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Abstract

This article presents a mathematical paradigm
called Data Driven Markov Chain Monte Carlo
(DDMCMC) for object recognition. The obje ctives of
this paradigm are two-fold. Firstly, it realizes tra-
ditional \hyp othesis-and-test"methods through well-
balanced Markov chain monte Carlo (MCMC) dynam-
ics, thus it achieves robust and globally optimal so-
lutions. Se condly, it utilizes data-driven (bottom-up)
methods in computer vision, such as Hough transform
and data clustering, to design e�ective tr ansition prob-
abilities for Markov chain dynamics. This drastically
improves the e�ectiveness of traditional MCMC algo-
rithms in terms of two standard metrics: \burn-in"
perio d and \mixing" rate. The article proceeds in three
steps. Firstly, we analyze the structures of the solution
space 
 for obje ct recognition. 
 is decomposed into
a large number of subspaces of varying dimensions in
a hierarchy. Se condly,we use data-driven techniques
to compute importance proposal probabilities in these
spaces, each expressed in a non-parametric form using
weighted samples or particles. Thirdly, Markov chains
are designed to travel in such heterogene ous structured
solution space, with both jump and di�usion dynamics.
We use possibly the simplest objects - the \	-world"
as an example to illustrate the concepts, and we briey
present r esults on an application of traÆc sign detec-
tion.

1 Introduction
Over the past 40 years, Markov chain Monte Carlo

(MCMC) method has penetrated many subjects, such
as statistical ph ysics, seismology, chemistry, biomet-
rics, protein folding, as a general engine for infer-
ence and optimization. As a matter of fact, it is
the only known method for global optimization, beat-
ing genetic algorithm. However, in computer vision
the promise of MCMC method has been shadowed
by tw oshortcomings despite many early work[4, 6].

Firstly , it lacks a rigorous mathematical framework
for designing w ell-balancedMCMCs when the solu-
tion spaces become complicated and heterogeneously
structured. Secondly, naive MCMC algorithms bor-
rowed from statistics and ph ysics are extremely in-
e�ective { reected by unacceptably long \burn-in"
periods and incredibly slow \mixing" rates.

In this article, we argue that the ineÆciency of cur-
ren t MCMC algorithms is not a result of any intrinsic
limits of the MCMC methods , but a result of lacking
domain knowledge in designing MCMC.

We propose a new mathematical paradigm called
Data Driven Markov Chain Monte Carlo (DDM-
CMC). DDMCMC utilizes bottom-up (data driven)
techniques, suc h as Hough transform and data clus-
tering, to compute coarse probabilities which guide
the Markov chain to search in promising places or hot
spots in solution spaces. The DDMCMC paradigm
achiev es tw o objectives: Firstly , it realizes traditional
engineering methods of \hypothesis-and-test" through
w ell-balancedMarkov chain dynamics, therefore ob-
tains robust and glob ally optimal solutions. Secondly,
it drastically improve the e�ectiveness of traditional
MCMC algorithms.

This paper presents a pilot project for object
recognition as a proof of concept in a sequence of
papers[11, 12]. We proceed in three steps. Firstly ,
w e analyze explicitly the structures of the solution
space 
 for object recognition. This leads to the de-
composition of 
{which w ecall the scene space into
a large number of subspaces of varying dimensions.
These subspaces are, in turn, decomposed as object
spaces, and the latter are production spaces of a num-
ber of atomic spaces. The atomic spaces are for basic
visual cues and are not further decomposable. Sec-
ondly, w eadopt data-driven techniques in computer
vision to compute importance proposal probabilities in
the atomic and object spaces. These probabilities are
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expressed in non-parametric forms by a set of weighted
samples or particles. These particles are respectively
called atomic particles and obje ct particles. Thirdly,
Markov chains are designed to travel in such hetero-
geneously structured solution space, with both jump
and di�usion dynamics. These dynamics in combina-
tion form reversible, ergodic, and aperiodic random
w alks that sample the posterior probability in the
Bayes framework. We shall also discuss how we com-
pute multiple, distinct solutions{ which we call scene
particles in 
. A key observation is that in this DDM-
CMC paradigm, we dynamically maintain a �nite set
of particles at all levels in the hierarchy of the solution
space.

Our work is inspired by a serial of recen tsuccess
in using MCMC methods, including Condensation al-
gorithm for object tracking[7], the stochastic texture
modeling and medial axis[10, 9] and others[8].

2 The structures of solution space
w e use possibly the simplest example { the \	-

w orld"to illustrate the concepts of DDMCMC. The
\	-world" consists of only four types of objects: bac k-
ground pixels, line segments, circular arcs, and the
Greek symbol 	, labeled by B;L;C; P respectively.
The observed images I on a lattice � are generated
through superposing n objects on the background with
additive Gaussian noise. n is subject to a Poisson dis-
tribution, and the sizes and locations of the objects
are subject to some uniform distributions. Figure 1
displays tw otypic al imagesunder the speci�ed distri-
butions.

The 	-world is described by a vector,

W = (n; f(`i; �i); i = 0; 1; :::; n; �):

n 2 f0; 1; 2; ::; j�jg is the n umber of objects other than
bac kground, withj�j the n umber of pixels in an image.
`i 2 fB;L;C; Pg is the label and �i is a v ector v alued
parameter describing the i-th object. We ha veonly
only background object, `0 = B.

The parameters are de�ned in the following.
1. T ypeB: �0 is just �0 for the grey level of pixels.
2. Type L: �i includes (�i; �i; si; ei; �i). (�i; �i)

describes a straigh tline, and si; ei the starting and
ending points. �i is the intensity level of the line.

3. T ypeC: �i includes (xi; yi; ri; si; ei; �i) denoting
the cen ter, radius, starting point, ending point, and
in tensity level for arc objects.

4. T ypeP : �i includes (xi; yi; ri; �i; �i) denoting
the center and radius of the half circle and the angle of
the line segment, and the intensit y level. By de�nition,
the arc in 	 must be a half circle.

a b

Figure 1: Some examples of the randomly generated
images with varying number of objects.

Another important variable in W is the �-map for
occlusion.

� : �! f0; 1; 2; :::; ng; � 2 
�:

For a pixel (x; y) 2 �, �(x; y) indexes the top-most
object which is the only visible object at this pixel.

We denote by $g = [0; 255] the space for image
in tensit y lev els, and the solution space of the 	-world
is,


 = 
� �$g �[
j�j
n=0


n
o ;

where 
n
o is the subspace with exactly n objects ex-

cluding the background.


n
o = [k+l+m=n
k;l;m; k; l;m � 0;

where 
k;l;m is the subspace that has exactly k lines,
l arcs, and m 	-objects respectively.


k;l;m = 
L � � � � � 
L| {z }
k

�
C � � � � �
C| {z }
l

�
	 � � � � �
	| {z }
m

:

We call 
L, 
C , and 
	 the object spaces.
These object spaces are further decomposed into

�v eatomic spaces, which are denoted by low ercase
Greek symbols.

1. $g: the space for pixel intensit y�.
2. $c: the space for circle variables x; y; r.
3. $l: the space for line variables �; � .
4. $e: the space for starting and ending points s; e.
5. $� : the space for the orientation of 	.
Thus the object spaces are products of atomic

spaces.


l = $l�$e�$g; 
c = $c�$e�$g; 
	 = $c�$��$g:

Figure 2 illustrates the structures of the solution
space 
. The triangles, squares and hexagons repre-
sen t the three object spaces 
L, 
C , and 
	 respec-
tively. The small circles of various shadows and sizes
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Figure 2: The solution space 
 for the 	-world.

represent the �ve atomic spaces. The arrows indicate
the reversible jumps between subspaces discussed in
the next section.

Object recognition in the 	-world is posed as a
Bayes inference problem,

W � p(W jI) / p(IjW )p(W ); W 2 
:

p(W ) is the product of a Poisson distribution on the
object number n and some uniform densities over the
object parameters �i; i = 1; :::; n. EachW with all the
parameters �i and �-map deterministically specify a
clean image Io, and p(IjW ) = p(IjIo) is simply the
product of iid Gaussian noise. Due to space limitation,
we choose not to de�ne the probabilities in details.

Notice that the probabilitymass of p(W jI) is dis-
tribute d over many subspaces of varying dimensions, in
the next section, we simulate stochastic Markov chain
dynamics which can travel in such heterogeneously
structured space and achieve tw o general goals.

1. T o compute the global optimum W � in 
.
2. T ocompute M distinct solutions (or explana-

tions) S = fW1;W2; :::;WMg for robustness.

3 Designing MCMC{the basic issues
There are tw o basic requirements for designing

MCMC dynamics.
Firstly ,it should be ergodic and aperiodic. Given

an y tw o points W;W 0 2 
, the Markov chain can
travel from W to W 0 in �nite steps.

Secondly, it should observe the stationary equation.
This requirement is often replaced by a stronger con-
dition: the so-called detaile dbalance equations. For
an yW;W 0 2 


p(W jI)dWP (W ! dW 0) = p(W 0jI)dW 0P (W 0 ! dW ):
(1)

P (W ! W 0) is the transition probability, which gov-
erns the Markov chain. Equation (1) requires ev ery
move of the Markov chain to be immediately reversible
and balanced.

Let j
j denotes the number of discretized solutions,
then p(W jI) is a known j
j � 1 vector, and P (W !
W 0) is an unknown j
j � j
j matrix that ought to be
designed. Equations (1) specify j
j constraints. The
transition probability should also satisfy j
j normal-
ization conditions,

P
W 0 P (W ! W 0) = 1; 8W 2 
.

Thus we have 2j
j constraints and j
j2 unknown vari-
ables in P (W ! W 0). In gener al, there are count-
less designs for transition probabilities P (W ! W 0)
or Markov chains.

In vision literature, naive MCMC algorithms bor-
row ed from statistics and physics are bound for ineÆ-
ciency because they were NOT originally designed for
vision problems. In tuitiv ely, in a complicated solution
space, an arbitrarily designed MCMC is like a drunk
man w alkingin a cluttered building in the dark. A
good design of MCMC should illuminate the building
by studying the structures of the solution space and
by exploiting the domain knowledge coded in p(W jI)
{ heuristics.

We design MCMC in tw o steps.

Firstly , to meet the �rst requirement of MCMC de-
sign, we choose �ve types of MCMC dynamics.

T ype I: di�usion process.This process changes the
parameters �i, e.g. moving and extending a line seg-
ment etc.

T ype II: death process.This process eliminates an
existing object, and jumps to a subspace of lower di-
mensions.

T ypeIII: birth process. This process adds a new
object, and jumps to a subspace of higher dimensions.

T ypeIV: composition process. This process com-
poses tw o existing objects into a new object, and
jumps to a di�erent subspace. For example, compos-
ing t w o short lines into a long line, or combining a line
with a circle into a 	.

T ypeV: decomposition process. This process de-
composes an existing object into two.

For example, in �gure 2 the move from 
3;4;2 to

2;3;3 composes a line object and a circle object into
a 	-object.

The �ve types of dynamics are applied in random
sequence decided by throwing dice. It is easy to prove
that Markov chain with the �ve types of moves is re-
versible, ergodic, and aperiodic.

Secondly, w ediscuss ho w to balance the Markov
chain dynamics. The di�usion process can be imple-
mented b y the stochastic Langevin equation, which is
a steep ascent dynamics maximizing p(W jI) with re-
spect to �i plus a Brownian motion. It can also be
implemented b y a continuous Gibbs sampler.

Due to space limitation, we only discuss the balance
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betw een t ypes II and III. The dynamics of type IV and
V can be done in a similar way. Suppose at a certain
time step t, w epropose to eliminate an existing arc
object speci�ed by �i = (xi; yi; ri; si; ei; �i):

W = (n; �i; w) �!(n� 1; w) =W 0:

w denotes the objects which remain unchanged during
this move. In order to realize the death move, w e
must compute how likely the same object can be burn
immediately { an inverse move by the birth process.
Notice that this is a pair of moves that jump betw een
tw o subspaces of di�erent dimensions. We use the
Metropolis-Hastings method. Let G(W ! dW 0) and
G(W 0 ! dW ) be the proposal probabilities for the tw o
moves respectively, then the death move is accepted
with probability,

A(W ! dW 0) = min(1;
G(W 0 ! dW )p(W 0jI)dW 0

G(W ! dW 0)p(W jI)dW
):

(2)
The transition probability P (W ! dW 0) = G(W !
dW 0)A(W ! dW 0) for W 6= W 0. The ratio of the
posterior probabilities is often the dominating factor
which erects the inuence of the posterior to balance
the possible biases from the proposal probabilities.

The death proposal probability is

G(W ! dW 0) = q(II)qo(i)dw: (3)

q(II) 2 (0; 1) is the probability for using type II dy-
namics at time t, and qo(i) is the probability for c hoos-
ing the circle object �i. The birth proposal is

G(W 0 ! dW ) = q(III)q(�i)d�idw: (4)

It �rst chooses type III with probability q(III),
then chooses a new circle object �i with probability
q(�i)d�i.

Since dW = d�idw and dW 0 = dw, the dimensions
of the nominator and denominator in equation (2) are
matched. Designing q(II) and q(III) is easy and often
not crucial for the speed. F or example, one may use
type II more frequently at the beginning. The key
issue here is to compute q(�i)!

In the statistical literature, the jump-dynamics
w ere �rst studied in [6, 5], where variables in new di-
mensions are proposed by prior models. In our case,
this chooses q(�i) to be a uniform distribution like
blind search. Obviously such proposals are most likely
to be rejected. This is a main reason for the MCMC
to be ineÆcient! In tuitiv ely,q(�i)s should be able to
predict where thenew objects are lik ely to bein the
object spaces. This is where the data driven (bottom-
up) techniques step in.

4 Computing proposal probabilities in

the atomic spaces { atomic particles

objectψ−

bar

line segment

end-point

circular arc
cross

Figure 3: Hierarchy in the 	 world.

Figure 3 displays the hierarc hyof objects in the
	-world. The terminal (circles) nodes represent the
elements of features: bar, end point, and cross, and
arro wsmean compositional relations. We use three
types of feature detectors displayed in �gure 4. There
are 3 cross detectors, 6 bar detectors, and 12 end point
detectors at various orientations.

Figure 4: F eature detectors: 3 for cross (row 1), 6 for
bar (ro w 2), and 12 for end point (row 3,4).

Figure 5 displays the results of three feature maps of
bars, end points, and crosses for an image in �gure 1.b.
Dark points in �gure 5 have higher responses. At each
location, we sho w the orientation which has maximum
response.

a b c

Figure 5: The results of a). bar detection, b). end
point detection, c). cross detection.

Using the bar-detection map, w e compute the
Hough transforms for both lines and circles. Figure 6
displays the Hough transform result for straight lines
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in the image shown in �gure 1.b. The darker a point is,
the more votes it accumulates. Local maxima are com-
puted using a mean-shift algorithm[1], and are marked
by the crosses in the �gure. We denote these local

maxima by (�
(i)
l ; �

(i)
l ), i = 1; 2; :::; nl.

Figure 6: The result of Hough transform for lines
(�; �), and sample points: line particles.

Thus w e compute an empirical densit y on the
atomic space $l, expressed as a set of weigh ted sam-
ples.

ql(�; �) =

nlX
i=1

w
(i)
l Æ(�� �

(i)
l ; � � �

(i)
l );

nlX
i=1

w
(i)
l = 1:

Æ(� � �
(i)
l ; � � �

(i)
l ) is a window function cen teredat

(�
(i)
l ; �

(i)
l ). We call ql(�; �) the importance prop osal

probability in atomic space $l, and f(�
(i)
l ; �

(i)
l ); i =

1; 2; :::; nlg the atomic particles.
Similarly �gure 7 displays the atomic particles in

space $c. They are the local maxima of the Hough
transform results for circles. The sizes of the spheres

represent the weights w
(i)
c .

So we have an atomic proposal probability on $c,

qc(x; y; r) =

ncX
i=1

w(i)
c Æ(x�x(i)c ; y�y(i)c ; r�r(i)c );

ncX
i=1

w
(i)
l = 1:

In a similar way, one can compute proposal proba-
bilities in other atomic spaces. 1) In $g w e compute
the intensit y histogramqg(�). 2) In $e, we have com-
puted the end-point maps. 3) In $� , w ecan simply
project ql() onto the � axis. For robustness and re-
versibility, the atomic prop osal probabilities are con-
tinuous and non-zero everywhere in atomic spaces.

5 Computing proposal probabilities in

object spaces{ object particles
Because the object spaces are products of atomic

spaces, proposal probabilities in the three object

Figure 7: 293 weigh ted samples (x; y; r) for circle par-
ticles in the atomic space $c.

spaces 
l;
c and 
	 can becomputed b y the prob-
abilities in the �v eatomic spaces. We discuss three
methods.

Method I: conditional binding. This composes ob-
ject particles by using the atomic features sequentially.
F or example, for a line object � = (�; �; s; e; �), w e
compute

q(�) = ql(�; �)qe(sj�; �)qe(ej�; �; s)qg(�j�; �; s; e): (5)

A set of line segments �
(i)
l = (�

(i)
l ; �

(i)
l ; s

(j)
l ; e

(k)
l ) are

sampled from q(�),

f�
(i)
l : i = 1; 2; :::; nLg:

We call them the object particles in 
l. In a similar
w ay, we can generate object particles in 
c.

These object particles appear, in spirit, similar to
hypotheses in engineering methods. How ev er, there is
one crucial di�erence. Each object particle represents
a windowed domain in the object space not just one
point. The union of the windows of the object particles
covers the en tire object space. T omake the Markov
chain rev ersible, eac h time w epropose a new object
by sampling the proposal probability not just choosing
from the set of particles.

Object particles should also be generated by recur-
sively composing object particles as shown by the ar-
rows in �gure 3.

Method II: o�-line composition . One may compose
a particle by combining tw o other particles if the lat-
ter are compatible. The composition occurs o�-line,
that is, before w estart run MCMC. But this is ex-
tremely expensive because of the exponential number
of possible combinations[3].
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Method III: on-line composition. This di�ers from
method II by binding objects during the MCMC com-
putation when tw o compatible objects appear (or are
\aliv e") in the current W .

A tomicparticles are computed once in a bottom-
up process, whereas object particles are assembled dy-
namically during the MCMC process. Figure 8 shows
three rows of object particles. One for birth candi-
dates, one for death candidates and decomposition
candidates, and one for compatible composition pairs
which are alive inW . We must also consider the inter-
actions between objects through the e�ects of occlu-
sion captured by the � map. F or example, suppose a
long line segment in the image is covered, at present,

by tw o short lineobjects �
(i)
l and �

(j)
l . Then adding

the long line object �
(k)
l will have very little gain in �t-

ting the image because of occlusion e�ect. Therefore
the weights of these object particles must be updated
on-line. We refer to a technical report for details[12].

... ...

... ...

... ...
birth  row

death/decomposition row

composition row

Figure 8: Object particles are organized in three rows
which drive the MCMC dynamics. Dark particles are
alive.

6 Computing multiple, distinct solu-

tions { scene particles

To build robust vision systems for object recogni-
tion, the traditional MAP (maximum a posteriori) es-
timator

W � = arg max
W2


p(W jI)

is not enough. Instead we should sample p(W jI) and
compute a set of representativ e solutions. How ev er,
when 
 is complicated and of high dimensions, simply
sampling p(W jI) only generates solutions which are all
from a single mode and have trivial di�erences from
eac h other. Therefore a mathematical criterion must
be derived for preserving important, distinctive local
modes.

Let S = fW1;W2; :::;WMg be M solutions with
w eights !i / p(W jI);8i. The M w eigh tedsamples

encode p(W jI) in a non-parametric form.

p̂(W jI) =

MX
i=1

!iG(W �Wi);

MX
i=1

!i = 1:

by some Gaussian window function G, we refer to [12]
for a distance measure. In this article, w e propose a
new criterion for extending the traditional MAP.

S� = fW1;W2; :::;WMg = arg min
jSj=M

D(pjjp̂): (6)

We call fW1;W2; :::;WMg the scene particles. They
are chosen to minimize the Kullback-Leibler div er-
gence D(pjjp̂) so that p̂ \best" preserves p { the true
posterior distribution under the constraint of complex-
ity M .

In practice, p is represented as a mixture of Gaus-
sian model like p̂ by a large number N >> M of par-
ticles recorded during the MCMC process. Thus w e
choose M distinct solutions during the MCMC com-
putation so that D(pjjp̂) is minimized.

Figure 9 illustrates this new criterion by plotting
log p(W ) in a 2D space. a): log p(W ) with p being a
mixture of N = 50 Gaussians. The black dots show
the centers of the Gaussians. b): log p̂(W ) withM = 6
selected particles that minimize D(pjjp̂). c): log p̂(W )
with M = 6 selected particles that minimize jp� p̂j in
L1 norm. Obviously the KL-divergence obtains more
distinctive and dispersive solutions.

a b c

Figure 9: See text for explanation.

A mathematical deduction of the D(pjjp̂) leads us
to three beautiful principles guiding the selection of
scene particles. The proof is available in a technical
report[12].

1. One of the particles must be the global opti-
mum W �. Missing W � causes substantial increase in
D(pjjp̂).

2. The scene particles should minimize the total
sum of energy (or maximize the product of probabili-
ties).

3. The scene particles should also maximize the
sum of distances from each other.
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The last tw o are conicting, and thus the particles
must \occupy" distinct modes in the solution space 
.

7 Experiment I: the 	-world
We used an ensemble of randomly generated images

for experiments, two of which are shown in �gure 1.
Figure 10 displays the steps in an MCMC algorithm
by showing the Io decided by W at step t. Figure 11
displays three di�erent solutions for the input image
sho wn in �gure 1.a. Notice that some arcs are rep-
resen tedby a few short line segments, and some are
represented b y a single arc and so on.

Figure 10: W visited by MCMC at time steps.

Figure 11: Three results of an image in �gure 1.

We are mainly interested in studying the improve-
ment of the MCMC eÆciency by comparing four
Markov chains.

MCMC I: the Markov chain uses uniform proposal
probabilities, as in the literature[6, 5].

MCMC II: the Markov chain uses atomic proposal
probabilities with Hough transform without end point
detection.

MCMC III: the Markov chain uses both Hough
transform and end point detection, and samples new
objects randomly from the set of particles.

MCMC IV: the Markov chain uses both Hough
transform and end point detection. But it is di�er-
ent from MCMC III in that it the w eigh tsof object
particles are evaluated on-line.

Figure 12 plots the energy level, which is
� log p(W jI), of the MCMC state at step t. Each of
the four Markov chains runs 10 times for each of the 8
images, and the energy curves are thus averaged over
80 runs. The dotted, dash-doted, dashed, and solid

0 100 200 300 400 500 600 700 800 900 1000
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 10

5

Figure 12: The energy of W plotted against time.

curv esare respectively for the MCMC I,II, III, and
IV. The horizontal line at the bottom is the averaged
energy for the truth W �s. It is clear that with more
data-driven methods used the Markov chains can ap-
proach the solution at muc h faster speed. MCMC IV
reac hes the solution with 2:3% relativ e error in 200
steps. The error is mainly a problem of �ne-tuning by
di�usion. In contrast, MCMC III needs about 5; 000
steps. MCMC I does not go down after even millions
of steps. We ha vealso compared the \mix" rate by
measuring how broad the obtained solutions S are dis-
tributed in 
.

8 Experiment II: traÆc sign detection

Figure 13: An input image of street signs.

We applied the same method to traÆc sign detec-
tion. We used a set of street sign images from Tran-
Map Co., and one is shown in �gure 13. We also con-
structed a set of typical template signs, of which the
fron t views are displayed in �gure 14.

The traÆc signs are organized in a hierarchy in �g-
ure 15. This is similar to the hierarchy studied in[2].
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Figure 14: The front views of some templates.

Figure 15: The hierarchy in the sign models.

Firstly , it has di�erent types of signs. Secondly, these
signs consists of a set of small primitives with sin-
gle light. thirdly , the primitives ha ve di�erent aspects
(typical views), which are further detectable by color
and edge/corner features. Figure 16 (top) shows the
object particles (hot spots) of single ligh t primitive
computed by the bottom-up processes. The image
below is the �nal result with the top-down template
matched to the signs indicated by the tw o highlighted
boundaries.

9 Discussion
We refer to a technical report[12] for the details of

three k ey issues.
1. The models for the background clutter in traÆc

sign, and how we integrate some simple image segmen-
tation methods with object recognition.

2. The mathematical criterion for what are good
feature detectors in computing the importance pro-
posal probabilities q()s.

3. The distance, used in keeping distinct solutions,
betw een t w o solutionsd(Wi;Wj) is de�ned by the min-
imum \work" needed to change one to the other.
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