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Abstract

Object boundary detection is an important task in computer vision. Recent work
suggests that this task can be achieved by combining low-, mid-, and high-level
cues. But it is unclear how to combine them efficiently. In this paper, we present
a learning-based approach which learns cues at different levels and combines them.
This learning occurs in three stages. At the first stage, we learn low-level cues for
object boundaries and regions. At the second stage, we learn mid-level cues by
using the short and long range context of the low-level cues. Both these stages
contain object-specific information – about the texture and local geometry of the
object – but this information is implicit. In the third stage we use explicit high-level
information about the object shape in order to further improve the quality of the
object boundaries. The use of the high-level information also enables us to parse
the object into different parts. We train and test our approach on two popular
datasets – Weizmann horses [4] and ETHZ cows [24] – and obtain encouraging
results. Although we have illustrated our approach on horses and cows, we emphasize
that it can be directly applied to detect, segment, and parse other types of objects.
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1 Introduction

Object boundary detection and foreground/background segmentation are im-
portant problems in computer vision, and they are often tightly coupled.

Local cues like gradients used in classical edge detectors (e.g. [5]) are often
insufficient to characterize object boundaries [20],[27]. For example, Fig. (1)
shows the results of the Canny edge detector [5] applied to some natural im-
ages with cluttered backgrounds [4]. The edge map alone does not provide
enough cues for segmenting the object. Marr [26] proposed a strategy for ad-
dressing this problem by combining low-, mid-, and high-level cues. However,
despite some progress made in this direction [10,11,33,39], the problem remains
unsolved.

Recent advances in machine learning had made it more practical to combine
low-, mid-, and high-level cues for object detection. For example, Borenstein
et al. [4] combined top-down information (learned configurations of image
patches) with bottom-up approaches (intensity-based segmentation) in order
to achieve foreground/background segmentation. In the image parsing frame-
work [37], data-driven proposals (using low-level cues) were used to guide
high-level generative models. Fergus et al. [15] built a top-down model based
on features extracted by interest point operators. Conditional Markov random
fields models [22,34] were used to enforce local consistency for labeling and
object detection. Other approaches combine bottom-up and top-down learn-
ing in a loop [25]. OBJCUT [21] combined cues at different levels in order
to perform object segmentation. He et al. [17] proposed a context-dependent
conditional random field model to take context into account. In related work,
Wang et al. [41,42] proposed a dynamic conditional random field model to in-
corporate context information for segmenting image sequences. More recently,
Leo Zhu et al. [44,45] built hierarchical models to incorporate semantic and
context information at different levels.

[INSERT FIGURE 1 HERE!]

These approaches have shown the effectiveness of of combining cues at differ-
ent levels. But, when, where and how to combine cues from different levels is
still unclear. For example, it is very difficult to build a generative appearance
model, to capture the complex appearance patterns of the horses in Fig. (1);
the patches used in [4,8,25] cannot deal with large scale deformations and they
also have difficulties in capturing complex variations in appearance. Other ap-
proaches, like [16,17,21,23,41,42], lead to complex models which require solving
time-consuming inference problems.

Email address: ztu@loni.ucla.edu (Zhuowen Tu).
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In this paper, we use a learning-based approach to learn and combine cues
at different levels. This gives a straightforward method with a simple and
efficient inference algorithm. More precisely, we use probabilistic boosting trees
(PBTs) [35] (a variation of boosting [14]) for learning and combining low- and
mid-level cues. Then we use a shape matching algorithm [38] to engage high-
level shape information, and to parse the object into different components,
e.g. head, back, legs, and other parts of horses or cows. Our strategy relates to
Wolpert’s work on stacking, which builds classifiers on top of other classifiers,
but is very different in detail. We note that Ross et al. [30] also addresses
segmentation using learning, but their approach is very different and involves
motion cues and learning Markov random field models.

We compare our system with other approaches for this problem. The most
directly comparable one is the work by Ren et al. [28] which gives detailed
performance evaluations for combining low-, mid-, and high- level information.
Our results show large improvement over their approach in many respects, par-
ticularly at the low- and mid- levels. It is less easy to make direct comparison
with other works [4,8,21,25] because some of them [21] were not evaluated
on large testing datasets, and the details of performance evaluation were not
all given. Also some approaches [21,25] used color images. In [8], the authors
first get a shortlist containing 10 candidates, and then pick the best one by
hand, while our approach outputs only one result for each image. Hierarchical
methods [44,45] obtain very good results but use more complex object models
and require heavy inference.

2 Problem Formulation

Given an image I, we assume there is an object of interest in the foreground.
The goal is to automatically detect the boundary of this object, and thus,
perform foreground/background segmentation. In addition, it is desired to
parse the object and identify its parts (e.g. head, leg, back, etc. of a horse or
cow).

More precisely, we seek to decompose an image defined on a 2D image lattice Λ
into two disjoint connected regions R0, R1 so that R0∪R1 = Λ and R0∩R1 = ∅.
R0 is the background region and R1 is the foreground (i.e. corresponding to
the object). We denote a solution by:

W = (R0, R1), R0 background, R1 foreground. (1)

We can also represent this by the object boundary curve C = ∂R1 with
the convention that the object is in the interior of the boundary, i.e. R1 =
interior(C). In this paper, the object boundaries are closed curves and are
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represented by point sets.

2.1 The Bayesian Formulation

The optimal solution W ∗ for for this boundary detection task can be obtained
by solving the Bayesian inference problem:

W ∗ = arg maxW p(W |I) = arg maxW p(I|R0, R1)p(R0, R1), (2)

where p(I|R0, R1) models the image generating process in the foreground and
background regions, and p(R0, R1) defines the prior for the boundary contour.
For example, we can use a probability model for the shape of the object.

However, it is difficult to use equation (2) directly because the image gen-
erating process is very complicated. Objects, such as horses and cows, have
complex image appearance due to their varied texture patterns and the light-
ing conditions. Moreover, the background is even more varied and complex to
model. Hence it is hard to model the image appearance p(I|R0, R1) directly
although might be easier to model the boundary shape p(R0, R1).

2.2 An Alternative Perspective

We avoid the difficulties above by defining the conditional distribution P (W |I)
directly:

P (W |I) ∝ exp{−E(W ; I)}.
Then we seek to estimate:

W ∗ = arg maxP (W |I) = arg min E(W ; I). (3)

From the definition of C and W , finding the optimal W is equivalent to finding
the optimal C. As such, we can rewrite Eqn. (3) as

C∗ = arg min E(C; I),

where the energy function E(C; I) is defined by:

E(C; I) = Edis(C; I) + τEshape(C), (4)

where Edis(C; I) models the image appearance cues discriminatively, and Eshape(C)
models the boundary shape.

In our approach, the low- and mid- level cues are captured implicity by
Edis(C; I). The high-level cues are represented explicitly by Eshape(C), which
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is analogous to − log P (R0, R1) in the Bayesian formulation given by equa-
tion (2). The parameter τ balances the importance of Edis(C; I) and Eshape(C)
and is determined by cross-validation.

We define Edis(C; I) to be:

Edis(C; I)=−
∑

r∈Λ/C

log p(I(r), y(r) = 0|I(N (r)/r))

−
∑
r∈C

log p(I(r), y(r) = 1|I(N (r)/r))), (5)

where N (r) is a neighborhood of pixel r; p(y(r)|I(N (r))) is a discriminative
(classification) probability; I(·) is the intensity value(s) at the given pixels(s);
y(r) is a binary variable indicating whether a point r is on the boundary or
not, which is defined as

y(r) =

⎧⎪⎨
⎪⎩

1, if r ∈ C

0, otherwise
.

If we add −∑
r∈C log p(y(r) = 0|I(N (r)/r)) to the first term on the right side

of Eqn. (5) and subtract it from the second term on the right side of Eqn. (5),
we would have

Edis(C; I) = −
∑
r∈C

log
p(y(r) = 1|I(N (r)))

p(y(r) = 0|I(N (r))))
−

∑
r∈Λ

log p(y(r) = 0|I(N (r)/r))/r)).

(6)

The second term in the right hand side of Eqn. (6) does not depend on C
and hence can be ignored. Therefore Edis(C; I) can be formulated as a sum of
log-likelihood ratio tests:

Edis(C; I) = −
∑
r∈C

log
p(y(r) = 1|I(N (r)))

p(y(r) = 0|I(N (r)))
. (7)

where p(y(r) = 1|I(N (r)))) is the discriminative probability of a pixel r be-
longing to the object boundary given an image patch centered at r. The next
section discusses how we learn Edis(C; I) to integrate the low-level and mid-
level information.

We also need to learn the shape prior term Eshape(C) corresponding to the
high-level information. We build the shape model on exemplar based approach
and use a mixture model to define a shape prior by

Eshape(C) = − log

⎡
⎣ 1

|DB|
∑

Ci∈DB

pCi
(C)

⎤
⎦ , (8)
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where DB includes all the shape templates manually labeled for the training
images, and p(Ci) [38] allows global affine and local non-rigid transformations
for a template Ci in the training images.

To summarize, in our model as Eqn. (4), the first term Edis(C; I) integrates
low-level and mid-level cues, and the second term Eshape(C) explicitly models
the high-level shape information. One thing worth to mention is that Eqn.
(7) depends on both C and the discriminative model p(y(r)|I(N (r))). Eqn.
(7) is just a classification ratio for a fixed C. To achieve the minimal energy
in Eqn. (7) w.r.t. C, reducing the number of pixels on C will not necessarily

reduce the energy becase log p(y(r)=1|I(N (r)))
p(y(r)=0|I(N (r)))

can be either positive or negative.

Therefore, Eqn. (7) will not lead to trivial solution where there is either no
point in C or C being the entire image lattice.

3 Learning Edis(C; I)

We now describe how to learn and compute p(y(r)|I(N (r))) in Eqn. (7). This
will be performed by training classifiers which classify a pixel r based on
the image intensities I(N (r)) within a neighborhood N (r). The information
within the neighborhood is required because images are locally ambiguous.

The size of the neighborhood N (r) determines the range of context used to
classify the pixel. There are two extreme situations. Firstly, the neighborhood
is very small and may, in the extreme case, only contain the pixel r itself. It is
easy to learn and compute a classifier defined over a small neighborhood, but
the classification performance will be poor since the neighborhood contains
too little information to classify the pixel. Secondly, the neighborhood is very
large – e.g., the entire image. In this case there is sufficient information in the
neighborhood to classify the pixel. But the problem is how to learn and com-
pute a classifier that takes advantage of this information. Moreover, training
a classifier over such a large neighborhood requires a large amount of data to
avoid over-fitting.

In this paper, the low-level cues will be defined using small sized neighbor-
hoods. The mid-level cues will take the low-level cues as input and combine
them using larger neighborhoods and hence introduce short and long range
context.
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3.1 Low-level Cues

Classic edge detectors [5,18] only depend on the intensity gradients which cor-
respond to using a very small neighborhood N (r). The relative ineffectiveness
of Canny edge detectors, as shown in Fig. (1), demostrate that these local
cues are not rich enough. Learning-based approaches using larger neighbor-
hoods have shown to outperform the Canny edge detector [20,27,12], and our
approach follows and extends this line of work.

To model low-level cues, we learn classifiers based on image properties com-
puted in local neighborhoods. We learn two types of low-level cues. Firstly
boundary-cues p(y(r)|I(N (r))) which classify whether pixels are on (i.e., y(r) =
1), or off (i.e., y(r) = 0), the object boundary. Secondly, body-cues p(z(r)|I(N (r)))
which classify whether a pixel is foreground (i.e. inside the object, z(r) = 1)
or background (i.e. outside the object, z(r) = 0).

3.1.1 Learning Boundary Cues

We model boundary-cues by p(y(r)|I(N (r))) using 31×31 image patch I(N (r))
centered at pixel r.

The number of samples from a single training image is the number of pixels
in that image, of which most (over ninety percent) are negative samples.

We use Boosted Edge Learning (BEL) [12] which is designed for learning
edge detection. We restrict it to learning boundary cues – i.e., we distinguish
between boundary and non-boundary, instead of between edge and non-edge.
BEL is trained by using the Probabilistic Boosting Tree (PBT) algorithm
[35], which is a variant of boosting. We briefly describe below how to learn
and compute p(y(r)|I(N (r))), and we refer to [12] for more details.

We use a dictionary of 30,000 candidate features. These include image in-
tensity, image gradients, Haar filters, Gabor filters, differences of Gaussians
(DOGs), and differences of offset Gaussians (DOOGs)). All are evaluated at
different scales and locations.

For training:

(1) Collect a set of training images in which the object boundaries are man-
ually labeled;

(2) Sample a number of positive examples (image patches with a boundary
pixel at the center) and negative examples (image patches with a non-
boundary pixel at the center) to form a training set;

(3) Train a boosting classifier [14] using a dictionary of roughly 30,000 fea-
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tures computed in each image patch – including Canny edges at different
scales, the magnitude and orientation of gradients, Gabor filter responses
at different scales and orientations, and Haar filter responses [40];

(4) Divide the training set (or bootstrap more samples from the training
images) into left and right branches and recursively train sub-trees;

(5) Return to step 3 until a stopping criterion is met (either it reaches the
specified level or there are too few training samples).

For testing:

(1) Scan through the input image pixel by pixel;
(2) Compute the discriminative probability p(y(r)|I(N (r))), based on the

features selected by the overall classifier from a 31 × 31 image patch;
(3) Output the edge probability map.

In the testing procedure, the overall discriminative probability is given by:

p(y(r)|I(N (r))) ≈
∑
l1

q̂(y(r)|l1, I(N (r)))q(l1|I(N (r)))

≈
∑

l1,··· ,ln
q̂(y(r)|ln, · · · , l1, I(N (r))) · · · q(l2|l1, I(N (r)))q(l1|I(N (r)))

where the li’s are augmented variables denoting the tree levels in PBT. li ∈
{+1,−1} indicates which branch node i points to, i.e., li = +1 and li = −1
point to the right branch and the left branch respectively. q(li|li−1, · · · , l1, I(N (r)))
is the discriminative probability computed by the AdaBoost strong classifier
at the node specified by (l1, · · · , ln−1), and q̂(y(r)|ln, · · · , l1, I(N (r))) is the
fraction of example having class label y at the leaf node, which is estimated in
the training process. At the top of the tree, information is accumulated from
its descendants and an overall posterior is calculated.

Fig. (2.a) illustrates the boundary classifier learnt using BEL. Fig. (2.b) shows
an example of the output probability boundary map representing the prob-
ability of each point being on the boundary (the darker the pixel the higher
the probability is). The result shows significant improvement over the Canny
results in Fig. (1).

[INSERT FIGURE 2 HERE!]

3.1.2 Learning Body Cues

Our second low-level cue exploits knowledge about the regional properties of
the object and the background. This provides complementary information to
the edge-based information described above.

We learn a model p(z(r)|I(N (r))), where z(r) = 1 if pixel r is on the object,
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and z(r) = 0 otherwise. This gives an implicit way to model the texture
and other appearance properties of objects and the background. We use PBT
learning, as described above.

We use a dictionary of 35,000 features. These include the 30,000 features
used for the boundary classifier with an addition 5,000 features which are
histograms of Gabors filters (designed to capture texture properties of regions).

Fig. (2.c) shows an example of a probability map of the foreground object (the
brighter the pixel, the bigger the probability is).

3.2 Mid-level cues: exploit context information

We now proceed to build a mid-level classifier which combines low-level cues
such as the boundary map and the body map. This enables us to add context
information – for example, a boundary edge is more likely if the body map
provides evidence for background on one side of the edge and for foreground
on the other side. This gives a refined boundary map.

More precisely, we learn a probability distribution for the refined boundary
map pR(y(r)|I(N (r))). This will be based on the probability boundary map
p(y(r)|I(N (r))) and the probability body map p(z(r)|I(N (r))).

Conditional random fields [22] or hierarchical random field models [1,16,23]
are able to exploit some context information, but are limited by the number of
neighborhood connections and require time-consuming inference algorithms.
By contrast, we learn a direct classifier to combine the context information.

We design two schemes to learn the refined boundary map pR(y(r)|I(N (r))).

3.2.1 Short-range Context

We first use a simple approach to learn another classifier using inputs from
the edge and body maps. To improve the precision of the edges, we prune the
edge map by removing all points for which there is no Canny edge at small
scale (e.g., σ = 1.0). This assumes that the majority of the boundary pixels
will appear in the Canny edge map at small scale.

From Fig. (1), we can see that the Canny edge map has good localization,
but it has many false positives. The probability boundary map has fewer false
positives, as shown in Fig. (2.b), but poor localization. Therefore, the Canny
edge map provides complimentary information to probability boundary map.
For a pixel r on the Canny edge map, we consider image patches of size
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31 × 31 centered at pixel r. We then train a classifier using a dictionary of
5, 000 features, which includes Haar feature responses from the edge map,
the body map, and the Canny edge map. The training/testing procedure is
identical to that described in learning/computing processes of the probability
boundary or body map. Fig. (3.a) shows the result of an example image.

We call this “short-range” context information and it is illustrated in Fig.
(4.a).

[INSERT FIGURE 3 HERE!]

[INSERT FIGURE 4 HERE!]

3.2.2 Long-range Context

We design an alternative strategy to exploit long-range context. Intuitively,
any point on the boundary of the foreground object has similar appearance
properties to a point on “the other side” of the object.

Given a boundary point, we shoot a ray along its normal direction until it hits
another boundary point. Often: (1) the intensity patterns in between the two
boundary points obey some regularities; (2) the local geometric properties
of the two boundary points also have some consistency (e.g., the gradient
directions are parallel). This relates to previous work [?] which uses Gestalt
rules [19] to exploit this type of information.

This motivates us to study image patches centered at two points, and measure
their similarity. As before we use patches of size 31× 31. If both points are on
the object boundary, we consider them as a positive pair example; otherwise,
it is a negative pair example. Then we build a classifier to classify the positive
and negative examples.

For each example, we extract around 20, 000 features, which include differences
of the texture patterns of the two image patches, differences of geometric
properties of the two ending points, differences of filter responses of the two
ending image patches, and differences between the boundary/body map of
the two ending points. Fig. (4.b) shows an illustration. The training process is
similar to that described earlier, except now each example is a pair of points.
The classifier tries to select and combine a set of features, based on these
difference measures, to estimate how likely two points lie on the boundary
of an object. In the testing stage, for every point in the Canny edge map,
we shoot a ray along its normal direction. For any edge point on the ray, we
apply the learned classifier to compute how likely the two form a pair of object
boundary points. The probability of each point being on the object boundary
is given by the maximal probability among all the pairs for this point. Our
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results also demonstrate an improvement over the original boundary map and
Fig. (3.b) shows some results.

In Fig. (3.a) and (3.b), we observe that both short-range and long-range con-
text information improve the quality of the boundary map, with the classifier
using short-range context being more effective. We will give quantitative mea-
sures and a detailed analysis in Section (6.1).

4 Incorporating High-level Information by Shape Matching

Once the refined boundary map pR(y(r)|I(N (r))) has been learned by inte-
grating the low- and mid-level cues, we proceed to infer a solution C from
Eqn. (4). This requires taking into account the shape prior Eshape(C), which
is regarded as high-level information in this paper. We perform this by shape
matching using a method reported in [38]. This method can be viewed as a
probabilistic combination of the approaches in [6] and shape context [2]. Re-
call that Eshape(C) is represented by a mixture model, as shown in Eqn. (8).
We formulate the term pCi

(C) ∝ exp{−Eshape(C, Ci)} by

Eshape(C, Ci) = Ematching(C, T (Ci)) + Eprior(T ) (9)

where Ci denotes one of the templates in the training set, and T = (A, f)
includes a global affine transformation (A) and a local non-rigid deformation
(f) on Ci. The first term is the similarity between C and a transformation of Ci

by T , and the second regularizes the transformation T . Intuitively, we prefer
the template which best matches to C without undergoing a large deformation.

We represent the shape as a point set sampled from the boundary. Suppose
the point set for the target shape is {xi : i = 1, · · · , M}, which is sampled
from the refined boundary map according to probability pR(y(r)|I(N (r))); we
denote the template point set as {ya : a = 1, · · · , N} which is sampled from
the boundary of a training object. We want to morph the template to the
target with a small energy on the transformation. Then the energy function
for the shape matching can be defined as in Eqn. (10):

Eshape({mai},A, f)=
M∑
i=1

N∑
a=1

mai{‖xi − Aya − f(ya)‖2}

+ λ‖Lf‖2 + T
M∑
i=1

N∑
a=1

mai log mai − ζ
M∑
i=1

N∑
a=1

mai

(10)

where (A, f) is the geometric transformation and A corresponds to the affine
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part and f is the non-rigid deformation part. mai ∈ (0, 1) measures the good-
ness of match between point xi and the transformed point Aya + f(ya); Lf
measures the smoothness of the non-rigid part of the transformation; λ, T ,
and ζ are positive parameters which balance the importance of each term; The
detailed explanation of these parameters and the optimization process can be
found in [38]. Fig. 5 gives an illustration of the basic idea.

The overall shape matching algorithm combines low-, mid-, and high-level in-
formation, and it give an estimate of the object boundary. Using this estimate,
we can perform foreground/background segmentation, object detection, and
object parsing.

[INSERT FIGURE 5 HERE!]

An alternative way to incorporate high-level information is to use GrabCut [31]
algorithm, initialized with the probability body map. However, this approach
was not used in this paper.

5 Outline of the Algorithm

We are now equipped with all components of our algorithm so we give a
complete outline.

Training:

(1) Collect a set of training images with the object boundaries manually
annotated. Obtain the corresponding shape templates using these labels.

(2) Train a classifier on the object boundaries to obtain the boundary maps.
(3) Train a classifier on the foreground label maps to obtain body maps.
(4) Train an overall classifier based on the low-level maps (using either short-

range or long-range context, see Section 3.2).

Testing, given an input image:

(1) Run the boundary classifier to obtain the boundary map.
(2) Run the body map classifier to obtain the body map.
(3) Run the overall classifier using context to obtain a refined boundary map

(short-range context gives a better result).
(4) Sample points based on the probability boundary map obtained in step

3.
(5) Use the shape matching algorithm to match the obtained point set from

step 3 against the shape templates in the training set, select the one with
the smallest energy as the best match.
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(6) Based on the best matching result, refine the boundary map, and per-
form foreground/background segmentation and object parsing (see Sec-
tion 6.1).

[INSERT FIGURE 6 HERE!]

Fig. 6 illustrates our approach showing how it uses low-, mid-, and high-level
cues. The Canny edge uses low-level cues since it uses the intensity gradient
only. The low-level boundary and body maps also depend on local properties
of the image. The mid-level cues use either short-range context or long-range
context, which is more like traditional Gestalt grouping laws. Finally, the high-
level stage uses object models to clarify ambiguities which cannot be resolved
without using explicit shape information.

6 Experimental Results

We tested our approach on two publicly available datasets: the Weizmann
horse dataset [4] and the ETHZ cow dataset [24]. Both datasets contain
manually segmented foreground objects for training and evaluation. In both
the experiments, we perform the task of object boundary detection, fore-
ground/background segmentation, and object parsing (based on further an-
notated object parts). In this section, the probability maps are all normalized
to [0, 255] for the purpose of visualization.

6.1 Results on the Weizmann Horse Dataset

In this experiment, the system was trained on 150 gray-scale images randomly
selected out of 328 images from the Weizmann horse dataset [4], and we used
the rest 178 images for testing. For each image, there is only one foreground
object and it mostly appears in the center (but this knowledge is not exploited
by the algorithm). But these images have large variations in appearance, scale,
and pose.

We used the boundary and body probability maps which are learnt as de-
scribed in section 3.1.1. Our analysis shows that the boundary map mostly
selects Haar features while the body map prefers histograms of Gabors. This
is not surprising since histograms of Gabors are effective at capturing the ap-
pearance of texture patterns [46]. Fig. (7.a) shows some tests images, with
the detected boundary and body maps shown in Fig. (7.b) and Fig. (7.c),
respectively.

The training of these low-level cues needs 10 hours (it depends on the size of
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the training set and the parameter settings of the probabilistic boosting tree
algorithm). The testing stage requires about 15 seconds for a typical 300×200
gray scale image. Standard code optimization techniques can reduce these
times significantly. The computer used in this experiment was an ordinary PC
with 2.4 GHz CPU and 1.0GB memory.

[INSERT FIGURE 7 HERE!]

After the low-level cues were learnt, we trained another classifier to use the
mid-level cues. We trained both short-range context and long-range context,
as described in Section (3.2). Our results show that short-range context gives
better results, see Fig. (10) and Fig. (3)(a) and (b). The output is the refined
boundary map, as shown in Fig. (7d). This stage – using mid-level context
– gives the biggest performance improvement in our system, as illustrated in
Fig. (10).

Finally, we incorporate the high-level shape models to improve the results of
the refined boundary map. We use the exemplar based approach described in
Section (4). We sample 300 points from the refined boundary map and match
them to the 150 exemplars by minimizing the energy given by Eqn. (4). We
define the final match to be the match with lowest energy. The time spent on
matching is about one minute despite having 150 templates.

We use the final match to improve the refined boundary map by removing
false alarms and inferring missing parts. In particular, we make the following
changes to obtain the final boundary : (I) If part of the refined boundary map
is far from the shape matching result, then we decrease its magnitude by 10%.
(II) If part of the Canny edge map is close to the final match, then we enhance
the corresponding part of the refined boundary map by 10%. Given the final
boundary as a probability map, we apply thresholding to get a binary map.

In addition, the final match enables us to parse the object and detect parts,
such as the head, back, and legs (by annotating the object exemplars with
these labels). Fig. (7.e) shows the final results for some test images including
the labels of object parts.

[INSERT FIGURE 8 HERE!]

[INSERT FIGURE 9 HERE!]

We refer to Fig. 8 for more results on the horse dataset. Fig. 9 shows some
“failure” examples by our algorithm, which are mostly due to confusing and
cluttered backgrounds. For these examples, even human beings have difficulties
in telling where the horse boundary is.

We use precision-recall to evaluate the performance of our system, which have
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been widely used in information retrieval [9]. The task of boundary detection
has a large skew of class distributions, so precision-recall rate would be a better
measure than ROC [9]. Precision is the fraction of the object detected that
belongs to the ground truth, and recall is the fraction of the object belonging
to the ground truth that is successfully retrieved. Formally, we set

precision =
|D ∩ L|
|D| and recall =

|D ∩ L|
|L| ,

where L is the manually labeled target, and D is the detected target which
is obtained by applying a threshold value to the final boundary probability
map. The harmonic mean of precision and recall is called the F -measure or
balanced F -score, which is defined as:

F = 2(precision × recall)/(precision + recall),

and is often used as a measurement of the overall performance of the system
[9].

We allow for a tolerance of 3 pixel-width and a boundary point within 3 pixel
range of the ground truth is considered as a success (this is a typical procedure
in the evaluation of the edge/boundary detection algorithm [27]). Changing
the threshold for obtaining detection result would result in a set of different
precision and recall values. Fig. (10) shows the average precision and recall
values, and the four black curves are produced by our system. As we can see,
the performances improved when we use cues from more levels.

[INSERT FIGURE 10 HERE!]

We observe that short-range context information is more effective than long-
range context information, as shown in Fig. (10) and Fig. (3). This may be
because the long-range context relies on pairs of image patches which are more
difficult to classify than the single patches used by the short-range cues.

Another observation is that we get a big performance improvement by adding
mid-level context cues to low-level cues than when we add the high-level shape
cues. This is surprising, but may occur because the shape models used are not
rich enough to capture the large variations of articulated objects like horses
and cows.

Fig. (10) also shows the performance curves from [28] for comparison. Our
system achieves better performance when their system was trained on 174
images.

We obtain a similar set of precision-recall measures by comparing the results
with the ground truth. The detection rate curve is shown in Fig. (11). For
example, Fig. (11) shows that at a certain threshold value, we have 95% of
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the foreground pixels and 83% of the background pixels correctly labeled. This
is better than the performance reported in [4,25] (the two percentages they
reported are 95% and 66%, respectively).

[INSERT FIGURE 11 HERE!]

There are other works [4,8,21,25,28] in the literature tackling similar problem.
The most comparable approach is the work of Ren et al. [28] which gave
detailed performance evaluations for combining low-, mid-, and high- level
information. Our results show improvements at all levels, as shown in Fig.
(10). It is not straightforward though to make direct comparison with other
works [4,8,21,25], because some of them [21] were not evaluated on large testing
datasets, and the evaluation details are missing. Also, some approaches [21,25]
used color images, which are less challenging than gray-scale images used in
our work. Levin et al. [25] also assumed that the position of the object is
roughly given while there is no such assumption in our work; Kumar et al.
[21] only evaluated their algorithm on 5 images which is not as convincing as
our evaluation results because we evaluated on 178 testing images. Moreover,
the details of the performance evaluation in [4,21,25] are not so clear. In [8],
the authors first get a shortlist of 10 candidates and manually pick the best one
from the shortlist. Corso [7] used Boosting on Multilevel Aggregates (BMA) to
add features into PBT classifier, and tested on the Weizmann horse dataset.
Our approach is a simple and clear one, and the speed of our algorithm is
about 1.5 minutes per image, while speed is not reported in most of the above
works.

Our approach can also be applied to color images by designing color-dependent
features, and we expect the system performs better on color images than that
on gray scale images since color images provide richer information.

6.2 Experiment on the ETHZ Cow Dataset

In this experiment, the system was trained on 40 randomly selected images
from a dataset consisting 112 gray scale cow images [24], and we used the
remaining images for testing. Compared with the Weizmann horse dataset,
the ETHZ cow dataset has relatively less pose change, smaller pose variations,
simpler texture properties, and less cluttered backgrounds.

We use the same process as in the horse segmentation case, with identical
parameter settings. It took less training time due to less number of images used
with relatively simpler foreground and background. Fig. (12) shows several
typical images in this dataset, with the corresponding results computed.

[INSERT FIGURE 12 HERE!]
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Fig. (13) shows the precision-recall curve for detected boundaries. The per-
formance on this dataset is better than that of the horse dataset. We observe
that the short-range context information improves the curve significantly, and
the high-level shape information further improves the performance.

[INSERT FIGURE 13 HERE!]

Fig. (14) shows the performance for the task of foreground/background seg-
mentation on the cow dataset. As we can read from the curve, the performance
is encouraging: we can achieve 95% accuracy of the foreground and 96% ac-
curacy of the background .

[INSERT FIGURE 14 HERE!]

The performance of OBJ CUT [21] on the ETHZ Cow Dataset was reported
as 95.8% accuracy of classification rate for the foreground pixels and 98.7%
accuracy for the background pixels. However, in [21], color information was
used and the performance was evaluated only on 6 images in the testing stage.
On the other hand, the proposed system was evaluated on 72 gray scale images
in the testing stage. Levin et al. [25] reported the performance on cow data set
about 92% of pixel classification accuracy. However, there is no accuracy for
foreground pixel and background pixels. Furthermore, the size of the testing
dataset in [25] is unclear.

7 Conclusions and Discussions

In this paper, we have proposed a general learning based approach for object
boundary detection and foreground/background segmentation. The algorithm
described in this paper uses low-, mid-, and high-level cues. The proposed
approach incorporates the low- and mid-level cues by a sequence of classi-
fiers which requires only limited computation. This can be contrasted with
alternative ways to introduce context which require sophisticated inference
algorithms, – e.g., see [21,25,37], The learning processes relies on standard
existing methods and the same approach is used for training all the low- and
mid-level cues. Our experiments, on the Weizmann horse dataset and ETHZ
cow dataset, show big improvement over many existing approaches. We also
evaluate the effectiveness of each stage of our approach, which facilitates future
research by identifying the importance of different cues.

The current limitations of our proposed approach are: it only works for single
objects, the high-level model is not adequate to capture the bigger variations
of the objects, and the link between low-, mid-, and high-level information is
not yet fully clear.
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Fig. 1. Examples of the Weizmann horse dataset. The first row shows three typical
images, each containing a horse, where C is the boundary we want to detect and R1

denotes the foreground region. The second row displays edges detected by Canny
edge detector at scale σ = 1.0.
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(a) Illustration of the boundary classifier based on BEL.

(b) The boundary map output by the classifier. (c) Classified foreground.

Fig. 2. The boundary and body maps based on BEL and learnt by PBT. Panel (a)
shows some positive examples and features. (b) shows a boundary map, which is
clearly better than the Canny edges. (c) shows the body map.
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(a) Short Range Context (b) Long Range Context

Fig. 3. The refined probability map on an example image.
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(a) Short-range context information

(b) Long-range context information

Fig. 4. Illustration of the refined probability map using short-range and long-range
context.
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(a) Target shape C (b) Transformation T (c) Source shape Ci

Fig. 5. Illustration of a shape matching case in which a source shape Ci is matched
with a target shape C through a transformation T .
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Fig. 6. Illustration of our methods engaging the low-, mid-, and high-level cues.
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Fig. 7. Results on some testing images from Weizmann horse dataset: (a) shows
input images in gray scale; (b) are the probability boundary maps; (c) shows the
probability body maps; (d) demonstrates refined boundaries based on the short-
-range context information; (e) gives final boundary maps after shape matching,
and also labels different parts of the horses according to the shape matching results.
These images are representatives of the dataset, which have different appearances,
poses, scales, and lighting conditions. We see how cues at each level help to detect
the boundaries.
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Fig. 8. More results on some testing images from Weizmann horse database. See
Fig. 7 for the meaning of each column. For the clarity, the labels of the parsing
result are not presented.
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Fig. 9. Some failure results on test images from Weizmann horse database: (a) shows
input images; (b) are the probability boundary maps (c) shows the probability
body maps; (d) demonstrates refined boundaries based on the short-range context
information; (e) gives final boundary maps after shape matching. These images are
among the most difficult images in the data set, even humans find it difficult to
detect the horse boundary precisely.
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Fig. 10. Precision-recall curves for boundary detection of the horse testing images.
The four black curves show the results of the proposed approach. Results on the
same dataset from [28] are also displayed for a comparison (three grey/green curves).
The F value shown in the legend is the maximal harmonic mean of precision and
recall and provides an overall ranking.
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Fig. 11. Performance for the task of foreground/background segmentation on the
Weizmann horse database.
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Fig. 12. Results on some test images from the cow dataset: (a) shows the input im-
ages; (b) shows the probability boundary maps; (c) shows the final body maps after
refined by the high-level shape model. (d) demonstrates refined boundaries based
on the short-range context information; (e) gives final results after shape matching,
and also the different parts of the horses are labelled according to the shape match-
ing results; (f) gives the segmentation results. These images are representatives of
the dataset, which have different appearances, poses, and background conditions.
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Fig. 13. Precision-recall curves for boundary detection of the cow testing images.
The F value shown in the legend is the maximal harmonic mean of precision and
recall and provides an overall ranking.
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Fig. 14. Performance for the task of foreground/background segmentation on the
cow dataset.
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