
Supervised Learning of Edges and Object Boundaries

Piotr Dollár
Computer Science & Engineering

University of California, San Diego

pdollar@cs.ucsd.edu

Zhuowen Tu
Lab of Neuro Imaging

University of California, Los Angeles

zhuowen.tu@loni.ucla.edu

Serge Belongie
Computer Science & Engineering

University of California, San Diego

sjb@cs.ucsd.edu

Abstract

Edge detection is one of the most studied problems in
computer vision, yet it remains a very challenging task. It is
difficult since often the decision for an edge cannot be made
purely based on low level cues such as gradient, instead we
need to engage all levels of information, low, middle, and
high, in order to decide where to put edges. In this paper
we propose a novel supervised learning algorithm for edge
and object boundary detection which we refer to as Boosted
Edge Learning orBEL for short. A decision of an edge
point is made independently at each location in the image;
a very large aperture is used providing significant context
for each decision. In the learning stage, the algorithm se-
lects and combines a large number of features across differ-
ent scales in order to learn a discriminative model using an
extended version of the Probabilistic Boosting Tree classi-
fication algorithm. The learning based framework is highly
adaptive and there are no parameters to tune. We show ap-
plications for edge detection in a number of specific image
domains as well as on natural images. We test on various
datasets including the Berkeley dataset and the results ob-
tained are very good.1

1. Introduction

Edge detection is one of the most studied problems in
computer vision. It finds application in tasks such as object
detection/recognition, structure from motion, segmentation
and tracking,e.g. [17, 18, 1, 21]. Edges reduce the dimen-
sionality of the original data while retaining rich informa-
tion about the contents of the image. They can also serve
as a basis for other forms of image representation, such as
the primal sketch [10, 8]. Nevertheless, high quality gen-
eral edge detection remains elusive. Methods that rely on
local features, such as the Canny [2] detector, do not take
into account the context (e.g. if the surrounding area is tex-

1This work was done primarily while PD and ZT were at Siemens Cor-
porate Research with support from the Office of Naval Research Award
No. N000014-05-1-0543, CFDA No. 12.300.

tured), mid-level information (e.g. the Gestalt laws [12]), or
high level information (e.g. object knowledge [19]). Canny
also cannot take into account local information at multiple
scales. Such information is important: sometimes we hal-
lucinate a boundary where there is weak or even no local
evidence (e.g. certain parts of an object may have the same
intensity pattern as the background), other times we do not
see a boundary even if there are strong local cues that would
imply its existence (e.g. in the presence of shadows). Com-
plex generative models, such as presented in [19, 15], have
the potential to integrate both low-level and high-level in-
formation but present significant computational challenges.

Even as intensive research into general edge detection
continues, there is general consensus in the community that
edge detection is somewhat ill defined in that it is not quite
clear what defines a correct output [11]. From an appli-
cation driven point of view, a general edge detection algo-
rithm is possibly inappropriate since relevant boundaries in
a scene depend on the components of interest, which in turn
depend on the task being performed. For example, if the
goal is to detect object boundaries for object detection then
all other detected edges are noise, but if the task changes
the object boundaries may no longer be relevant. One of the
motivations for this work is that while designing individual
edge detectors for particular tasks in particular domains is
not feasible, often times it is simple to obtain training im-
ages with labeled boundaries, and depending on the task
there need not be any ambiguity as to what constitutes a
correct output.

In this paper we propose a novel supervised learning al-
gorithm for edge and object boundary detection which we
refer to as Boosted Edge Learning orBEL for short. A deci-
sion of an edge point is made independently at each location
in the image; a very large aperture is used providing signifi-
cant context for each decision. In the learning stage, the al-
gorithm selects and combines a set of features out of a pool
with tens of thousands of generic, efficient Haar wavelets
in order to learn a discriminative model. The scope of the
machine learning problem is formidable: we have tens of
millions of training points with tens of thousands of fea-

tures each. We present an extension of the probabilistic
boosting tree algorithm that copes with this data much bet-
ter than did either boosting or cascade approaches [22]. Our
method outputs true probabilities, whereas other edge de-
tection methods either output a binary value or a soft value
based on edge strength (which is not a true probability). We
show how the method implicitly combines low-level, mid-
level, and context information across different scales when
making a decision. The learning based framework is highly
adaptive and there are no parameters to tune. We show ap-
plications for edge detection in a number of specific image
domains as well as on natural images. We test on various
datasets including the Berkeley dataset and the results ob-
tained are very good.

1.1. Related work

There have been many methods proposed for edge de-
tection, we have already mentioned a few. A representative
set is given by [2, 14, 19, 15], we review each in some de-
tail below. The Canny edge detector [2] is perhaps the most
widely used edge detector; it is based only on local gradient
and has a scale parameter to tune. Ramesh [14] systemati-
cally analyze the performance of a number of edge detectors
w.r.t. their parameter setting. The method in [19] uses edges
obtained from bottom-up (discriminative) processes as pro-
posals to guide the top-down (generative) search. Recently,
Renet al. [15] build graphs to reinforce some mid-level cues
to give more complete edges. In general, however, it is dif-
ficult to encode all the rules needed for edge detection, for
example how to exploit all sorts of mid-level Gestalt laws
such as junction, parallelism, symmetry, and closure, how
to deal with texture and color, how to resolve disagreements
between cues that give conflicting local information, and
so on, even if mid-level and high-level information can be
modeled (for example in a generative framework), a search
for optimal solutions can be daunting.

Two other relevant algorithms arePb, proposed by [11],
and the method presented in [13]. Both have data driven
and learning components, although aside from this obvi-
ous similarity they bear little resemblance to our approach.
Pb uses learning to perform cue combination on 9 carefully
designed local features (texture gradient, brightness gradi-
ent and color gradient at 3 scales each), learning improves
performance over setting the weights by hand. The learn-
ing component in both [11] and [13] improves the over-
all results of the algorithms on general edge detection; our
method, however, relies entirely on learning. This makes
our method very versatile, and as we show in the experi-
ments section we were able to apply it to a very broad range
of domains.

Figure 1.Manual segmentations of an example image and the correspond-
ing edge maps. For illustration purpose, we show the negative of the prob-
ability so the darker the pixel, the higher the probability of an edge.

2. Problem formulation
A number of tasks in computer vision can be formulated

as finding a likely interpretationW for an observed image
I, whereW includes information about the spatial location
and extent of objects, regions, object boundaries, curves and
so on. LetSW be a function associated with a scene inter-
pretationW that encodes the spatial location and extent of a
component of interest, whereSW (i, j) is 1 for each image
location (i, j) that belongs to the component and 0 else-
where. Given an image, obtaining an optimal or even likely
scene interpretationW , or associatedSW , can be difficult.
Instead, we can ask what is the probability a given location
in a given image belongs to the component of interest:

p(S(i, j)|I) =
∑
Wt

SWt
(i, j)p(Wt|I). (1)

See Figure (1). Calculatingp(S(i, j)|I) using the above
is difficult. Instead we seek to learn this distribution di-
rectly from image data. To further reduce the complexity,
we seek to learn a discriminative modelp(S(i, j)|IN(i,j))
whereIN(i,j) is an image patch centered at(i, j). If we
throw away the absolute coordinates, then the major focus
of this paper is to learn:

p(S(c)|IN(c)), (2)

wherec is the center of an image patch. So the decision
for a single point is made based on an image patch centered
at it. A large enough patch contains low-level features and
also some mid-level and context information. We want to
piece this information together and learn a discriminative
model.

Edge detection is easily placed in the above framework
if we let the scene interpretationW of an image be its seg-
mentation, and defineSW (i, j) = 1 if any region bound-
ary in W passes through location(i, j), and otherwise
SW (i, j) = 0. Thenp(S(i, j)|I) gives the edge probability
at each location in the image. To obtain ground truth for our
discriminative model, we use the manually labeled segmen-
tations from [11]. Given an image and a number of different
segmentationsWt, we can obtain an approximation,p̂(S|I),
by considering each of the human segmentations to have an

equal probabilityp(Wt|I). We can then sample positive and
negative example patches fromI according tôp(S|I). Fig-
ure (1) shows an example where human subjects drew dif-
ferent segmentations. The edge probability map summing
up all manual segmentations is shown on the right. Figure
(2) shows some sample patches.

We describe other applications of this framework, as well
as other methods for generating the ground truth, in the ex-
periments Section 4. However, for much of this paper we
refer top(S(c)|IN(c)) as the edge probability atc.

3. Learning edge probability

Our goal is to train a discriminative modelp(S(c)|IN(c))
that predicts the probability of a location being an edge
point based on an image patch centered at it.

3.1. Features

Informative features greatly facilitate the training stage
of a classification algorithm. Their design should compro-
mise among generality, speed and effectiveness. As men-
tioned,Pb performs cue combination on 9 features. These
features are a culmination of years of effort, and they are
in fact very effective for edge detection in natural images.
Instead, our approach is to use tens of thousands of very
simple features, calculated over a much larger image re-
gion. The primary advantage of such an approach is that
the human effort is minimized, instead the work is shifted
to the classification algorithm. We can measure the time it
took to design and implement our features in terms of days.
Also, such features tend to be much more general so apply-
ing the algorithm to a different domain is straightforward.
Including features far from the center of the patch implic-
itly provides mid-level and context information to the dis-
criminative algorithm. The primary disadvantage is that the
classification stage is far more challenging and the choice
of a discriminative algorithm more sensitive.

We used a large number of generic features at multiple
locations, orientations, scales, aspect ratios and so on, cal-
culated over a large image patch (e.g. of size 50 × 50).
Features included gradients at multiple scales and loca-
tions, differences between histograms computed over fil-
ter responses (difference of Gaussian (DoG) and difference
of offset Gaussian (DooG)) again at multiple scales and
locations, and also Haar wavelets[22]. We experimented
with using the output of the Canny edge detector at vari-
ous scales as input to our method, although these Canny
features were not very informative and for speed reasons
were not included in the final version of our classifier. The
classifier has to handle edges at different scales implicitly,
and also different types of edges, so it is important to have
a large pool of informative features. Integral images, filter
responses, and so on were computed once for each input im-

(A) Positives (B) Negatives

Figure 2.(A) Some positive (center pixel is an edge point) and (B) nega-
tive (center pixel is none edge) image patches.

age, not once per patch, increasing efficiency when adjacent
patches must be evaluated. For color images we addition-
ally calculated the above features (gradients, histograms of
filter responses, Haar wavelets) over each color channel.

We use approximately50000 features. The same fea-
tures were used in all applications reported. We emphasize
that little effort went into optimizing our feature set.

3.2. Classification framework

Given a training image, along with an estimate of the
probability that each location is an edge point,p̂(S|I), we
can sample positive and negative example patches. The
number of samples from a single image is equal to the num-
ber of locations in the image (although typically the major-
ity of locations contain negative samples), and even more if
we consider the image at multiple orientations, scales and so
on. Adjacent sample are highly similar, nevertheless, we of-
ten have very large training sets (O(108) samples). Learn-
ing an accurate decision boundary for this data is difficult,
and we would like to use as much data as possible.

Advances in machine learning have allowed us to take
advantage of the size of this high dimensional dataset.
Boosting [4, 5] deals well with high dimensional data. Cas-
cades of boosted classifiers [22] allow for efficient evalua-
tion, and combined with bootstrapping allow for training on
very large datasets. In an early attempt we trained a cas-
cade of AdaBoost classifier, unfortunately the cascade did
not give us sufficiently good results. Even with a large num-
ber bootstrapping stages the error remained fairly high (a
comparison is given in the experiments section, specifically
see Figure 7).

Instead we chose to use an extension of the probabilistic
boosting tree (PBT) proposed in [20].PBT can be seen as
a combination of a decision tree with boosting (a cascade is
then just a special case of a tree). In this paper, we give an
extendedPBT that combines the bootstrapping procedure
directly into the tree formation while properly maintaining
priors. We give a description of the algorithm below, our
presentation of the extendedPBTalgorithm uses a different
notation from [20].

3.3. Probabilistic Boosting Tree - training
TrainingPBTis similar to training a decision tree, except

at each node a boosted classifier is used to split the data.

The tree is trained recursively: at each node the empirical
distribution q̂(y) of the data is calculated, and if the node
is not pure (0 < q̂(y) < 1), a strong classifier is trained
on the data at the node. Each sample is then passed to the
left and right subtrees, weighted byq(−1|xi) andq(+1|xi)
respectively, whereq(+1|xi) is the probability thatxi is a
positive sample according to the strong classifier. Thus, the
strong classifier at each node is used not to return the class
of the sample but rather to assign the sample to the left or
right subtree. Training proceeds recursively. Details for the
extended version of the algorithm are given below, see [20]
for information about the original algorithm. To train:

1. Given a set of images with edges annotated, retrieve a training
set S = {(x1, y1, w1), ..., (xm, ym, wm); xi ∈ χ, yi ∈
{−1, +1},

P
i wi = 1.

2. If the number (or weight) of either positive or negative samples inS
is too small, perform bootstrapping to augmentS (see below).

3. Compute the empirical distribution ofS, q̂(y) =
P

i wiδ(yi = y).
Continue if the depth of the node does not exceed some maximum
value andθ ≤ q̂(+1) ≤ (1− θ), e.g. θ = 0.99, else stop.

4. On training setS, train a strong boosted classifier (with a limited
number of weak learners).

5. Split the data into two setsSL andSR using the decision bound-
ary of the learned classifier and a toleranceε. For each sample
(xi, yi, wi) computeq(+1|xi) andq(−1|xi), then:

(xi, yi, wi ∗ q(+1|xi)) → SR

(xi, yi, wi ∗ q(−1|xi)) → SL.
Finally normalize all the weights inSL and alsoSR.

6. Train the left and right children recursively usingSL andSR re-
spectively (go to step 2).

The bootstrapping step (2) for a given node is similar to
bootstrapping when training a cascade, except that both pos-
itive and negative examples are bootstrapped. Letl1, ...lk
denote the path to the current node at depthk + 1. The
weight of a sample(x, y, w) when it reaches the node in
is given byw′ = w

∏
q(x|li). By resampling the original

data after reweighing according to the above (and renormal-
izing), one can augment the dataS at the given node. This
bootstrapping procedure allows us to deal with very large
data sets while properly maintaining priors.

Finally, to make training more efficient, step (5) can be
altered so a given sample is passed to bothSL andSR only
if it is near the decision boundary (the bootstrapping proce-
dure must be altered accordingly):

If q(+1|xi)− 1
2

> ε:
(xi, yi, wi) → SR

else ifq(−1|xi)− 1
2

> ε:
(xi, yi, wi) → SL

else:
(xi, yi, wi ∗ q(+1|xi)) → SR

(xi, yi, wi ∗ q(−1|xi)) → SL.

3.4. Computing probability

Given a trained tree, the posteriorp̃(y|x) is computed
recursively. If the tree has no children, the posterior is sim-
ply the learned empirical distribution at the nodep̃(y|x) =
q̂(y). Otherwise the posterior is defined recursively:

p̃(y|x) = q(+1|x)p̃R(y|x) + q(−1|x)p̃L(y|x)

Hereq(y|x) is the posterior of the classifier, and̃pL(y|x)
andp̃R(y|x) are the posteriors of the left and right trees.

In other words, to compute the posterior at a non-
terminal node of the tree, the posterior of the left and
right subtrees are calculated and the resulting posterior is a
weighted combination according to the output of the strong
classifier associated with the given node. Just as in train-
ing, we avoid traversing the entire tree by recursing to both
subtrees only if the sample is near the decision boundary:

If q(+1|x)− 1
2

> ε:
p̃(y|x) = q(+1|x)p̃R(y|x) + q(−1|x)q̂L(y)

else ifq(−1|x)− 1
2

> ε:
p̃(y|x) = q(+1|x)q̂R(y) + q(−1|x)p̃L(y|x)

else:
p̃(y|x) = q(+1|x)p̃R(y|x) + q(−1|x)p̃L(y|x)

Typically, using this approximation, only a few paths in the
tree are traversed; thus the amount of computation to calcu-
late p̃(y|x) is roughly linear in the depth of the tree.

4. Experiments

We show the application of our framework to 4 different
domains: (1) illustrations of the Gestalt laws, (2) detection
of object boundaries, (3) road detection and (4) edge detec-
tion in natural images. We use nearly identical parameters
in all domains, except we change the depth of the tree de-
pending on the amount of data available to avoid overfitting.

4.1. Illustrations of Gestalt laws

The Gestalt laws of perceptual organization, includ-
ing symmetry, closure, parallelism and so on, are rules
of how component parts are organized into overall pat-
terns [12]. The Gestalt laws play an important role in
determining object grouping and region boundaries. Ex-
plicit studies of mid-level structures include their represen-
tations, spatial relationships, and explicit probability distri-
butions. Though there has been substantial work done in
this vein [3, 7, 8, 15, 23], individual studies tend to focus on
particular Gestalt laws, and it is not clear how to combine
them into a unified framework.

Typically, applying the Gestalt laws is seen as a separate
‘mid-level’ processing stage that comes into play after low-
level features have been calculated. Instead, we show how
in our framework the Gestalt laws can be exploited implic-
itly in a discriminative model that uses very simple image
features. The advantages to this type of approach are as fol-
lows. First, providing training data is simple – we just need
to annotate the edges where the Gestalt laws apply. The
same training process can then be used. We do not have to
define the individual laws, or how they interact, instead the
learning algorithm combines a set of features/weak classi-
fiers to generalize based on the training samples.

In the remainder of this section we provide a few of
examples in the form of analogies: we provide a training

image and the annotated ground truth, train and apply the
discriminative model to a novel test image. That is we ask
“A is to B as C is to ?”, akin to the work of [9]. The input
images in these examples are binary. The results for these
examples were easy to obtain – they required no special
parameter settings or tweaks to the algorithm. These are
meant to be illustrative, we argue that on real data similar
principles are implicitly exploited to achieve good results.

Parallelism

(A) (B) (C) (D)

Training is done on the image in (A) with the ground
truth given in (B), and the result when the classifier is
applied to (C) is given in (D). To correctly classify points
as edge points the local gradient is insufficient. Instead,
some edges must be filled in using ‘parallelism’. Note that
on the test image the learned classifier outputs a high edge
probability not only in locations where local gradient was
present but also in the gap. The learned classifier was able
to generalize to two parallel curves with a smooth turn
from training data that contained only straight parallel lines.

Modal Completion

(A) (B) (C) (D)

Modal completion occurs when portions of an object are
occluded by another object that happens to have the same
color as nearby regions [16]. Shown the so called Kanizsa
triangle in figure (A), observers typically report a white tri-
angle occluding three black disks. In cases such as this,
there is a perception of a contrast border even though there
is no local contrast. Our algorithm is easily able to general-
ize to the example of the square. This is significant because
it shows that the method can hallucinate edges by fusing
features on a relatively large image neighborhood. Note
that edge hallucination is not possible with the algorithm of
Martin et al. [11], where only local gradients are available.

We are agnostic with respect to preconceived notions
about what defines an edge. The algorithm learns based on
the training data it is given.

Alternate interpretation of the same data

(A) (B) (C) (D)

4.2. Detecting object boundaries

We can train the algorithm to detect edges specifically
between an object and the rest of the image. By training on
object boundaries the discriminative model learns to sup-
press other edges in the image, regardless of local gradients.

If we let the scene interpretationW of an image include
the location and extent of an object of interest, and define
SW (i, j) = 1 if the object boundary passes through location
(i, j), thenp(S(i, j)|I), defined as before, gives the proba-
bility that each location in the image is on the boundary of
the object of interest. To obtain ground truth we roughly
outlined the object in each image using a paint program.
Since the labeling was error prone we smoothed the bi-
nary edge map using a Gaussian kernel, which assumes a
Gaussian model of the localization error. The result was an
approximation of the probability that each location contains
an edge,̂p(S(i, j)|I), as before.

Results are shown in Figure (4). Results on the test-
ing data match the human labeled images well, although in
some parts the mouse edges were not detected (especially
around the ears and tail). Very few non-object edges were
detected. The results are far superior to both Canny and
Pb [11] which are not tuned for this specific domain. Al-
thoughPb has a data driven component, code for training is
not available online, furthermore even if retrained we would
not expectPb to suppress non-object edges since only local
gradients are available as features.

In Figure (3) we show a closeup of the final testing im-
age, and two cropped patches, that demonstrate the impor-
tance of using significant context information.

Successful detection of object boundaries can facilitate

šŢxšŢ ŢŤxŢŤ ťŠxťŠ šŢxšŢ ŢŤxŢŤ ťŠxťŠ

Original Image Result

Figure 3.Zoomed in view of final testing image for mouse boundary de-
tection and result of classifier. The classifier fails to detect edges near the
moving head due to considerable motion blur, an artifact not observed in
the training data. Two positive patches of size 24x24 are shown, and cor-
responding patches of about half and double size. The decision for the
left patch can be made based on local information (the small patch is suf-
ficient), but for the right patch context information is crucial (the larger
patch is necessary). A patch size of 50x50 is used throughout this work to
make context information available to the discriminative method.

Training Image Ground Truth Training Image Ground Truth

Testing Image Ground Truth Canny Pb BEL

Figure 4.Illustration of object boundary detection. Two of fourteen training images are shown in the first row. The next rows show two of the seven testing
images –BEL is able to generalize to the unseen images. Not only are boundaries of the mouse found, but also other edges are suppressed – something that
traditional edge detection algorithms cannot do. Both Canny andPb perform poorly, the ‘F’ score forBEL was .79 while for Canny it is .10 and forPb it is
.13 (for more on evaluation methodology see Section 4.4). Not only do Canny andPb detect non-object edges but detection of the mouse edges is poor.

object detection or tracking. Given ten images containing
a given object provides only ten instance of the object, yet
tens of thousands of points on the boundaries of the object
(although these points may be highly correlated). Detecting
the general location of the mouse in the images in Figure (4)
is trivial given the output of our algorithm.

One popular technique used in tracking is to perform
background subtraction. However, this requires both the
camera and the background to be fixed - our framework
provides an alternate solution. The authors of [1] use the
output ofPb as input to their mouse tracker on very simi-
lar images, we would expect that our method which is more
accurate and faster would prove more useful.

4.3. Road detection

Our framework can also be applied to detect roads in
satellite images. We obtained the satellite images and cor-
responding road maps using Google Maps. Each satellite
image is aligned with its road map; to generate the ground
truth we converted the road map to a binary mask (the
process could easily be automated). Road detection is a well
known problem, see for example [6]; here we show that our
algorithm is directly applicable.

The goal is to classify each pixel as belonging to a road
or not. That is we defineSW (i, j) = 1 if a location in an
image is part of a road according to scene interpretationW ,
and otherwise0. In this case, there is only one interpre-
tation W for each image, derived from the corresponding
road map, sôp(S(i, j)|I) = SW (i, j). We smoothSW to
allow for some positional uncertainty (alignment of the road
to the map is not perfect).

Note that roads are multiple pixels thick. Road detection
is not edge detection, rather, the task is pixel assignment.
Some results are shown in Figure (5).

Training Image Google Map Ground Truth

Testing Image Google Map BEL

Figure 5.Some results on road detection. Three satellite images were
obtained from Google Maps, along with their corresponding road maps.
The first two images were used for training, their corresponding road maps
were converted to probability distributions of pixel membership. Results
on the third image are shown. Close inspection reveals that ‘Winchester
Dr.’ was not detected, it appears that it is much darker than any road in the
training data.

4.4. Edge detection in natural images

One of the strengths of our algorithm is that it can learn
an edge detector tuned for a specific domain. If labeled data
is available, and the regions or boundaries of interest are
of a specific form (for example the boundaries on a mouse
or roads in satellite images), then our method outperforms
other edge detection algorithms which are designed to re-
spond to all edges, not just specific edges, and cannot take
advantage of the particular properties of the edges of inter-
est. However, it is interesting to ask if our algorithm were
trained to respond to edges in natural images, how would its
performance as a general edge detection algorithm rank?

To train our algorithm to respond to edges in natural im-

ages, and to test its performance, we used the Berkeley Seg-
mentation Dataset and Benchmark [11]. We trained on a
subset of the 200 training images (1

6 of each of the first 100
images) and applied the algorithm to 100 test images. We
repeated the experiment in both gray scale and color (in our
framework, adding features based on color simply involves
computing the same features we used for the gray scale im-
age over each of the color channels).

Some results on gray scale images are shown in Fig-
ure (8). Our output gives a true probability whereas the
output ofPb, like of most edge detection algorithms, gives
a strength or confidence of an edge being present, and not a
true probability. See Figure (6) for a qualitative comparison
of the output.

We report quantitative results of our algorithm, calcu-
lated using the Berkeley benchmark, in Figure (7). More in-
formation on how the precision and recall are computed and
the significance of the curve can be found in [11]. We com-
pare our performance to multiple variants ofPb. The color
and gray scale versions ofPb have the highest reported per-
formance in the literature. The overall performance of our
methods on gray scale and color images is very similar to
the corresponding versions ofPb; the precision is higher
for some values of recall and lower for others. The perfor-
mance of all the algorithms shown in Figure (7) is signifi-
cantly higher than the performance of methods based only
on brightness gradients, such as the Canny detector. For a
full comparison see [11].

We believe that if changed how we do edge thinning, in-
creased the amount of training data we use, trained a deeper
tree, or tweaked any number of other factors we could fur-
ther improve the overall performance, however, this is not
central to our agenda, since as mentioned we believe that
the true strength of our method lies in its adaptability.

5. Discussion

In this paper, we have presented a learning based algo-
rithm for edge detection which implicitly combines low-
level, mid-level and context information across different
scales to learn and compute discriminative models for com-
plex patterns. We treat edge detection as a machine learning
problem with a very challenging dataset. We use generic,
fast features and make no assumptions about what defines
an edge, thus avoiding the need to specifically define ad-hoc
rules. We use almost identical parameters for training and
there are no parameter to specify once the model is learned.

The resulting algorithm is highly adaptive and scalable.
We apply it to a number of different datasets, achieving
good results. There are a number of applications, such as
object detection and tracking, where edge detection could
be used but typically is not because edge detectors tend to
be inaccurate and give strong responses in uninteresting re-
gions and weak responses in relevant regions. For many of

image human BEL Pb

Figure 6.Zoomed in view of a test image form the natural image dataset.
Qualitative properties of our output can be seen: (1)BELgives a true prob-
ability, not just a measure of edge strength. The strongest responses cor-
relate well with regions where the largest number of people marked edges.
(2) The curvature ofBEL edges reflects the curvature of human edges, that
is straight edges do not become wavy and corners remain sharp (contrast
this with the output ofPb). (3) Sharp, clear boundaries (like the building
boundaries) give rise to tightly peaked strong responses, boundaries that
are harder to localize (near the clouds and grass) give rise to more diffuse
weaker responses. This is consistent with human edges near the clouds and
grass which also had significant positional uncertainty. The ‘F’ score for
this image is .79 forPb and .71 forBEL, i.e. according to the benchmark
Pb performs significantly better. When computing the overall precision
and recall of the output it must be thresholded and thinned, we suspect this
adversely affected our measured performance.

Figure 7.Precision recall curves ofBEL andPb on gray scale and color
versions of the Berkeley test set. The overall performance on gray scale
images ofBEL is very close toPb, whose performance is the highest re-
ported in the literature. Similarly for color images,BEL-Color outper-
forms Pb-Color for all but a few precision/recall values (the ‘F’ score
is an overall measure of performance based on all precision/recall values).
Training a cascade classifierBEL-Cascade for gray scale images failed
to give as good of results, showing the importance of the classification
algorithm in our framework.

these areas of application sample labeled data can be made
available, and we hope that by making the algorithm adap-
tive it will find use in these applications.

We conclude by acknowledging that there is a limit to
how far a discriminative model such as our can go. The
method tends to do very well when adapted to a specific do-
main, but still has problems on the more general problem

Im
ag

e
H

um
an

B
E

L
P

b

(a) (b) (c) (d) (e) (f) (g) (h) (i)
Figure 8.The first row contains gray scale images from the Berkeley dataset (http://www.cs.berkeley.edu/projects/vision/grouping/segbench), and the
second the overlayed manual segmentations. For each image we give our results and the result of the Berkeley gray scale edge detector for comparison. The
images chosen are the same ones as in Figure 15 in [11].

of edge detection in natural images, as demonstrated by the
difficult images in the Berkeley dataset. We have presented
our method in view of an underlying generative model, and
argued its merit on the basis of its efficiency and good over-
all performance. Eventually, however, models that explic-
itly represent and make use of high-level knowledge must
be engaged.

Acknowledgements
We would like to thank Visvanathan Ramesh and Dorin Comaniciu for

valuable discussion and feedback. This work was done primarily while PD

and ZT were at Siemens Corporate Research with support from the Office

of Naval Research Award No. N000014-05-1-0543, CFDA No. 12.300.

Any opinions, findings, and conclusions or recommendations expressed

in this material are those of the authors and do not necessarily reflect the

views of the Office of Naval Research. PD is supported by NSF IGERT

Grant DGE-0333451. SB is supported by NSF-CAREER Award #0448615

and the Alfred P. Sloan Research Fellowship.

References
[1] K. Branson and S. Belongie, “Tracking Multiple Mouse Contours

(without Too Many Samples)”,CVPR, 2005.
[2] J. F. Canny, “A Computational Approach to Edge Detection”,PAMI,

Nov. 1986.
[3] B. Dubuc and S.W. Zucker, “Complexity, Confusion, and Perceptual

Grouping”,IJCV, 2001.
[4] Y. Freund and R. Schapire, “A Decision-theoretic Generalization of

On-line Learning And an Application to Boosting”,ICML, 1996.
[5] J. Friedman, T. Hastie and R. Tibshirani, “Additive logistic regression:

a statistical view of boosting”, Stanford Tech Report. 1998.

[6] D. Geman and B. Jedynak, “An Active Testing Model for Tracking
Roads in Satellite Images”,PAMI, 1996.

[7] B. Geisler, “Perceptual Grouping and the Bayesian Statistics of Nat-
ural Scenes,”Bayes, San Francisco, 2001.

[8] C.E. Guo, S.C. Zhu, and Y.N. Wu, “A mathematical theory of primal
sketch and sketchability”,ICCV, 2003.

[9] A. Hertzmann, C. Jacobs, N. Oliver, B. Curless, D. Salesin. “Image
Analogies”,SIGGRAPH, 2001

[10] D. Marr, “Vision”, 1982.
[11] D. Martin, C. Fowlkes, & J. Malik, “Learning to Detect Natural Im-

age Boundaries Using Local Brightness, Color and Texture Cues”,
PAMI04.

[12] K. Koffka, “Principles of Gestalt Psychology”, New York: Harcourt,
Brace and company 1935.

[13] S. Konishi, A. Yuille, J. Coughlan and S.C. Zhu, “Statistical Edge
Detection: Learning and Evaluating Edge Cues”,PAMI, Jan, 2003.

[14] V. Ramesh, “Performance Characterization of Image Understanding
Algorithms”, Ph.D. thesis, University of Washington.

[15] X. Ren, C. Fowlkes, and J. Malik, “Scale-Invariant Contour Comple-
tion using Conditional Random Fields”,ICCV, 2005.

[16] M. Singh. “Modal and Amodal Completion Generate Different
Shapes”,Psychological Science, 2004.

[17] J. Sullivan and S. Carlsson “Recognizing and Tracking Human Ac-
tion”, ECCV, 2002.

[18] C. Taylor and D. Kriegman, “Structure and Motion from Line Seg-
ments in Multiple Images”,PAMI, 1995.

[19] Z. Tu, X. Chen, A. Yuille and S.C. Zhu, “Image Parsing: Unifying
Segmentation, Detection, and Object Recognition”,IJCV, 2005.

[20] Z. Tu, “Probabilistic Boosting-Tree: Learning Discriminative Mod-
els for Classification, Recognition, and Clustering”,ICCV05.

[21] S. Ullman R. Basri “Recognition by Linear Combinations of Mod-
els”, PAMI, May, 1991.

[22] P. Viola and M. Jones, “Robust Real Time Object Detection”,SCTV,
2001.

[23] L.R. Williams and D.W. Jacobs, “Stochastic Completion Fields: A
Neural Model of Illusory Contour Shape and Salience”,Neural Com-
putation, 1997.

