “sample alignment” in the template design
and devise a robust and efficient algorithm for polyp detec-
tion. The overall system has been tested on 150 volumes
and the results obtained are very encouraging. 1

1. Introduction

Figure 1. A view of an input CT volume. Crosses show some
possible locations of polyps. The top figure on the right is a colon
fold, and the bottom one displays a true polyp. More examples can
be seen in Fig. 14 and 15

1The first author was invovled in this work when he was an empolyee
in the integrated data systems department at Siemens Corporate Research,
Princeton, New Jersey.

Virtual colonoscopy [15] has become a widely used tech-
nology in clinical trials. It takes a 3D volume from CT and
reconstructs 3D surfaces of colon wall allowing doctors to
virtually look inside the colon to detect polyps and cancers.
The size of a typical CT volume ranges from 450×512×512
to 800 × 512 × 512. During the examination, the colon is
inflated with air, which appears to be dark. Colon folds
and other tissues have gray intensity values. The left fig-
ure in Fig. (1) shows a view of a 3D volume. A polyp is
a half-hemisphere like structure on the colon wall. If it is
left untreated, it will likely develop into a cancer. Detecting
polyps using the virtual colonoscopy technology is not so
easy since many other objects such as colon folds and resid-
ual materials have similar shapes and intensity patterns as
those of polyps. Therefore, automatic polyp detection is one
of the keys to the further success of the virtual colonoscopy
technology [16]. The size of a polyp is measured by its di-
ameter. Usually, a polyp smaller than 6mm is not of much
clinical significance [12]. Polyps bigger than 9mm are very
likely to be cancers and can be identified by doctors easily.
It is most important for the algorithm to be able to detect
polyps in 6 ∼ 9mm range since they may develop into can-
cers. Fig. (1) shows a sample volume and the bottom-right
figure displays a true polyp.

A number of polyp detection algorithms have been pro-
posed recently [4, 6, 7, 16] with good results reported. The
surfaces of polyps are specifically studied in [4] by Jerebko
et al. Other methods [6, 7, 16] study geometric features and
various heuristics such as shape index. But most of them
need to perform colon segmentation first. Moreover, the
features/heuristics used are very limited and mostly manu-
ally designed. This creates a problem when polyps and the
backgrounds have large intra-class variation and inter-class
similarity. Also, it is not clear how these methods can be
directly extended to similar problems, for example, lymph-
node or lung cancer detection.

In this paper, we present a learning based approach for
3D object detection and show its application on polyp de-
tection. We define a generative model to capture the under-
lying generation process. In the corresponding discrimina-



tive model, we show that different choices of sample align-
ment lead to different performances of the classifier. We
give an explicit convergence rate analysis for the AdaBoost
algorithm [2] and prove that the error at each step εt+1 is
tightly bounded by the previous error εt. This matches our
intuition that the convergence of AdaBoost becomes slow
when all the candidate weak classifiers are not so informa-
tive, though asymptotically, the overall error in AdaBoost is
decreasing. This gives us a theoretical explanation of why it
is often desirable to align the training data to reduce the data
complexity. For example, faces are clustered into a few typ-
ical angles in [14, 8] in detection. For 3D objects, we design
integral volumes and 3D Haar filters for fast computation
of the features. A cascade of Probabilistic Boosting Tree
(PBT) is adopted. The overall algorithm has been tested on
150 volumes and the results obtained are very encouraging.
Our learning based algorithm automatically selects around
one thousand features from 50,000 candidate features. The
approach does not have the pre-segmentation stage. Our
method is adaptive and has the potential to be applied in
other tasks such as lymph-node detection with no articula-
tion.

2. Problem Formulation

We start our discussion from a generative model of
generic objects. Let Ψ = {∆1, ∆2, ...} be a dictionary in
which ∆i denotes a 2D/3D template. Each object instance
x we observe is assumed to be generated by a transforma-
tion function T on Ψ. A set of typical parameters in T ,
Θ = {l, s, θ, φ, α}, can be: l– the number of template used,
s– scale, θ–rotation, φ–deformation, and others which we
summarize into α. Let y be the label of x and y = +1 if x
is an object of interest (positive), and y = −1 if it is not of
interest (negative). The probability of x can be modeled by
a generative model as

p(x|Θ, y; Ψ) =
1
Z

exp{−||x− T (Θ, Ψ)||}, (1)

where || || defines a distance measure between x and
T (), and Z is the partition (normalization) function Z =∑

x

exp{−||x− T ||}. Usually, p(x|Θ, y = +1; Ψ) has low

entropy since it is focused on a specific class of object. The
samples are drawn from a limited number of templates in
Ψ. p(x|Θ, y = −1; Ψ) often has high entropy because it
covers all the objects not of interest.

In a discriminative approach, we want to classify a sam-
ple x based on the posterior

p(y|x). (2)

Or, we can explicitly look for some parameters in Θ, Θ1

to compute

p(y|x) =
∑

Θ1

p(y|Θ1,x)p(Θ1|x). (3)

Suppose we have a supervised learning algorithm which
learns a discriminative model based on a set of training sam-
ples {(xi, yi), i = 1...N}. What forms of the samples we
use for training and under what Θ1 will have a great impact
on the performance and speed of the classifier. This is an
“alignment” issue and the question is how much aligned we
want our sampel to be. This is a common problem we are
facing in many object recognition/detection tasks using dis-
criminative approaches. Next, we specifically discuss it in
the context of AdaBoost [2, 10].

2.1. Convergence Rate of AdaBoost

Let {(xi, yi, D1(i)), i = 1...N} be a set of training sam-
ples and D1(i) is the distribution for each sample xi. Ad-
aBoost algorithm [2, 10] proposed by Freund and Schapire
learns a strong classifier H(x) = sign(

∑T
t=1 αtht(x)),

based on the training set, by combining a number of
weak classifiers. We briefly give the general AdaBoost
algorithm[2, 10] below:

Given: (x1, y1, D1(1)), ..., (xN , yN , D1(N)); yi ∈ {−1, 1}
For t = 1, ..., T :

• Train weak classifier using distribution Dt.

• Get weak hypothesis ht : χ→ {−1, +1}.
• Calculate the error of ht : εt =

�N
i=1 Dt(i)1(yi �=ht(xi))

.

• Set βt = εt/(1 − εt) and αt = − log βt.

• Update: Dt+1(i) ← Dt(i) · β
1(yi=ht(xi))
t with�

i Dt+1(i) = 1.

Output the the strong classifier: H(x) = sign(f(x)) and f(x) =
�T

t=1 αtht(x).

Figure 2. Discrete AdaBoost algorithm. 1 is an indicator function.

It is proved in [2] the training error ε =∑
i D1(i)1(yi �=ht(xi)) is bounded by

ε ≤ 2T
T∏

t=1

√
εt(1− εt). (4)

Moreover, it is shown that AdaBoost and its variants are
asymptotically approaching the posterior distribution [3].

p(y|x)← q(y|x) =
exp{2yf(x)}

1 + exp{2yf(x)} . (5)

As we can see in eqn. (4), the overall training error is de-
cided by the error εt at each round. For each εt, it is decided
by how well the positives and negatives are separated by the
candidate weak classifiers. Next, we show the error bound
of εt+1 w.r.t. εt in AdaBoost.



Theorem 1 At step t, let the error for a candidate weak
classifier h(j) be ε

(j)
t =

∑N
i=1 Dt(i)1(yi �=h(j)(xi)) and εt be

the best error achieved. Apparently, εt ≤ ε
(j)
t ; ∀j. εt = 0

when the classifier perfectly classifies the data and εt = 1
2

when it makes random guesses. 1
2 ≥ εt ≥ 0.

Therefore, the best weak classifier picked for t + 1 can
best achieve

εt+1 ≥ εt

2(1− εt)
. (6)

Proof. See appendix. This theorem says that the error for
the next weak classifier can best achieve εt

2(1−εt)
. Fig. (3)

shows the curve of the function.
Also,

εt+1 ≥ 1
2εt

ε2t + z2(1 − 2εt)
1− εt

, z2 ≤ εt. (7)

The bound in eqn. (6) is achieved when z2 = 0. If every
time, weak classifier selected at t + 1 always complements
the one at t, then z2 = 0. However, this situation is very
ideal. Fig. (3.a) shows the bounds for εt+1 w.r.t. to differ-
ent z2 and Fig. (3.b) demonstrates the corresponding con-
vergence rates. We can see that the convergence becomes
very slow when no weak classifier has a good discrimina-
tion power.
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(a) Bound in eqn. (6) (b) ε w.r.t. t

Figure 3. (a) shows the bounds w.r.t. different z2 in eqn. (6). (b)
displays the corresponding convergence rate ε against time t if
every time the bound is achieved.

2.2. Design Strategies

AdaBoost and its variants have recently been applied in
a variety of problems in machine learning and computer vi-
sion [2, 1, 8, 14, 5, 13]. In vision, it has specially shown its
promises in object detection/recognition.

From the convergence analysis in sect. (2.1), we see that
the convergence of AdaBoost is slow when all weak classi-
fiers are not so effective. There are three possible remedies
to this problem:

(I) Design smart weak classifiers.
Existing methods in AdaBoost select and combine a

set of weak classifiers from an pre-defined pool of candi-
dates. Researchers strive to design informative weak clas-
sifiers/features for the specific problems in their domain. It

is desirable to have a principled way of automatically “dis-
covering” smart features.

(II) Change the selection strategy.
AdaBoost is a greedy method. The error bound dis-

cussed in sect. (2.1) is in part due to this aspect. Li and
Zhang [8] introduced the FloatBoost algorithm to allow the
the algorithm to look back and improve the weak classi-
fiers chosen. The importance of joint statistics of the fea-
tures were discussed in [1]. Probabilistic Boosting-Tree
method [13] utilizes a divide-and-conquer strategy.

(III) Reduce the complexity of training samples.
Except for those problems in which the nature of training

samples is fixed, we often have a choice of how complicated
our training samples can be.

In the problem of object detection, we formulate the gen-
eration process of an object in eqn. (1). Since an object is
generated by a set of parameters Θ, based on a dictionary
Ψ, it may observe a large variation in shape, size, and de-
formation. One often hopes to train a classifier which pre-
cisely computes the discriminative model p(y|x). Usually,
it is very hard to do when the training samples have large
variation. In the context of AdaBoost, it is hard to design
weak classifier well separating the positives from the nega-
tives if they have large variation. The overall classifier is no
so effective as shown in sect. (2.1). Instead, we can perform
data alignment to reduced the complexity of training sam-
ples. This will lead to more effective classifiers. Following
eqn. (3), we can see that alignment comes with the price
of integrating/searching the parameters in the testing stage.
It requires to compute each p(Θ1|x), which is usually time
consuming.
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(a) Original samples x (b) Aligned samples.

Figure 4. A toy example to show the effectiveness of sample align-
ment on classifiers. No line can well separate the two classes in
a). If we know that the points in the second half are undergoing
a rotation of 180 degrees and we rotate these points accordingly,
then the new samples in b) can be easily classified.

Fig. (4) illustrates a simple example in which there are
two sets of training samples. Fig. (4a) shows the original
set of training samples. This is a well-known example that
no linear boundary can separate the positives from the neg-
atives. The four dividing lines shown in the figure all have
error ε = 1

2 . If we know that there is a rotation parameter
θ controlling the generation process, we can align the data.



The positives and negatives in Fig. (4b) then become easy
to classify.

3. Training Classifiers for Polyp Detection

Figure 5. Some polyp examples. The first row shows several small
and medium size polyps. The second and the third row shows
some polyps of medium and big sizes.

In this section, we focus on polyp detection and show
how to train a classifier to detect them. An input volume is
in full 3D and it is isotropic after interpretation. The typical
size of a volume is 500 × 512 × 512. There is no occlu-
sion between objects. Our task is to design an algorithm for
automatic polyp detection. Fig. (1) shows a sample volume
and Fig. (5) displays a number of true polyps. For a small
or medium size polyp, it often observes a regular shape as
half hemisphere. When it becomes big, it starts to develop
a variety of shapes as shown in the second and third row of
Fig. (5). This is due to its interaction with the colon wall and
other structures. It is especially a problem for those meth-
ods based on the analysis of curvatures or Gaussian type
generative models.

3.1. Sample Alignment and Data Augmentation

In 3D CT volumes, polyps appear in all possible orien-
tations on the colon wall. According to the discussion in
the previous section and eqn. (3), one design principle is to
reduce the complexity of the training samples. We choose
Θ1 = {s, θ, α} where s is the scale, θ is the orientation, and
α is the aspect ratios of a polyp w.r.t. its depth, height, and
width. We create a template of size 24 × 24 × 16, whose
2D view is shown in Fig. (6a). The orientation sphere is di-
vided into 14 zones, 4 of which are along the major axises.
Fig. (6b) illustrates the idea. In training, we are given 130
polyps coming from size of 2mm to 25mm. Fig. (5) shows
some of these samples. We align each polyp to the major
orientation shown in Fig. (6c).

(a) (b) (c)

Figure 6. (a) shows the template polyp in 2D. (b) displays the ori-
entation sphere which is divided into 14 zones, 4 of which are
along the major axises. (c) illustrates one major orientation to
which we align our positive training samples.

Figure 7. A typical polyp and its augmented data shown in 3D.

As we mentioned before, aligning training data comes
at a price of searching for more parameters in the detec-
tion stage. The more parameters we explicitly take out dur-
ing training, the more we need to specifically search for in
the detection stage. We do not want to align the data per-
fectly since it requires a search for every specific value of
scale and rotation. We also don’t want to train a classifier
which computes p(y|x) directly since the classifier will be
confused on very complicated x. We observe that positives
have a certain degree of regularity once we make them the
same size and along the major direction. In the orienta-
tion zone r1, we sample the possible detailed orientations,
(θ1, θ2) to augment the training data. This has two effects
on the algorithm: We don’t need to search for specific val-
ues of (θ1, θ2); It augments the training samples from 130
to around 13,000. This reduces the chance of overfitting.
Fig. (7) shows a typical polyp sample after alignment and
its augmented data, which are polyps created based on orig-
inal training samples. Our goal is to train a classifier based
on augmented training data to capture the underlying shape
and intensity pattern of objects of interest.

3.2. Features

Extensive efforts have been made in the literature to de-
sign features for polyp detection [6, 7, 16] or for generic
object detection in natural images [9]. Fig. (8) shows two



Figure 8. Tow sub-volumes and their shape index features.

sub-volumes and the “shape index” for each voxel, which
was introduced by Yoshida et al. in [16]. We can see that
these features are good at detecting roughly round surfaces,
but there are lots of false positives.

Our approach classifies a sub-volume based on a tem-
plate of 24 × 24 × 16. As we mentioned in Sect. (3.1), we
align and augment positive samples to one of the major di-
rections. According to our approach, we want our features
to have the following properties:

(I) They should be scale and aspect ratio invariant to a
certain degree. We need to search for different possible
scales and aspect ratios in the detection stage.

(II) They should be easy and fast to compute.
(III) They should be informative for the objects of inter-

est.
These rule out mean curvatures and Gaussian curva-

tures [11] which are shown to be effective in polyp detec-
tion. We will show how to make use of them later.

(a) (b)

Figure 9. (a) shows 1D, 2D, and 3D Haar filters used. (b) shows
rotated Haar filter according to the 6 major orientations.

Viola and Jones proposed an efficient algorithm for
face detection [14]. Similar to the integral image and
2D Haar filters used in their method, we design inte-
gral volume and 3D Haar filters for polyp detection. At
each location (x1, y1, z1), the integral volume is computed∫

x1

∫
y1

∫
z1

V (x, y, z)dxdydz. The computational cost of
computing Haar filters is largely reduced since every time
we only need to sum up the values of corners of the Haar
in the integral volume. Since the procedure of aligning
samples and training classifiers is time-consuming, we also
want to make the features to be “semi-rotation invariant”.
This is to say that once the classifier for one major direction,
r1, is trained, we can automatically derive the classifiers for
the other orientations. Haar filters meet this requirement for
the 6 major directions. For the other 8 orientations, we will

rotate the 3D data in the detection stage rather than having
another set classifiers for them. This will likely reduce the
training efforts and also, the chance of overfitting since vir-
tually there is only one classifier trained.

3.3. Probabilistic Boosting-Tree
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Figure 10. A cascade of Probabilistic Boosting-Tree (PBT).

AdaBoost and its variants have shown their promises in
many vision problems. In the first attempt, we employ a
cascade of AdaBoost approach [14] to train our classifier in
several stages of bootstrapping. Due to the large variation of
polyps in the training data even after alignment, the training
error remains high, 0.3, after 4 levels of cascade. The error
hardly goes down further. It is because positives and neg-
atives become similar to each other and hard to distinguish
after several layers of cascade. Probabilistic Boosting Tree
(PBT) is a recently proposed method to improve the cascade
approach and explicitly computes the discriminative model.
Detailed discussion of PBT can be found in [13]. As we can
see in eqn. (5) that each strong classifier learned approaches
the target distribution p(y|x). PBT does training and test-
ing in a divide-and-conquer manner and outputs the overall
discriminative model as

p̃(y|x) =
∑

l1

p̃(y|l1, x)q(l1|x)

=
∑

l1,l2

p̃(y|l2, l1, x)q(l2|l1, x)q(l1|x)

=
∑

l1,..,ln

p̃(y|ln, ..., l1, x), ..., q(l2|l1, x)q(l1|x)

Each tree level li is an augmented variable. To facilitate the
process of bootstrapping and reduce the number of nega-
tives for PBT, we find out that a cascade approach is still
useful here. Fig (10) shows a diagram of a cascade of PBT.
At each stage of PBT, the probability is used as a threshold.
Those samples whose p̃(y|x) is bigger than the probability
will pass into the next stage.

3.4. Training Procedures

We use 80 volumes for training in which there are 130
polyps annotated and segmented by radiologists.



First, we train an AdaBoost classifier to classify whether
a voxel is on the surface of polyp or not. This classifier is
used to quickly screen out majority of the voxels that are
on flat surface. The features used are intensity, gradient,
Gaussian curvatures, mean curvatures, etc. We train a gen-
eral AdaBoost algorithm to combine these features. Some
results are shown in Fig. (11).

(a) (b) (c) (d)

Figure 11. Tow sub-volumes are shown in a) and c), and b) and d)
display the results using trained shape classifier. In b) and d), the
brighter the voxel, the higher the probability it is on a polyp.

Second, we train a classifier which consists of a cascade
of PBT classifiers. Based on the annotation of a polyp and
its annotation on the tip, we can precisely locate the bound-
ing box of it. As discussed in the previous section, we align
and augment the training samples to 13, 000 positives of
size 24× 24× 16. In the 80 training volumes, we randomly
sample those voxels with gradient along the major r1 ori-
entation, and having passed the first basic shape classifier.
Also, these voxels should not be on the surface of any an-
notated polyps. We then cropped out 3D sub-volumes of
size 24× 24× 16 by aligning these voxels with the tip po-
sition in the template. There are in total 30, 000 negative
samples obtained. Using these positives and negatives, we
train a PBT with 9 levels and 22 weak classifiers for each
AdaBoost node. Once a PBT is trained, we then use it to
run through the training volumes to bootstrap more nega-
tives samples. Five cascade levels are used. Since each PBT
computes the discriminative model p̃(y|Θ1, x), we can eas-
ily adjust the threshold to balance between detection rate
and number of false positives. The first two levels are set
to have nearly 100% detection rate. Each PBT consists of
around 1,000 weak classifiers on the Haar filters. Based on
the trained cascade of PBT, we rotate the Haar filters shown
in Fig. (9b) to generate classifiers for detecting polyps on
the other 5 directions.

3.5. Detecting Polyps

Next, we discuss the detection procedure for our algo-
rithm. Jerebko et al. [4] use a candidate generation method
to obtain a set of candidate locations. An example of them
are shown in Fig. (1). We adopt their algorithm to gener-
ate candidates. In average, there are 50 polyps obtained per
volume.

Fig. (12) gives the details of our polyp detection algo-

rithm after candidate generation. For each candidate loca-
tion, we create 9 sub-volumes: 3 sub-volumes at different
scales with each rotated at 3 orientations. As we discussed
in Sect. 2.2, we spend a bit more time in the detection stage
with the gain of reduced complexity of training samples.
Also, we only train an overall classifier for orientation r1
and derive classifiers for all other directions based on it.
This also helps to improve the generality of the detector and
efficiency. It can be seen that features are much easier to ob-
tain if samples are in the upper-right position than slanted.
For each voxel in the sub-volume, we run shape classifier
and cascade PBT at different scales and aspect ratios. The
best bounding box is outputted if it is found to be a polyp.

• For each candidate location in the volume, we crop out sub-volumes at
three different scales and resize them to volumes of 60 × 60 × 60. An
example of such three volumes can be seen in the first row of Fig. (13).

• For each of the above volume, we obtain three additional sub-volumes of
the current, rotating from r2 to r1, and rotating from r3 to r1. The second
row of Fig. (13) shows these volumes. It is to cover the other 8 orientation
zones whose classifiers can not be easily obtained by simply rotating Haar
filters.

• For each the above sub-volume, we run the first layer shape classifier to
rule out those voxels that are not on the surface of a polyp.

• For each the voxel passing the shape classifier, compute its gradient direc-
tion. If if falls into one of the 6 major orientation, fire the corresponding
cascade of PBT classifier.

• We try 96 possibilities of combinations of difference sizes and aspect ratios
of templates by considering the current voxel being the tip of the template.
(Haar filters corresponding to the 96 possibilities are computed offline).

• If it passes the cascade, remember the bounding box and use the probability
outputted in the last layer in the cascade as confidence measure.

• Repeat for all the 9 sub-volumes generated. If there exists bounding box,
use the bounding box which has the highest confidence and output it as a
polyp.

Figure 12. Outline of the polyp detection algorithm.
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Figure 13. The first row shows sub-volumes at three different
scales. This is to cover the possibility of different sizes at a large
scale. The second row shows three sub-volumes at different orien-
tations. This is to cover polyps whose orientation may fall into the
8 none-major orientation. The right figure shows the definition of
r1, r2, r3, and how the rotated volumes are obtained.



4. Experiments

There yet does not exist a common data set on which
people can use to test their polyp detection algorithm. We
test our algorithm on the 80 training volumes and 70 test
volumes. Among the 70 test volumes, 33 of which have
polyps confirmed by radiologists with 53 polyps. We
have tested our algorithm on both the training and testing
data and have observed similar performances. Fig. (14a)
shows some polyps detected with the bounding boxes high-
lighted. Detection rate for the candidate generation process
is 91.8%. Fig. (14a) shows a comparison between our re-
sults and that by [4] after the generation process. We can
observe much improved results. The algorithm runs about
4 minutes for 50 candidates. At the rate of 3.01 false pos-
itives per volume, the overall detection rate per volume for
medium size polyps (6mm ∼ 9mm), and big size polyps
> 9 are respectively 98%, 84% after candidate generation.
To compare with PBT, we implement a cascade of boost-
ing and it gives rates of 85% and 70% respectively. Kiss
et al. reported a system with slightly better performance,
85% detection rate and 2.74 false positives per volume. The
number of volumes is less (50 datasets) than ours. We have
also tested out algorithm on an unseen hold-out data set of
235 volumes. Out of 82 medium and big size polyps, 73 of
them are detected. The sensitivity per patient is 92% with
5.8 false positives per volumes. (Generally it requires the
sensitivity to be higher than 90% with less than 6 false pos-
itives.)

(a) Detected polyps in some of the sub-volumes.
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(b) Comparison of our result with the one in [4].

Figure 14. Performance of our algorithm.

Fig. (15a) shows some missed polyps and false posi-

tives detected. As we can see, most misses are either be-
cause polyps are too small or due to their irregular shapes.
Fig. (15b) shows many false positives detected. In fact,
most of these false positives observe pulmonary structure
and it is very hard to distinguish them from the true polyps.
They are yet remain to be further verified by radiologists.

(a) Some polyps missed by our algorithm.

(b) Some false positives detected by our algorithm.

Figure 15. Some failed examples. Most misses are due to small
size or irregular shapes. Those false positives really look like
polyps and they remain to be verified further by experts in the
field.

5. Discussions

In this paper, we have introduced a learning based algo-
rithm for 3D polyp detection in CT images. We formulate
the problem by a generative model to facilitate the under-
standing of discriminative models. In the context of Ad-
aBoost, we prove an error bound for the weak classifiers
leading to a principled analysis of sample alignment. We
adopt the probabilistic boosting-tree for our classifier and
design integral volume and 3D Haar filters for fast com-
putation. We have tested our algorithm on 150 volumes
and the results obtained are very good. The proposed sys-
tem is very adaptive and can be applied in detecting other



pulmonary nodules such as lymph-nodes and lung cancers.
Also, it does not require the stage of colon segmentation.
Therefore, it is also suitable for detecting polyps in colon
without undergoing physical cleansing procedure. Due to
the residual materials left inside colon, explicit polyp detec-
tion algorithm based on surface shapes requires to remove
the residual materials before polyp detection. On the down
side of the method, sample alignment is a time-consuming
task. Though we have a heterogeneous number of candidate
features, 50, 000, these features are pre-defined rather than
automatically learned. The candidate generation needs to
be directly incorporated into our cascade classifiers.
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Appendix

Let ht be the selected weak classifier at step t ant it
achieves εt.

εt =
∑

i

Dt(i)1(yi �=ht(xi)) =
∑

yi �=ht(xi)

Dt(i).

βt =
εt

(1− εt)
.

Then the partition function (normalization) is

Zt =
∑

i

Dt(i) · β1(yi=ht(xi))
t

=
∑

i:yi=ht(xi)

Dt(i)βt +
∑

i:yi �=ht(xi)

Dt(i)

= 2εt (8)

Then the error εt+1 for any h at t + 1 is

εt+1 =
∑

i

Dt+1(i)1(yi �=h(xi))

=
∑

i

Dt(i)
Zt

β
1(yi=ht(xi))
t 1(yi �=h(xi))

=
1

2εt

∑

yi=ht(xi)

Dt(i)βt1(yi �=h(xi)) +

1
2εt

∑

yi �=ht(xi)

Dt(i)1(yi �=h(xi)) (9)

We know
∑

i Dt(i)1(yi �=h(xi)) ≥ εt. Let

z1 =
∑

yi=ht(xi)

Dt(i)1(yi �=h(xi)), and z2 =

∑

yi �=ht(xi)

Dt(i)1(yi �=h(xi)), then we have

z1 ≥ εt − z2.

Therefore,

εt+1 =
1

2εt
(

εt

1− εt
z1 + z2) ≥ 1

2εt

ε2t + z2(1− 2εt)
1− εt

≥ εt

2(1− εt)
� (10)


