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Abstract—Automatic whole-brain extraction from magnetic
resonance images (MRI), also known as skull stripping, is a key
component in most neuroimage pipelines. As the first elementin
the chain, its robustness is critical for the overall performance of
the system. Many skull stripping methods have been proposed,
but the problem is not considered to be completely solved yet.
Many systems in the literature have good performance on certain
datasets (mostly the datasets they were trained/tuned on),but fail
to produce satisfactory results when the acquisition conditions or
study populations are different.

In this paper we introduce a robust, learning-based brain
extraction system (ROBEX). The method combines a discrim-
inative and a generative model to achieve the final result. The
discriminative model is a Random Forest classifier trained to
detect the brain boundary; the generative model is a point
distribution model that ensures that the result is plausible. When
a new image is presented to the system, the generative model is
explored to find the contour with highest likelihood according to
the discriminative model. Because the target shape is in general
not perfectly represented by the generative model, the contour is
refined using graph cuts to obtain the final segmentation. Both
models were trained using 92 scans from a proprietary dataset
but they achieve a high degree of robustness on a variety of other
datasets.

ROBEX was compared with six other popular, publicly avail-
able methods (BET [1], BSE [2], FreeSurfer [3], AFNI [4],
BridgeBurner [5] and GCUT [6]) on three publicly available
datasets (IBSR [7], LPBA40 [8] and OASIS [9], 137 scans in total)
that include a wide range of acquisition hardware and a highly
variable population (different age groups, healthy/diseased). The
results show that ROBEX provides significantly improved perfor-
mance measures for almost every method / dataset combination.

Index Terms—Skull stripping, Random Forests, point distri-
bution models, minimum s-t cut, comparison.

I. I NTRODUCTION AND BACKGROUND

W HOLE brain segmentation, also known as skull strip-
ping, is the problem of extracting the brain from a

volumetric dataset, typically a T1-weighted MRI scan. This
process of removing non-brain tissue is the first module of
most brain MRI studies. Applications such as brain mor-
phometry, brain volumetry, and cortical surface reconstructions
require stripped MRI scans. Even early preprocessing steps
such as bias field correction can benefit from skull stripping.

Automatic skull stripping is a practical alternative to manual
delineation of the brain, which is extremely time consuming.
Segmentation in MRI is in general a difficult problem due
to the complex nature of the images (ill-defined boundaries,
low contrast) and the lack of image intensity standardization.
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Over the last decade, the research community has produced a
number of methods. However, as shown below, these systems
fail to consistently provide highly accurate segmentations
across datasets acquired with different protocols.

Some aspects of whole brain segmentation are not very well
defined. There seems to be consensus that skull stripping is
expected to follow the major folds on the surface; if the deeper
sulci are to be extracted for brain surface analysis, subsequent
post-processing can be performed. However, protocols differ
on which parts of the brain to extract. Most include the
cerebellum and brainstem in the segmentation (see Figures
1a and 1b), but others only extract the cerebrum, leaving the
cerebellum and brainstem out (Figure 1c).

Fig. 1. a) Saggital slice of a T1-weighted MRI. b) Corresponding slice of
the manually skull-stripped volume, including the cerebellum and brainstem.
c) Skull stripping without the cerebellum or brainstem. It is the purpose of
this study to automatically generate segmentations like the one in b).

The majority of skull stripping methods are designed to
work with T1-weighted MRI for two reasons: 1. T1 it is the
most frequent MRI modality in neuroimaging; and 2. even if
another modality (such as T2 or FLAIR) is to be segmented,
it is very likely that the data were acquired next to a T1 scan,
which provides superior contrast. In that case, skull stripping
is usually performed on the T1 volume and the resulting mask
propagated to the other channels.

Most popular skull stripping methods have publicly avail-
able implementations. We consider six in this study. All of
them include the cerebellum and brainstem in the segmen-
tation, and all but one are designed to work only with T1-
weighted data:

• The widely used Brain Extraction Tool (BET) [1], which
is part of the FSL package, utilizes a deformable model
which evolves to fit the brain surface. The model is
initialized as a spherical mesh around the center of gravity
of the brain as if it was a balloon, and locally adaptive
forces “inflate” it towards the brain boundary. BET is
very fast and relatively insensitive to parameter settings. It
provides good results considering its simplicity, but often
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produces undesired blobs of false positives around the
brainstem. This can be solved using a two-pass scheme:
after running BET once, the preliminary mask is used to
guide the registration of the brain to an atlas. The mask
of the atlas is then used to guide a second pass of BET.
The only disadvantage is that the registration makes the
method much slower. BET is the only method that also
works with T2-weighted MRI.

• Another popular method is Brain Surface Extraction
(BSE) [2]. BSE relies on a series of processes to detect
the brain: anisotropic diffusion filtering, edge detection,
and a chain of morphological operations. BSE can pro-
vide highly specific whole-brain segmentations, but it
usually requires fine parameter tuning to work on specific
images. Another noteworthy feature of BSE is that, as
opposed to most other methods, it preserves the spinal
chord.

• 3dSkullStrip, part of the AFNI package [4], is a modified
version of BET that also uses the spherical surface ex-
pansion paradigm. It includes modifications for avoiding
the eyes and ventricles, reducing leakage into the skull
and using also data outside the surface (and not only
inside) to guide the evolution of the surface, among other
adjustments.

• BridgeBurner [5], part of the application FireVoxel, first
finds a small cubic region in the brain white matter, and
then uses its mean intensity to compute a window that can
be used to create a coarse segmentation of the brain, as in
AFNI. The surface of the preliminary mask is combined
with the output of an edge detector to create a boundary
set. Then, layers are “peeled” with morphological opera-
tions that eventually “burn” all the bridges between brain
and non-brain tissue. One of the disadvantages of this al-
gorithm is that, if a single bridge survives the process, the
output can include large chunks of non-brain tissue. Also,
BridgeBurner is not a skull stripping algorithm but a brain
tissue segmentation method, meaning that cerebrospinal
fluid within the brain (including the ventricles) is often
left out of the segmentation. However, the algorithm can
be modified to produce an output similar to the other
methods by morphologically closing the output and then
filling the holes in the mask.

• GCUT [6] is a recently proposed method based on graph
cuts [10]. First, it finds a threshold between the intensities
of the gray matter and the cerebrospinal fluid and uses
it to generate a preliminary binary mask which ideally
includes the brain, the skull and some thin connections
between them. Then, graph cuts can be used to find a
connected submask that minimizes the ratio between the
cost of its boundary (a data term) and its volume. This
can be seen as a simple shape prior. This submask is
post-processed to obtain the final segmentation. GCUT
is usually quite accurate but sometimes makes large
mistakes by following a wrong edge (e.g., leaving the
whole cerebellum out or an eye in).

• A very popular public method is the hybrid approach
from [11], available as part of the software package
FreeSurfer [3]. This method is more robust than the

methods discussed above. It combines a watershed al-
gorithm, a deformable surface, and a probabilistic atlas.
The watershed algorithm creates an initial estimate of
the mask assuming connectivity of the white matter.
Then, a smooth surface is allowed to evolve to refine the
mask, using the statistical atlas to disregard unreasonable
outputs. The latest version of FreeSurfer uses GCUT to
refine the output. Since both are very specific methods,
the intersection (AND) of the masks from the two algo-
rithms eliminates many false positives without affecting
the sensitivity, improving the segmentation [6].

There are also other noteworthy methods in the literature.
Lemieux et al.use automated thresholding and morphological
operations in [12].Hahn et al.proposed an algorithm based
on a watershed transform in [13]. Two cortex extraction
algorithms that provide the whole brain segmentation as by-
product are presented in [14] and [15]. Level sets are used
to approach the problem in [16] and [17]. A histogram-based
approach is described byShan et al.in [18]. Unfortunately,
these algorithms are not publicly available. We believe that the
six aforementioned methods (BET, BSE, AFNI, BridgeBurner,
FreeSurfer and GCUT) are a very representative set of skull-
stripping systems that are commonly used in the neuroscience
research community.

Meanwhile, hybrid approaches combining generative and
discriminative models have been widely used in medical imag-
ing. Discriminative models are easy to train and capture the
local properties of the data effectively, but cannot model the
global shape information easily. On the other hand, generative
approaches model shape with high specificity, but cannot
be easily adapted to capture the local texture. Due to their
complementary nature, it is natural to combine both types
of model into robust hybrid systems. For example, Gaussian
shape models are used in conjunction with probabilistic boost-
ing trees in [19] and with ak nearest neighbor classifier in [20]
and [21].

In this study we present a new hybrid approach to skull
stripping of T1-weighted brain MRI data and compare it
with the six aforementioned methods. The proposed system,
henceforth denoted as ROBEX, is designed to work out of
the box with no parameter tuning. ROBEX is programmed
to preserve the cerebellum and brainstem in order to enable
comparison with the previously described methods. It is also
designed to be robust against intensity variations and to work
well across datasets. ROBEX is a hybrid approach that fits a
generative model (a point distribution model, PDM [22]) to a
target brain using a cost function provided by a discriminative
model (a Random Forest [23]). To the best of our knowledge,
ROBEX is the first skull stripping method that is based on
a hybrid generative / discriminative model. In the context of
skull stripping, “hybrid” usually refers to combining region-
based (such as [12]) and boundary-based methods (such as
BET), as FreeSurfer [11] does.

The generative model assumes that the brain surface is
a triangular mesh in which the(x,y,z) coordinates of the
landmarks follow a Gaussian distribution. The discriminative
model attempts to extract the interface between the skull and
the rest of the data (dura matter, cerebellum, eyes, etc.) by



IEEE TRANS. ON MEDICAL IMAGING, 2011 3

assigning to each voxel the probability that it is on the brain
surface. Modeling the boundary suits the generative model
very well because the cost of a certain brain shape can be
efficiently computed by multiplying the likelihood that each
mesh point is on the interface, making the fitting process fast.
We propose exploring the shape model with coordinate descent
after rotating the model basis with the varimax criterion,
which reduces the interference between the optimization of
the different coordinates.

The proposed combination of models also has the advantage
of easily accommodating an efficient method of refining the fit
of the PDM, which cannot match the target shape exactly in
general. Each point in the PDM is allowed to shift along the
normal to the object surface to reduce the value of the cost
function under the constraint that the shifts of neighboring
points must be within a certain margin (i.e. the resulting
surface must be smooth). Graph cuts can be used to find the
optimal solution of this problem [24].

The rest of this paper is organized as follows. Section II
describes the datasets used in this study. Section III describes
the methods: how the generative and discriminative models
were created and how they are fitted to a test scan to produce a
brain segmentation. The experiments and results are described
in section IV. Finally, section V includes the discussion.

II. DATASETS

Four different datasets were used in this study: one exclu-
sively for training and three for evaluation. The evaluation
datasets are all publicly available.

The training dataset consists of 92 T1-weighted scans from
healthy subjects acquired with an inversion recovery rapid
gradient echo sequence on a Bruker 4T system. The size of
the volumes is256× 256× 256 voxels, and the voxel size is
0.9375× 0.9× 0.9375 mm. Manual delineations of the brain
by an expert physiologist are available for all of them. The
first volume of the dataset was chosen as “reference volume”.
All the other 91 scans in the dataset were then registered to
the reference. The software package Elastix [25] was used
to optimize an affine transform using a mutual information
metric. Because the scans are resampled to the resolution of
the reference volume after registration, the reference wasfirst
downsampled to1.5 × 1.5 × 1.5 mm resolution to lighten
the computational load of the algorithms. Rather than using
an arbitrary scan as the reference, it is also possible to
learn an unbiased mean volume from all the training images
[26]. However, we found through pilot experiments that our
algorithm was not sensitive to the choice of the reference.

The first test dataset is the Internet Brain Segmentation
Repository (IBSR). It consists of 20 T1-weighted scans from
healthy subjects (age 29.0±4.8 years) acquired at the Center
for Morphometric Analysis at Massachusetts General Hospital,
as well as their corresponding annotations. This dataset is
available for download at http://www.cma.mgh.harvard.edu/
ibsr/. The scans were acquired with a 3D spoiled gradient
echo sequence on two different scanners. Ten scans on four
males and six females were performed on a 1.5 Tesla Siemens
Magnetom MR System with a FLASH pulse sequence and

the following parameters: TR/TE = 40/8 ms, flip angle 50
degrees, slice thickness 3.1 mm, in-plane resolution1×1 mm.
Ten scans on six males and four females were performed on
a 1.5 Tesla General Electric Signa MR System with a 3D-
CAPRY pulse sequence and the following parameters: TR/TE
= 50/9 ms, flip angle 50 degrees, slice thickness 3.0mm, in-
plane resolution1×1 mm. The brain was manually delineated
by trained investigators in all the scans. Some of the scans
have severe striation artifacts which, next to the large slice
thickness, makes this dataset challenging to segment.

The second test dataset is the LPBA40 dataset [8], which
can be downloaded from http://sve.loni.ucla.edu/. It consists of
40 T1-weighted scans (20 males, 20 females, age 29.20±6.30
years) and their corresponding annotations. The scans were
acquired with a 3D spoiled gradient echo sequence on a GE
1.5T system. The acquisition parameters were: TR: 10.0ms
- 12.5ms; TE range 4.22ms - 4.5 ms; flip angle 20 degrees.
Coronal slices were acquired 1.5mm apart with in-plane res-
olution of 0.86 mm (38 subjects) or 0.78 mm (2 subjects).

The third test dataset consists of the first two discs (77
T1-weighted scans) of the cross-sectional MRI dataset of
the OASIS project: http://www.oasis-brains.org/. The pop-
ulation consists of 55 females and 22 males, age 51.64
±24.67 years. Twenty subjects were evaluated as “demented
and probable Alzheimer’s disease”. The scans were acquired
on a 1.5T Siemens scanner with a MP-RAGE sequence,
TR/TE/TI/TD=9.7ms/4.0ms/20ms/200ms, flip angle 10 de-
grees. Sagittal slices were acquired 1.5mm apart with in-plane
resolution of 1 mm. The brain masks for this set were not
manually delineated; instead, the brain was segmented withan
in-house method based on registration to an atlas. However,
the output from the method was reviewed by human experts
before releasing the data, so the quality of the masks is good
enough at least to test the robustness of a method. Despite
this lack of exactitude, this dataset is very valuable because
it includes scans from a very diverse population with a very
wide age range as well as diseased brains.

III. M ETHODS

The proposed segmentation method combines a discrimina-
tive model and a generative model to obtain the brain mask.
The discriminative model (Section III-B) is a Random Forest
classifier. The generative model (Section III-B) is a Gaussian
distribution over a set of landmarks that defines the brain
surface though a triangular mesh. Given a new volume, the
segmentation is found as the instance of the generative model
that maximizes the likelihood of the surface according to the
discriminative model. The proposed optimization algorithm
(described in Section III-C) consists of two steps: 1. optimizing
the generative model with coordinate descent (Section III-C1);
and 2. refining the output from the previous step using graph
cuts (Section III-C2).

A. Discriminative model

1) Random Forests:The discriminative model in this study
is a voxel-based Random Forest [23] classifier, which has
been proven successful in a variety of domains and compares
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favorably with other state-of-the-art algorithms [27]. Random
Forests have only recently been adopted in medical imaging
segmentation [28], [29]. Therefore, we provide a short descrip-
tion of how they work for the sake of completeness. A Random
Forest is an ensemble of decision trees. Each tree is trained
with a different subset of the training volumes (“bagging”),
which improves the generalization ability of the classifier[30].
Voxels are pushed down each tree from the root by performing
a simple binary test at each internal node until a leaf has been
reached. The tests consist of comparing a certain feature with
a threshold.

Training a forest implies finding the set of tests that best
separate the data into the different classes. At each internal
node, the feature space is searched for a test that maximizesthe
reduction of class impurity, typically measured with the class
entropy or, as in this study, with the Gini indexG = 1−

∑

i f
2
i

(where{fi} are the fractions of the different classes). Rather
than inspecting the full space of features at each node, a
random subset of them is probed, and the best one selected.
Even if this makes the individual trees weaker, it decreasesthe
correlation between their outputs, increasing the performance
of the forest as a whole. Each training voxel is sent to the
corresponding child depending on the result of the test, and
the process is recursively repeated until the number of samples
in a node falls below a threshold, until a predefined maximum
tree depth is reached or until all the samples belong to the
same class. In that case, the node becomes a leaf, and the
most frequent class of the training data at the node is stored
for testing. Because the minimum number of samples can
be reached at any depth, the tree is in general not perfectly
balanced i.e. some leaves can be at deeper levels than others.

In testing, a previously unseen voxel is pushed down the
different trees by running the tests corresponding to the nodes
it travels along. When a leaf node is reached, the tree casts
a vote corresponding to the class assigned to the node in the
training stage. The final decision for a voxel is obtained by
selecting the most voted class. Moreover, the probability that
a voxel belongs to a class can be estimated as the number of
votes for that class over the total number of trees.

2) MRI signal standardization:In this study, we train
a Random Forest classifier to discriminate brain boundary
voxels from any other voxels using features based on Gaussian
derivatives and gradients. These features rely heavily on pixel
intensities and therefore an intensity standardization process
is required as a preprocessing step. The MRI signal levels
are standardized as follows. First, the scan is fed to an
implementation [31] of the N3 bias field correction algorithm
[32]. The method works much better when a brain mask is
available, so we provide the algorithm with an eroded version
of the mask of the reference volume (see Figure 2). Despite
being a very rough approximation of the real mask, the erosion
guarantees that the mask is highly specific. Even if the most
outer part of the brain is left out of the mask, the extrapolation
of the estimated correction field in that region is usually fair
because the field is assumed to vary very slowly in space. The
correction provided visually pleasing results for all the scans
in the four datasets, even for the data acquired at 4T (bias
field correction is known to sometimes falter at higher field

strengths).

Fig. 2. Bias field correction. a) Saggital slice of a T1-weighted MRI from
the training dataset (acquired at 4T). b) Corresponding slice of the estimated
multiplicative bias field, with the registered, heavily eroded mask from the
reference volume superimposed. c) Corresponding slice of the corrected
volume.

The next step is to normalize voxel intensities. First, the
robust minimum and maximum voxels intensities are estimated
as the first and99th percentiles (pc.01, pc.99) of the histogram
of the voxels the are located inside the eroded mask. Then,
a linear grayscale transform that mapspc.01 to 200 and
pc.99 to 800 is computed. The transform is then applied to
the volumes, and the histogram cropped at0 and 1000 i.e.
all values below0 and above1000 are set to0 and 1000
respectively. Finally, the contrast of the volume is enhanced
with standard histogram equalization. Again, the histogram is
computed using only the voxels inside the eroded mask. There
are more complex intensity normalization techniques basedon
detecting the typical intensities of gray matter, white matter
and cerebrospinal fluid [33], but they require skull-stripped
data.

3) Feature pool: Once the intensities are standardized,
features can be extracted for each voxel in the volume. A
pool of 36 features is considered in this study. The(x, y, z)
coordinates of each voxel in the space of the reference volume
were used as features in order to capture the context. Since
the goal is to detect boundaries, the gradient magnitudes at
three different scales (σ = 0.5, 2.0, 8.0, in mm) were also
used. Finally, Gaussian derivatives at the same scales complete
the feature set. The Gaussian derivatives correspond to the
truncated Taylor’s expansion of the data around each point
and therefore capture the local appearance of the volume at
different scales.

4) Data sampling:Because the voxels in a scan are highly
correlated, it is not necessary to use all the training data
to build a strong classifier. Using fewer voxels lightens the
computational load of the training stage. Preliminary experi-
ments showed that the performance does not really improve
much after 50,000 training voxels. In this study, 10,000 voxels
were extracted randomly from each of the 92 training scans
under the following two constraints: 1) to compensate for
the extremely uneven prior probabilities of the two classes,
half of the voxels are constrained to be positive examples
i.e. they have to lie on the brain boundary, given by a
mask that is calculated as the gold standard mask AND the
negated of a minimally eroded version of itself; 2) 50% of
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the negative examples are constrained to lie within 3 mm
of the brain boundary, defined as above. This makes the
classifier focus on the harder examples, decreasing the amount
of required training voxels. The width of the band represents a
compromise between how correlated and informative (i.e. near
the boundary) the voxels are. Highly correlated voxels are not
very useful for the classifier, but neither are voxels very far
away from the boundary. Pilot experiments showed that 3 mm
offered a good compromise. The described sampling scheme
led to selecting≈0.4% of the total number of voxels,≈20%
of the positive voxels,≈2.5% of the voxels in the 3 mm band
and≈0.1% of the rest of negative voxels.

5) Classifier training and feature selection:The Random
Forest classifier was trained using the following parameters.
The number of trees was set to 200, a fairly large value
that provides a good granularity for the class probabilities in
testing (1/200). The number of features probed at each node
in training was set to five. This is a relatively low value, which
is justified by the large number of trees: it is not a problem that
the trees are weaker if there are plenty of them. The minimum
number of training voxels in a node was set to 20. The tree
depth was not limited, but depths greater than 17 were never
reached in training.

Random Forests do not require feature selection to be robust
due to their intrinsic ability to disregard unimportant features.
However, it is still useful to reduce the dimensionality of the
data to lighten the computational load of computing features.
In this study, we used backward feature elimination based on
permutation importance. First, the classifier is trained with all
the features. Then, the feature with the lowest permutation
importance is dropped and the classifier retrained. The per-
mutation importance of a feature is defined as the drop in
accuracy in the out-of-bag (i.e., non-training) data of each tree
caused by randomly permuting the values of that feature in
the input data. The process is repeated as long as the accuracy
of the classifier does not decrease noticeably. Even though
the permutation importance is known to be biased [34] (more
important features can eventually lead to lower accuracy),this
method is considerably faster than combinatorially expensive
approaches such as [35] and often provides comparable results.

During the feature selection, the accuracy of the classifieris
evaluated cross validation. This is accomplished by randomly
dividing the training data into two subsets at each elimination
step: one for training (60 scans) and one for evaluation
(32 scans). The classifier is trained using 100,000 randomly
sampled voxels from the training subset, making sure each tree
only uses voxels from 40 scans (with bagging purposes). The
accuracy is computed upon all the the voxels in the testing
subset. The evolution of the accuracy and the permutation
importance of the least important feature are displayed in
Figure 3.

Based on visual inspection of the curves, the final number of
selected features was 10 (listed in Table I). The list of features
reveals some interesting aspects of the problem. First, context
features are very important: all three are selected, and thez
coordinate has the largest permutation importance. Another
observation is that only one gradient feature made it to the
set. The scale of this gradient feature (σ = 2.0) must then

be the most appropriate for our edge detection task. Finally,
derivative features were only selected at the coarsest scale,
which is reasonable given how noisy these features are at finer
scales.

The final classifier was trained on 200,000 voxels which
were selected randomly across the whole dataset. Figure 4
shows the probability volume for the first scan of each dataset.
The probability volume is just the number of trees that have
voted positive for each voxel. Upon division by the number of
trees in the Random Forest, this volume can be interpreted as
a “real” probability defined between zero and one. The maps
display regions of false positives around the ethmoid sinuses,
optic chiasm, and large portions of the scalp, but these will
be easily discarded by the generative model described below.
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Fig. 3. Feature selection: accuracy in out-of-bag data (dashed) and minimal
predicted loss accuracy for each drop. The diamond marks theoperating point
of the final classifier. Please note that the accuracy of the classifier is not very
high in absolute terms because it is trained to solve the difficult problem of
detecting voxels that are exactly located on the brain boundary.

TABLE I
L IST OF SELECTED FEATURES AND THEIR PERMUTATION IMPORTANCE IN

THE LAST STEP OF FEATURE SELECTION. COORDINATEx CORRESPONDS

TO LEFT/RIGHT, y TO ANTERIOR/POSTERIOR, AND z TO
INFERIOR/SUPERIOR. THE NOTATION abc(d) REPRESENTS THE ORDERS OF

THE DERIVATIVESa, b AND c (CORRESPONDING TO THEx, y AND z AXES)
AT SCALE σ = d (IN MM ). THE MAGNITUDE OF THE GRADIENT AT SCALE
d IS REPRESENTED BY|∇|(d). THE IMPORTANCE IS THE PREDICTED LOSS

OF ACCURACY IN OUT-OF-BAG DATA WHEN THE VALUES OF A FEATURE IN

THE TRAINING DATA ARE RANDOMLY PERMUTED.

Feature z coord. 000(2.0) 001(8.0) 000(8.0) |∇|(2.0)
Importance 0.1232 0.0881 0.0815 0.0844 0.0558

Feature x coord. 010(8.0) 000(0.5) 200(8.0) y coord.
Importance 0.0539 0.0301 0.0403 0.0375 0.0272

B. Generative model

The generative model ensures that the result of the seg-
mentation is a plausible shape. In this study, a PDM is
used to represent the set of possible brain shapes. PDMs
are constructed from a set of training shapes (in 2D or 3D)
which are represented by a set of corresponding landmarks.
The landmarks can be manually placed or automatically deter-
mined from a continuous shape e.g. a parametrized curve or
a polygonal line in 2D, or a parametrized surface or a binary
mask in 3D [36]–[39]. Once the landmark representation of
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Fig. 4. Orthogonal slices of the probability volumes (number of trees from the 200 that have voted positive) of the first scan of each dataset: a) training
dataset, b) IBSR, c) LPBA40, d) OASIS. The probability volumes have been smoothed with a Gaussian kernel of widthσ=1 mm. As expected, the probability
map looks cleaner for the training dataset. However, the image standardization does a good job and the map looks acceptable for the other datasets, especially
OASIS. Please note that part of the head is out of the field of view in b) and c), therefore the smooth patches.

the training shapes is ready, all the shapes can be jointly
aligned using Procrustes analysis [40] and the distribution of
the aligned landmark coordinates can be fed to a principal
component analysis (PCA) [41]. The PDM can be iteratively
deformed, rotated and scaled to detect an instance of the shape
in an image in a technique known as active shape models [22].

1) Point distribution model:Mathematically, if the Carte-
sian coordinates of theL (aligned) landmarks of training
instancei are stacked into a3L-dimensional vectorsi =
[xi,1, yi,1, zi,1, ..., xi,L, yi,L, zi,L]

t, any shape in the aligned
space can be approximated ass ≈ µ + Pb, whereµ is the
3L-dimensional mean shape,b = P t(s − µ) is the vector
of p shape coefficients andP is a matrix whose columns
are the normalized eigenvectorsej of the empirical covari-
ance matrixCov corresponding to thep largest eigenvalues
λ = [λ1, ..., λp]

t (where it holds thatλj ≥ λj+1):

Cov =

∑Nsamples

i=1 (si − µ)(si − µ)t

Nsamples − 1
=

3L
∑

j=1

λjeje
t
j

P = [e1|...|ep]

If all the eigenvectors are preserved,b follows a multivariate
Gaussian distribution with zero mean and covariance matrix
Σ = diag(λ1, λ2, ..., λ3L) in which the shape coefficients are
independent. The total variance of the model can be computed
as σ2

tot =
∑3L

j=1 λj . Therefore, the number of components
to keepp can be determined fromη, the proportion of total
variance to be preserved in the model (η = 0.90 in this study):

p = min p′, subject to :

∑p′

j=1 λj

σ2
tot

≥ η

2) Landmark extraction:In our case, the landmarks have
to be extracted from a set of masks (the training dataset).
This is accomplished by a method very similar to [37]. First,
the landmarks for the reference volume are computed using

a surface meshing algorithm [42]. Sometimes this type of
landmarks is called pseudo landmark in the literature because
they do not necessarily correspond to salient points. In this
study, the maximal radius of the Delaunay sphere was set to
3mm, leading toL = 3237 landmarks. Then, the masks of
the training scans are registered to the mask of the reference
volume in order to obtain a transform that can be used to
propagate the landmarks. Elastix was first used to optimize
a translation transform that was subsequently refined by an
affine transform and then a non-linear transform based on
a deformable grid of points and B-spline interpolation (grid
spacing: 15 mm). Theκ agreement was used as registration
metric.

Because the registration is not perfect, the propagated
landmarks do not lie in general on the surface of the training
masks. This inaccuracy was corrected by projecting them onto
the surfaces, which were first meshed with high resolution
(maximum radius: 1 mm) to increase the precision of the
projection. The mesh of the reference scan and the maximum
registration error for each landmark over the 92 training
volumes are displayed in Figure 5. Most of the maximum
errors are lower than 4mm.

Fig. 5. Mesh of the mask corresponding to the reference brain. The maximum
registration error for each landmark has been superimposed. The scale is in
mm.

3) PCA and basis rotation:Once the landmarks have been
extracted, the PDM can be built. In our case, since most
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of the differences in pose are already filtered out by the
affine registration, we bypass the Procrustes alignment. Inthe
PCA, preserving90% of the total variance led top = 19
components. The first three modes of variation (µ+ k

√

λjej
for different values ofk) are shown in Figure 6.

The optimization procedure in section III-C below explores
the space of shape coefficients to find the model instance that
best fits the output from the classifier. This search can be made
more efficient by finding a rotation of the PCA basisP that
minimizes the spatial overlap of its vectors; because rotations
do not modify the spanned space, the set of shapes that can be
represented by the model does not change. In the rotated basis,
the shape parameters can be fitted independently with almost
no interference, making coordinate descent (i.e. updatingone
shape coefficient at the time) very efficient.

We used the varimax criterion [43] to calculate a rotation
matrix R such that the sparsity of rotated eigenvector matrix
Q = PR is maximized. The rotated shape coefficients are
given bybR = R−1b, and they are not independent anymore.
They still follow a multivariate Gaussian distribution, and the
diagonal of the covariance matrix isλR = [R−1]2λ, where
[·]2 denotes the element-wise squared matrix. Figure 7 shows
the first three modes of variation for the rotated eigenvectors,
which are (especially the first and third) highly localized
compared with the original ones in Figure 6.

Fig. 6. First three modes of variation for the original PDM. Upper row: shapes
corresponding toµ± 3

√

λjej . Lower row: magnitude of the eigenvectors.

Fig. 7. First three modes of variation after rotating the eigenvectors. Upper
row: shapes corresponding toµ ± 3

√

λjej . Lower row: magnitude of the
eigenvectors.

C. Computing the mask for a test scan

The elements of the skull stripping pipeline are shown in
Figure 8. The first steps include the same preprocessing that
the training data went through: registration to template (as
in section II), bias field correction, intensity normalization,
feature calculation and voxel classification (as in section
III-A). The following step is to fit the shape model to the
probability volume. Because the shape model cannot exactly
represent all plausible shapes, a small free deformation ofthe
mesh is allowed to refine the output. Then, a brain mask is
generated from the mesh by: 1. creating an empty volume; 2.
setting to one all the voxels intersected by the triangles inthe
mesh; and 3. filling the hole in the mask. The resulting binary
volume is warped back to the space of the original scan using
the inverse of the affine transform from the registration, which
is analytically invertible. The fitting of the shape model and
the free deformation step are further discussed next.

Fig. 8. Steps of the method to segment the whole brain from a scan.

1) Fitting the shape model:In active shape models [22], the
pose (translation, rotation and scaling) and shape parameters of
the model are iteratively updated to find an instance of a shape
in an image. Given an initialization, the normal to the curve
(2D) or surface (3D) at each landmark is first calculated. Then,
a fitness function is evaluated along each normal. The optimal
shift for each landmark is then added to the coordinates or
the current shape, creating a “proposed” shape. Finally, the
proposed shape is projected back onto the model and a new
iteration begins.

This method is prone to getting stuck in local optima.
Instead, we propose exploring the space of shape coefficients
directly. Since the pose is not to be optimized (it is already
taken care of by the affine registration) and the shape coef-
ficients represent localized, minimally overlapping variations
thanks to the varimax rotation of eigenvectors, the optimal
shape can be efficiently computed using coordinate descent.
If Ip(x, y, z) is the normalized probability volume (i.e. the
number of trees which have been voted positive over the total
amount of trees), the costC to minimize is:

C = log

L
∏

l=1

[ǫ+ (1 − ǫ)(1− Ip(rl))] =

L
∑

l=1

log[ǫ+ (1− 2ǫ)(1− Ip(rl))] =
L
∑

l=1

Iq−log(rl) (1)

whererl is the(x, y, z) position vector of landmarkl, which
can be extracted from the current shapes(bR) = µ + QbR.
The constantǫ avoids taking the logarithm of zero. If the
probability volume is seen as set of independent Bernoulli
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variables with parametersIp(x, y, z), thenǫ can be interpreted
as a conjugate Beta prior on these distributions.

The cost function in Equation 1 can be evaluated very
rapidly because it only requires interpolatingL = 3237 points
in the log-probability volumeIq−log(r). Before computing this
volume, it is convenient to smoothIp(x, y, z) with a Gaussian
kernel (we usedσ = 1mm) in order to increase the capture
range of cost function in the optimization method.

The optimization algorithm starts from the mean shape,
and iteratively loops along thep = 19 shape coefficients,
optimizing one at the time. The first passes (10 in our
implementation) do exhaustive search in the intervalbR,j ∈
[−3

√

λR,j , 3
√

λR,j ] i.e three standard deviations. Later iter-
ations use Newton’s method to refine the output. At the end of
each iteration, the algorithm verifies that the shape lies within
a zero-mean ellipsoid that covers 99% of the probability mass
of the distribution. If it does not, the shape is projected onto
the surface of the ellipsoid. This ensures that the output ofthe
optimization is a plausible shape. The steps of the algorithm
are summarized in Table II.

TABLE II
STEPS OF THE ALGORITHM TO FIT THE SHAPE MODEL.

bR ← 0, it = 0
REPEAT

LOOP alongj ∈ {1, .., p} in random order
IF it < 10

Full search inbR,j ∈ [−3
√

λR,j , 3
√

λR,j ] to minimizeC.
ELSE

Use Newton’s method to refinebR,j

END

Computeb = RbR andD =

√

∑p
j=1

b2
j

λj

IF D > Dmax (calculated with theχ2 distribution)
b← Dmax

D
b

bR ← R−1b
END

END
it← it + 1

UNTIL it > itmax OR convergence

2) Free deformation:Using the shape model has the ad-
vantage that the result is highly specific. However, the model
cannot capture the full range of variations in brain shapes
for two reasons. First, the set of training scans, though fairly
large, does not represent the whole population. The second
reason is that10% of the captured variance was explicitly
disregarded when building the model. Therefore, the method
can often benefit from a smooth extra deformation outside the
constraints of the shape model to improve the cost of the fit.

To solve this problem, we extendLi et al.’s method [24]
to segment surfaces. The two differences with respect to their
method are: 1. defining the graph for a triangular mesh, rather
than tubular or terrain-like surfaces i.e.(x, y) → z(x, y); and
2. minimizing a explicitly learned cost function rather than
a voxel intensity based criterion. The key of the approach
is to allow the landmarks to shift along their corresponding
normals to the surface in discrete steps. The smoothness of
the deformation can be enforced by constraining the shifts of
neighboring landmarks to be similar.Li et al. show in their
study that the set of shifts that provides the global minimum

of the metric can be found in polynomial time using graph
cuts.

If the normals to the surface are calculated at each landmark
location, and the cost function is sampled along the normals, a
cost profile is defined along each normal at locationsrl+tln̂l,
where tl is the (continuous) signed shift for landmarkl ∈
{1, L} andn̂l is the normal vector at landmark locationrl. Let
us assume that that the shifts have to be bounded (|tl| < tmax)
and that neighboring shifts have to be similar (|tl−tℵ(l)| ≤ ∆,
whereℵ(l) represents the neighbors of landmarkl) and∆ is
the bound. The problem is then finding the set of shifts{tl}
under these constraints that minimizes the cost in equation1:

C =

L
∑

l=1

Iq−log(rl + tln̂l)

If rl is outside the image field of view, a triangular profile
is assumed forIp(rl + tln̂l) = 1 − |tl/tmax| in order to: 1.
encourage the landmarks to stay at the locations predicted by
the shape model; and 2. ensure a smooth transition of the shifts
from the landmarks which are inside the field of view to those
which are not.

The problem of minimizingC can be discretized by assum-
ing that the shifts must be multiples of a given stepδ: tl = slδ,
wheresl is an integer. Assuming thattmax

δ
and ∆

δ
are integers

(in our implementationtmax = 19.5mm, ∆ = 1.5mm and
δ = 0.75mm), we must solve:

argmin
{si}

L
∑

l=1

Iq−log(rl + slδn̂l) (2)

subject to : sl ∈ Z

sl ∈ {−
tmax

δ
,
tmax

δ
}

|sl − sℵ(l)| ≤
∆

δ

Li et al. show in their study that solving equation 2 can
be simplified to a problem of computing the minimum s-t
cut in a related directed graphG = (V,E). For the sake
of completeness, we summarize their method here. First,
the graphG must be built as follows. Each shift for each
landmark represents a vertex. Each vertex is connected to the
shift right below except for the vertices on the zero plane
sl = − tmax

δ
, i.e. {sl = i} → {sl = i − 1}, sl > − tmax

δ
.

Each vertex is also connected to the shifts exactly∆
δ

levels
below corresponding to neighboring landmarks, except for the
vertices belowsl <= − tmax

δ
+ ∆

δ
, which are connected to

the zero plane of the neighboring landmarks. Moreover, each
vertex is given a weight which is equal to the difference
between the cost of its shift and the cost of the shift right
below, except for the zero plane, which is just assigned the cost
of its corresponding shift. Figure 9 displays a typical “column”
in the graph i.e. set of shifts for a landmark.

The problem of finding the optimal set of shifts is equivalent
to finding a non-empty minimum closed set inG. This is a
well-known problem in graph theory, and it can be solved by
computing the minimum s-t cut in a related directed graph
Gst = (Vst, Est). Vst includes all the vertices inV plus a
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Fig. 9. Connections in the graphG = (E,V ) from the vertices correspond-
ing to the shifts of a landmark, assuming∆

δ
= 3.

source and a sink.Est includes all the edges inE, with weight
infinity, plus a new set of edges: the source is connected to
all the vertices that had negative weights inG, whereas every
vertex that had positive weights inG is connected towards the
sink. The weights of these new edges are equal to the absolute
value of the weights of their corresponding vertices inG.

Once the graph is ready, the problem is to find the minimum
cost cut that disconnects the source from the sink. This cut
can be found by solving its dual problem (the maximum flow
problem) using any of the multiple algorithms proposed in the
literature. Here we used the Boykov-Kolmogorov algorithm
[44], which is publicly available at Dr. Boykov’s website. The
vertices along the cut can be shown to correspond to the shifts
that minimize equation 2. The reader is referred to the original
papers for a more detailed explanation. Figure 10 shows the
typical effect of this processing step on the detected surface.

Fig. 10. Brain surface with the probability that each landmark is on the brain
surface overlaid. a) Output from shape model. b) Refined withgraph cuts.

IV. EXPERIMENTS AND RESULTS

A. Setup

In order to compare the methods, the scans from the
different databases were stripped using BET, BSE, FreeSurfer,
AFNI, BridgeBurner, GCUT (with and without FreeSurfer)
and the method proposed in this study. No preprocessing
was carried out before feeding the scans to the methods.
Our method requires no parameter adjustment. For the other
methods, the corresponding authors were contacted and invited
to provide parameter values for each of the three datasets:

• BET (version 2.1, in FSL 4.1.5): the authors suggested
using the same sequence of commands for all three
datasets. First, “bet -R” for a first pass with robust brain
center estimation. Then, the preliminary stripped brain is
fed to
standard_space_roi -roiNONE ...

... -ssref MNI152_T1_1mm_brain.nii.gz

to align it to the MNI152 atlas from FSL. Finally, a
second pass of BET (again, with the switch -R) yields the
output. Both passes use the default value of the fractional
intensity threshold: 0.5.

• BSE (2009 version): for IBSR, the author suggested using
the default parameters: diffusion iterations = 3, diffusion
constant = 25, edge constant = 0.64, erosion kernel width
= 1, trim brainstem = true, remove neck = false. For
LPBA40, he suggested using the following parameters:
diffusion iterations = 5, diffusion constant = 15, edge
constant = 0.65, erosion kernel width = 1, trim brainstem
= true, remove neck = true. The author did not provide
parameter settings for OASIS, so the default values were
used.

• FreeSurfer (version 5.0.0): the authors answered that their
software is robust and requires no tweaking. Therefore,
default values were used: pre-weight the input image
using atlas information = 0.82, use the basins merging
atlas information = 0.32, presize the pre-flooding height =
10%, use the pre-weighting for the template deformation
= true, use template deformation using atlas information
= true, use seed points using atlas information = true.

• AFNI (version 2010-10-19-1028): the authors suggested
that we used the following options for IBSR and
LPBA40:
-shrink_fac_bot_lim .65 -shrink_fac .72

And for OASIS:
-shrink_fac_bot_lim .65 -shrink_fac .7

• BridgeBurner (FireVoxel version 81B): the authors sug-
gested using the default parameters: plane for seed search
= axial, SI low = 0.528 relative to seed average, SI high
= 1.35 relative to seed average, peel distance = 2.9 mm,
grow distance = 6.4 mm, strict CoreSet surface = true,
use edges = off. Subvoxel level = 1.

• GCUT (the only available version so far): the authors
encouraged us to use the default values across the three
datasets: threshold = 36, importance of intensity = 2.3.
They also suggested that the increased threshold 40
should also be tested, since this is the value that will
be used in the new version of FreeSurfer (5.1.0).

• FreeSurfer-GCUT: the intersection (AND) of the outputs
from the two methods was taken. Default parameters were
used in FreeSurfer, whereas the GCUT threshold was set
to 40 (as in the new version of FreeSurfer).

The authors of BET also had a particular petition. Since
their method performs better when the neck is not visible in
the scan, they requested that the neck was removed from the
IBSR volumes before running their software. Their petitionis
based on their claim that the neck could be easily removed
from the scans automatically anyway. While this assumption
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might be debatable, we also acknowledge that a skull stripping
algorithm expects a volume centered on the brain, as opposed
to a scan with a larger field of view. Therefore, BET was tested
on the original IBSR dataset but also a version in which all
voxels more than 30mm below the most inferior voxel in the
ground truth brain mask were deleted. The authors of the other
methods were given the chance of using these trimmed masks,
but they all declined. The trimming process is illustrated in
Figure 15.

The automatically segmented brains were compared with
the gold standard using a number of metrics. The choice
of metrics is motivated by two different reasons. First, the
metrics must provide different perspectives of the results(e.g.,
precision vs. robustness). Second, the metrics must be similar
to those used in other studies, for the sake of easy comparison.
In this study, we used:

• The voxel-based Dice similarity coefficientS(X,Y ) =
2|X∩Y |
|X|+|Y | . This is arguably the most spread performance
metric in the segmentation literature. It is related to the
(also widely used) Jaccard indexJ(X,Y ) = |X∩Y |

|X∪Y | by
S = 2

1+J−1 .
• The maximal surface-to-surface distance (Haussdorff dis-

tance): measures the robustness of the algorithm. As op-
posed to the Dice overlap, it penalizes cases in which two
greatly overlapping objects have very different bound-
aries, e.g.

• The mean symmetric surface-to-surface distance: mea-
sured from each voxel in the boundary of the ground
truth to its nearest boundary voxel in the automated seg-
mentation and the other way around (from each boundary
voxel of the segmentation to its nearest boundary voxel
in the ground truth). This metric is easier to interpret than
the Dice coefficient.

• The 95% percentile of the surface-to-surface distance:
this a more robust way of measuring robustness, since the
Haussdorff distance is too sensitive to noise and outliers
in the annotations and segmentations.

It is also interesting to study the distribution of the segmen-
tation error around the different regions of the brain surface,
i.e., in which brain regions is a given method more accurate?
This can be done by computing the absolute difference volume
between the automatic segmentation and the ground truth for
each scan and method, warping it to the space of the reference
volume and taking the average across each dataset / method
pair. Henceforth, we call these “error volumes.” In order to
warp the difference volumes, Elastix was used to nonlinearly
register each ground truth mask to the mask of the reference
scan (using the same B-spline registration as in section III-B),
and the resulting transform was then used in the warping.

Given that the age of each subject is given for IBSR and
OASIS, it is also possible to assess the impact of age on the
performance of our system. One would expect elder subjects
from OASIS, whose brains are often atrophied, to be harder
to segment for our method, since it is based on a shape model
of healthy brain and can have trouble following deep sulci.
Here, we use linear regression to relate age and performance
using the slope of the fit and the correlation coefficient.

Another interesting experiment is to remove the free de-
formation step from our method (i.e., use the shape model
directly) and study the impact on the segmentation. This allows
us to quantify the importance of the graph-cut refinement.

Finally, we also studied the performance of the system
when a different dataset is used to train the system. The aim
of this experiment is to test whether the high performance
of our system is due solely to the high quality of the data
is is trained upon, and not due to the algorithm itself. The
system was retrained using an identical configuration with the
only difference being that our training dataset was replaced
by OASIS. We used OASIS rather than IBSR or LPBA40
because it contains more scans and allows us to build a
more accurate generative model, even though the fact that the
delineations are not 100% manual compromises the quality of
the discriminative model.

B. Results

1) Performance of the different methods:Figures 11, 12
and 13 show box plots with the different metrics for the
evaluated methods on the three datasets. Tables III, IV and
V display the means and standard deviations of the metrics,
as well as Cohen’sd and p-values for a one-tailed, paired t-
test comparing our method with all the others. The p-value
is the estimated probability that the hypothesis “ROBEX is
better than method X according to metric Y” is false. Cohen’s
d is a type of effect size, which complements the information
from the t-test: rather than assigning a significance level
reflecting whether the relationship could be due to chance,
it measures the strength of the apparent relationship between
the variables. The largerd is, the stronger the relationship.
Cohen’s thresholds for small, medium and large are 0.2, 0.5
and 0.8. Figure 14 shows the error volumes, and Figure 15
displays sample outputs from each method and dataset. The
box plots are rich in outliers, meaning samples (scans) for
which a method produces segmentations much worse than for
the other volumes in the same dataset. In the rest of the paper,
we use the term “outlier” for such method-specific inferior
segmentations.

BET provides good results in general across the datasets
and generates very accurate segmentations around the superior
region of the brain. It provides the best Dice overlap and mean
surface-to-surface distance for LPBA40. However, it produces
a number of outliers, especially in OASIS, in which the
segmentation often leaks into the eyes (see OASIS-2 in Figure
15, in which the cerebellum is oversegmented). The two-pass
approach indeed eliminates most of the false positives thata
single call to BET is well-known to produce ( [6] reports a
∼50% false positive rate in IBSR). Removal of the neck in
the IBSR dataset has a large impact of the output (see top
row of Figure 14), so preprocessing and/or controlled image
acquisition are very important for the performance of this
method.

BSE shows potential to produce very accurate segmenta-
tions when the parameters are carefully fine tuned. The default
parameters work well with the IBSR dataset: except for a case
in which the overlap is 0%, the segmentations are as accurate
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and robust as those from BET. The parameters given by
the authors for the LPBA40 dataset produced again excellent
results except for two scans. However, BSE provides the worst
results for OASIS when default parameters are used, failing
to remove large parts of the neck and skull (see OASIS-2 in
Figure 15).

AFNI produces extremely accurate and robust results in
IBSR, as much as BET and BSE. However, the performance
decreases slightly in LPBA40 (see minor under- and overseg-
mentations in Figure 15), and even further in OASIS, where
the results are almost identical to those from BET, including
the presence of outliers (see OASIS-2 in Figure 15 for an
example).

BridgeBurner , despite not being a skull stripping algo-
rithm, produces acceptable results for most brains. Its main
problem is that it sometimes fails to burn some bridges, leaving
in large chunks of skull that are not completely disconnected
from the brain boundary. This happens particularly often
in IBSR and LPBA40 (see LPBA40-2 in Figure 15 for an
example).

FreeSurfer is very robust without any parameter tuning.
The range of the metrics is in general small across the
datasets, and it barely produces any outliers. However, it often
undersegments the brain: it provides nearly 100% sensitivity
but also the worst specificity for IBSR and LPBA40, and
second-to-worst in OASIS. Moreover, FreeSurfer usually fails
to remove the dura matter, which is a well-known flaw of the
algorithm (see IBSR-1 in Figure 15). Another disadvantage
of FreeSurfer is that it consistently crashes when trying to
segment three of the scans in the IBSR dataset (these crashes
are also reported in [6]).

The results provided byGCUT are very similar to those
from FreeSurfer, with two differences: 1. The sensitivity is
(on average) similar and the specificity better, resulting in an
improvement of the metrics; and 2. they unfortunately produce
more outliers, including a case in which there is no overlap
between the ground truth and the segmentation (OASIS-1 in
Figure 15). Regarding the value of the threshold parameter,40
seems to give slightly better results in terms of Dice overlap
and surface-to-surface distance. As FreeSurfer did in IBSR,
GCUT consistently crashes when trying to segment two of
the scans from OASIS.

Combining FreeSurfer and GCUT-40improves the results
from both methods. Because their sensitivities are near 100%
for all datasets, the logical AND of their outputs has the
effect of removing false positives with very little impact on
the sensitivity. Moreover, the combined method displays very
few outliers.

Finally, ROBEX produces extremely robust results in all
three datasets, providing:

• The best Dice overlap for IBSR (p ≤ 0.02 andd ≥ 0.5
for all methods except for BSE and BridgeBurner, see
Table III).

• The second to best Dice overlap in LPBA40 after BET
(p <3e-5 andd ≥ 0.7 for all the others except for BSE,
see Table IV).

• The best Dice overlap in OASIS (p ≤2e-8 andd ≥ 0.7
for all methods except for GCUT and its combination

with FreeSurfer, see Table V).
• The best mean surface-to-surface distance for all datasets

except for BET in LPBA40. Most of the differences are
statistically significant atp = 0.05 and display medium
or large effect size (again, see tables).

• At least medium effect size (i.e.d ≥ 0.5) and significantly
smaller (atp = 0.05) Haussdorff distances than any other
method for all datasets, except for BSE in IBSR and
LPBA40.

• The highest minimum Dice overlap across each dataset,
which is another measure of robustness. Therefore, it also
provides the highest minimum Dice overlap across all the
scans at 93.3% (FreeSurfer is second at 82.6% and BET
third at 77.3%).

Compared with the version without the free deformation
step, the refined segmentation significantly improves all met-
rics (p < 0.05, d ≥ 0.6) for every dataset except for the
Haussdorff distance in LPBA40 and OASIS. The refinement
captures obvious brain boundaries that are slightly outside of
the model; see, for instance, case IBSR-1 in Figure 15.

The main disadvantage with ROBEX is that it does not
produce segmentations as sharp as BET or BSE. In brains with
very convoluted surfaces, gyri and sulci are oversmoothed,
leading to inclusion of dura and/or gray matter loss. For the
same reason, ROBEX fails to provide a very accurate seg-
mentation at the posterior region of the cerebellum-cerebrum
interface (see for example IBSR-2 in Figure 15 and the error
volume in Figure 14).

The dependence of the performance on the datasets is
also interesting to observe. IBSR is the dataset with lowest
resolution, most anisotropic voxels (1×1×3.1mm) and most
obvious artifacts. LPBA40 is also fairly anisotropic, but at a
much better resolution (0.86×0.86×1.5mm) and with much
less noise. Finally, OASIS is isotropic and has a good signal
to noise ratio but it includes demented subjects with prob-
able Alzheimer’s disease. It is therefore not surprising that
all methods perform worst in either IBSR or OASIS. BET,
FreeSurfer, GCUT and their combination achieve the lowest
Dice overlap in OASIS, whereas BSE, AFNI, BB and ROBEX
perform worst in OASIS.

It is important to note that there are some discrepancies
between the results presented here and in some other studies
that used the same datasets. These discrepancies can be
explained by differences in software version and parameter
settings, especially for BSE.Sadananthan et al.[6] report a
Dice overlap equal to 79% for BSE in IBSR (91% in this
study), but they did not use the default parameters. They also
report very poor results for BET (74% vs. 84% here), but the
reason is that they used the single-pass version.Zhuang et
al., who achieve 96% overlap in IBSR with their proprietary
method, report a 69% overlap for BET and 88% for BSE
on this dataset, possibly due to using older versions. Finally,
Shattuck et al.[45] report results that are quite consistent with
ours in LPBA40. In that study, they also describe a website
in which users can upload their segmentations of LPBA40
and the results are compared. There are several methods that
have reported better results than ours, but they are not publicly
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Fig. 11. Box plots of the results for the IBSR dataset. BET* refers to the results on the trimmed scans. ROBEX* correspondsto the results of our algorithm
without the graph-cut refinement. On each box, the central mark is the median, the edges of the box are the25th and 75th percentiles and the whiskers
extend to the most extreme data points not considered outliers i.e. within three standard deviations from the mean. The outliers are plotted individually. The
number of points that were left out of the plot (to allow a closer look and better interpretation of the rest of the data) is marked in red below the horizontal
axis. The plots do not consider the three cases in which FreeSurfer (and therefore FreeSurfer+GCUT) crashed.

TABLE III
IBSR DATASET: MEANS AND STANDARD DEVIATIONS OF THE METRICS, COHEN’ Sd (EFFECT SIZE) AND P-VALUES OF PAIRED T-TESTS COMPARING THE
DIFFERENT METHODS WITHROBEX,AND NUMBER OF CASES FOR WHICH THE ALGORITHMS CRASH. BET* CORRESPONDS TO THE TRIMMED SCANS,

AND ROBEX* TO OUR METHOD BEFORE THE FREE DEFORMATION.

Method Dice Av. dist. Haussdorff 95% dist. Sensitivity Specificity # crashes
BET 84.3±16.2 6.6±7.5 38.0±33.8 19.7±23.3 99.9±0.2 75.7±21.3 0

p-val / Cohen’s d 3.4e-3/0.7 3.9e-3/0.7 3.0e-3/0.7 3.9e-3/0.7 1.0/-1.5 1.9e-3/0.7 n/a
BET* 93.8±2.9 2.2±1.2 19.1±9.2 6.2±6.2 99.0±3.5 89.1±2.8 0

p-val / Cohen’s d 5.1e-3/0.6 5.4e-3/0.6 1.1e-2/0.6 5.0e-2/0.4 3.8e-1/0.1 1.7e-5/1.2 n/a
BSE 90.8±21.6 3.9±10.6 21.0±22.1 10.6±20.2 90.2±22.1 91.6±21.6 0

p-val / Cohen’s d 1.6e-1/0.2 1.6e-1/0.2 6.8e-2/0.3 7.7e-2/0.3 4.2e-2/0.4 4.4e-1/0.0 n/a
AFNI 94.5±0.6 1.8±0.3 16.2±2.5 5.4±0.9 98.1±0.5 91.2±1.4 0

p-val / Cohen’s d 8.1e-7/1.5 2.4e-7/1.7 4.7e-4/0.9 2.1e-8/2.0 2.5e-10/2.6 2.0e-3/0.7 n/a
BB 94.0±6.9 2.5±3.1 55.4±21.7 9.3±12.7 93.3±7.8 95.8±9.6 0

p-val / Cohen’s d 1.6e-1/0.2 7.0e-2/0.3 3.1e-8/1.9 3.5e-2/0.4 1.1e-3/0.8 9.4e-1/-0.4 n/a
FS 87.9±1.8 4.4±0.6 26.6±4.4 10.7±2.2 97.9±4.4 79.8±1.9 3

p-val / Cohen’s d 7.9e-12/4.0 8.3e-15/6.3 1.2e-8/2.5 3.8e-10/3.1 1.0e-1/0.3 4.0e-19/11.8 n/a
GC-36 87.5±8.8 4.8±4.1 29.0±21.2 12.2±11.8 100.0±0.1 78.6±10.8 0

p-val / Cohen’s d 3.3e-4/0.9 9.6e-4/0.8 1.9e-3/0.7 2.6e-3/0.7 1.0/-1.3 1.2e-5/1.2 n/a
GC-40 85.8±20.2 4.5±4.6 27.3±20.9 11.4±12.9 95.0±22.3 78.2±18.5 0

p-val / Cohen’s d 2.1e-2/0.5 4.0e-3/0.7 3.9e-3/0.7 9.1e-3/0.6 2.0e-1/0.2 1.6e-3/0.8 n/a
FS-GC 90.5±1.9 3.3±0.6 21.4±6.6 8.3±2.6 97.9±4.4 84.2±1.7 3

p-val / Cohen’s d 1.3e-8/2.4 6.5e-11/3.5 2.8e-4/1.0 3.8e-6/1.6 9.7e-2/0.3 7.3e-17/8.5 n/a
ROBEX* 94.6±1.3 1.8±0.5 15.3±4.5 5.4±2.2 96.3±1.2 93.1±2.6 0

p-val / Cohen’s d 1.9e-3/0.7 2.2e-3/0.7 1.1e-2/0.6 2.1e-3/0.7 2.4e-13/3.8 9.2e-1/-0.3 n/a
ROBEX 95.6±0.8 1.5±0.3 13.3±2.6 3.8±0.7 99.2±0.5 92.3±1.9 0
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Fig. 12. Box plots of the results for the LPBA40 dataset (see caption of Figure 11).
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Fig. 13. Box plots of the results for the OASIS dataset (see caption of Figure 11). GCUT (and therefore FreeSurfer+GCUT) crashed in two cases.
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TABLE IV
LPBA40DATASET: MEANS AND STANDARD DEVIATIONS OF THE METRICS, COHEN’ Sd (EFFECT SIZE) AND P-VALUES (SEE CAPTION OFTABLE III).

Method Dice Av. dist. Haussdorff 95% dist. Sensitivity Specificity # crashes
BET 97.3±0.5 1.0±0.2 14.2±4.3 3.0±1.0 97.0±1.3 97.7±0.8 0

p-val / Cohen’s d 1.0/-1.3 1.0/-1.1 3.9e-2/0.3 8.4e-1/-0.2 1.0/-1.1 4.7e-1/0.0 n/a
BSE 96.2±2.3 1.4±0.8 15.5±8.2 3.6±3.5 93.7±4.1 99.0±0.5 0

p-val / Cohen’s d 1.1e-1/0.2 1.2e-1/0.2 6.1e-2/0.3 1.8e-1/0.1 1.9e-3/0.5 1.0/-1.8 n/a
AFNI 95.6±0.7 1.6±0.3 16.1±2.9 4.8±1.2 96.4±0.8 94.8±1.9 0

p-val / Cohen’s d 1.1e-11/1.5 2.4e-12/1.5 4.0e-7/0.9 1.2e-12/1.6 1.0/-1.0 5.7e-14/1.8 n/a
BB 90.5±8.6 3.5±3.4 31.2±28.6 10.3±12.2 91.1±3.0 91.7±15.6 0

p-val / Cohen’s d 2.5e-5/0.7 3.8e-5/0.7 1.4e-4/0.6 3.1e-4/0.6 5.6e-13/1.6 1.0e-2/0.4 n/a
FS 92.5±1.0 2.9±0.4 20.1±2.4 8.0±0.8 99.9±0.0 86.1±1.7 0

p-val / Cohen’s d 5.0e-25/3.7 1.7e-26/4.1 2.6e-14/1.8 3.9e-32/5.8 1.0/-4.5 5.9e-37/7.7 n/a
GC-36 94.0±2.2 2.3±0.9 24.1±10.4 7.8±3.3 99.2±1.0 89.4±4.2 0

p-val / Cohen’s d 1.4e-9/1.2 4.2e-10/1.3 8.7e-9/1.1 6.2e-12/1.5 1.0/-2.8 4.8e-16/2.1 n/a
GC-40 95.1±1.6 1.8±0.6 21.2±9.2 6.5±2.7 99.1±1.1 91.5±3.2 0

p-val / Cohen’s d 1.1e-7/1.0 1.3e-8/1.1 3.8e-7/0.9 5.7e-11/1.4 1.0/-2.6 4.3e-16/2.1 n/a
FS-GC 95.9±0.8 1.5±0.3 18.2±5.6 5.3±1.2 99.0±1.1 93.1±1.8 0

p-val / Cohen’s d 8.9e-6/0.8 1.5e-7/1.0 4.8e-8/1.0 1.7e-14/1.8 1.0/-2.6 8.5e-21/2.8 n/a
ROBEX* 94.3±0.6 2.0±0.2 13.0±2.5 4.7±0.7 91.6±1.5 97.1±1.7 0

p-val / Cohen’s d 9.4e-35/6.8 6.3e-34/6.5 8.5e-1/-0.2 2.1e-24/3.6 1.1e-22/3.2 1.0e-2/0.4 n/a
ROBEX 96.6±0.3 1.2±0.1 13.3±2.5 3.1±0.4 95.6±0.9 97.7±0.7 0

TABLE V
OASISDATASET: MEANS AND STANDARD DEVIATIONS OF THE METRICS, COHEN’ Sd (EFFECT SIZE) AND P-VALUES (SEE CAPTION OFTABLE III).

Method Dice Av. dist. Haussdorff 95% dist. Sensitivity Specificity # crashes
BET 93.1±3.7 2.7±1.4 23.7±8.3 8.2±5.5 92.5±5.4 94.2±5.0 0

p-val / Cohen’s d 1.6e-8/0.7 3.9e-9/0.7 7.5e-25/1.7 8.2e-9/0.7 5.8e-3/0.3 8.4e-8/0.7 n/a
BSE 76.8±8.8 9.7±4.5 40.6±11.3 20.6±7.2 97.1±2.6 64.9±14.0 0

p-val / Cohen’s d 4.7e-30/2.1 2.4e-25/1.8 5.9e-37/2.7 1.8e-31/2.2 1.0/-1.2 7.6e-33/2.3 n/a
AFNI 93.0±4.0 2.8±1.6 19.3±9.6 8.2±5.8 90.6±7.9 96.2±2.2 0

p-val / Cohen’s d 1.2e-8/0.7 1.6e-9/0.8 3.9e-14/1.0 1.6e-8/0.7 3.6e-5/0.5 1.1e-8/0.7 n/a
BB 88.6±4.2 4.6±1.6 39.5±10.1 13.3±5.8 80.6±6.7 98.8±1.7 0

p-val / Cohen’s d 7.6e-27/1.9 2.3e-28/2.0 1.2e-40/3.0 7.5e-24/1.6 2.2e-33/2.4 1.0/-0.9 n/a
FS 93.9±1.5 2.6±0.6 23.4±4.3 6.4±1.4 98.1±1.7 90.2±3.5 0

p-val / Cohen’s d 1.8e-10/0.8 6.6e-14/1.0 1.9e-37/2.7 6.2e-17/1.2 1.0/-3.0 9.0e-37/2.7 n/a
GC-36 93.9±11.0 2.1±1.6 17.2±11.6 5.9±5.5 92.7±11.3 95.2±11.1 2

p-val / Cohen’s d 9.7e-2/0.2 3.3e-2/0.2 1.0e-7/0.7 8.5e-3/0.3 2.1e-1/0.1 4.2e-2/0.2 n/a
GC-40 94.0±10.9 2.1±1.4 17.0±8.9 5.4±4.4 95.2±11.3 92.9±10.9 2

p-val / Cohen’s d 1.2e-1/0.1 3.7e-2/0.2 1.5e-10/0.8 2.3e-2/0.2 8.8e-1/-0.1 3.0e-4/0.4 n/a
FS-GC 94.1±11.0 2.3±3.6 17.9±16.1 5.7±7.7 94.8±11.3 94.0±7.6 2

p-val / Cohen’s d 1.4e-1/0.1 1.1e-1/0.1 1.5e-5/0.5 7.3e-2/0.2 7.9e-1/-0.1 9.7e-5/0.5 n/a
ROBEX* 94.4±1.0 2.2±0.4 10.1±1.2 5.2±0.8 90.6±2.3 98.6±0.9 0

p-val / Cohen’s d 5.2e-25/1.7 6.2e-26/1.8 9.4e-2/0.2 6.0e-21/1.5 1.0e-42/3.3 1.0/-1.5 n/a
ROBEX 95.5±0.8 1.8±0.3 9.8±1.7 4.4±0.6 93.8±2.1 97.4±1.2 0

available and cannot be compared on the other datasets.1

2) Effect of age:Figure 16 displays a scatter plot of the
Haussdorff distance achieved by ROBEX for each case against
the age of the subject. We chose the Haussdorff distance
because it shows more spread than any of the other metrics.
The two datasets for which age data are available (IBSR
and OASIS) are analyzed separately. The distance shows a
positive correlation with age as expected, even though it is
only significant for OASIS atp = 0.05. For IBSR, the 95%
confidence interval of the correlation coefficientρ extends
beyond zero, and thep value for the hypothesis that the slope
of the regression is greater than zero isp=6.4e-2. For OASIS,
the lower bound of the 95% confidence interval ofρ is 3.6e-3
and thep value for the test on the slope isp = 2.0e-2, so the
relation is significant but very weak: the range of the predicted
Haussdorff distance across the dataset is just 1.25 mm.

1Actually, some of the methods in the website have been trained on the test
dataset (LPBA40) itself, which makes the comparison with other algorithms
unfair.
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Fig. 16. Haussdorff distance vs. age for ROBEX in IBSR and OASIS. The
95% confidence interval of the correlation coefficient is [-0.08,0.70] for IBSR
and [0.02,0.44] for OASIS. Thep-value for the hypothesis that the slope is
positive is 0.0644 for IBSR and 0.0195 for OASIS.
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Fig. 14. Averages of the error volumes along the inferior/superior, anterior/posterior and left/right axes for each method and dataset.

3) Effect of training dataset:Table VI compares the dif-
ferent metrics when OASIS and the original training dataset
are used to train the generative and discriminative models.
The performance decreases slightly as expected given that
the annotations of OASIS are not as accurate as the labeling
of our proprietary dataset. The decrease is most noticed in
the surface-to-surface distances, since the inaccurate training
data makes finding the exact boundary difficult. However, the
values of the robustness metrics are still better than thoseof
the other methods, particularly the minimal Dice coefficient.
We can thus conclude that the quality of the training data has
some influence on the results, but it is clearly not the main
reason why the system is robust.

V. D ISCUSSION ANDCONCLUSION

A new skull stripping method has been presented in this
article. The main contribution of our study lies in two aspects:
a learning-based hybrid generative/discriminative modelfor

skull stripping and a thorough experimental evaluation using
three different datasets and six competing methods.

The proposed algorithm uses a hybrid model in which a
generative model of brain boundary is fitted to the output of
a classifier that is trained to find the contour of the brain in
the data. The use of a hybrid model is imperative in learning-
based systems for MRI image analysis. Because of the lack of
image intensity standardization in this modality (as opposed
to other modalities such as computed tomography), analysis
based solely on discriminative features is not sufficient to
obtain good results, especially when the acquisition conditions
change. However, the generative model in our framework
guides the segmentation and guarantees than the output corre-
sponds to a plausible brain shape. The two models complement
one another very well because the classifier provides local
precision whereas the shape model provides robustness.

The method has been compared with six popular, well-
established methods that are commonplace in the literatureand
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Fig. 15. Outputs for two scans from each dataset. Two orthogonal slices are shown for each volume. IBSR: coronal, coronal; LPBA40: saggital, coronal;
and OASIS: coronal, saggital. Again, BET* refers to the output for the trimmed scans. The axial coordinate of the trimming is illustrated in cases IBSR-1
and IBSR-2.
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TABLE VI
PERFORMANCE METRICS WHENOASIS IS USED FOR TRAINING.

Metric Dice (%) Dice (range, in %) Mean dist.(mm) Haussdorff (mm) 95% dist.(mm) Sensit.(%) Specif.(%)
IBSR - our dataset 95.6±0.8 [94.1,96.7] 1.5±0.3 13.3±2.6 3.8±0.7 99.2±0.5 92.3±1.9

IBSR - OASIS 93.2±1.3 [91.4,96.1] 2.4±0.5 21.4±4.2 4.0±1.0 97.8±0.8 91.5±2.2
LPBA40 - our dataset 96.6±0.3 [95.2,97.0] 1.2± 0.1 13.3±2.5 3.1±0.4 95.6±0.9 97.7±0.7

LPBA40 - OASIS 95.7±0.5 [94.5,97.1] 1.7±0.2 15.7±3.1 3.4±0.6 96.0±1.0 94.8±1.1

publicly available. Three publicly available datasets were used
for evaluation purposes. Our method outperforms all the others
in almost every case, and it is much more robust: some of the
other methods produce comparable results in certain datasets,
but falter when the scan comes from a different source.

The lowest Dice overlap given by ROBEX in the three
datasets is 93%. BET and AFNI, which follow similar prin-
ciples, perform well in general with little or no parameter
adjustment, but produce some outliers for which the Dice
overlap is below 80%. BET also needs that little or no neck
is visible in the input volume, which can require additional
preprocessing. BSE produces very accurate results when its
parameters are well tuned, but it is extremely sensitive to
parameter values and small deviations can produce substantial
loss of quality in the segmentation. For example, when default
parameter values are used in LPBA40, the Dice overlap
decreases almost 24 points [45]. BridgeBurner, which does
brain tissue segmentation rather than skull stripping, is not
robust at all but produces very sharp brain boundaries, which
can be useful if the user is willing to manually edit the output.
If that is not the case, FreeSurfer can be used instead, givenits
large sensitivity and robustness (and despite its relatively low
specificity). Finally, GCUT is also provides high sensitivity
and sharp brain boundaries, but when it makes mistakes, these
are usually large e.g. leaving the cerebellum out or the eyesin.
GCUT is best used in combination with FreeSurfer because
they are both highly sensitive and cancel some of each other’s
false positives.

The experimental evaluation in this study is based only
on publicly available datasets with publicly available ground
truth. Hence, all the experiments in this paper can be re-
produced. Even though the training dataset is not publicly
available, the trained system can be downloaded from the
first author’s homepage: http://loni.ucla.edu/∼jiglesia/ROBEX.
Both the source code and executables in different platforms
have been made available. To show that the performance of
the system does not depend exclusively on the unavailable
training data, the results were successfully reproduced using
OASIS as training dataset. The use of publicly available
datasets and methods is an increasing trend in the medical
imaging community, for example in challenge workshops at
conferences [46]–[49]. It is often the case that meta-algorithms
that combine all the methods in the challenge provide the best
results (see [50], [51] for meta-algorithms in skull-stripping
combining some of the methods described above).

In this study we have focused on T1 MRI, but extending
ROBEX to other modalities (T2, proton density, etc.) would
be immediate: the only required modification would be to
train the classifier with data acquired with the modality of
interest; the fitting of the shape model would be the same. If

images from more than one modality are available for a test
case, which is the usual clinical scenario, it would certainly
be possible to use all the channels simultaneously for the
classification. This should in principle improve the results.
However, there are no publicly available datasets (to the best
of our knowledge) with multi-spectral information and manual
delineations of the brain to test this approach.

Extending the method to other medical image segmentation
problems would, in principle, be possible. The least general
step of the algorithm is be the registration, not because
registration is not general, but because one cannot expect
the alignment to be as good as it usually is in the brain,
which is relatively easy to register. This is particularly true
for articulated or highly anatomically variable structures.

One of the disadvantages of the presented approach is that it
tends to oversmooth the contour of the brain. In some extreme
cases, ROBEX can leave out some gray matter, which can
represent a problem if the next step in the image analysis
pipeline is estimating the cortical thickness or measuring
the gray matter volume. However, it would be possible to
add a second refinement stage to ameliorate this problem,
perhaps increasing the density of the mesh or using some other
approach. It would also be interesting to study the behavior
of the algorithm in cases with pathologies that alter the
brain structure more severely than dementia and Alzheimer’s
disease, for example, brain tumors.

Another aspect of the system that could be improved is the
image intensity standardization step. The proposed systemuses
a combination of robust histogram stretching and equalization,
but the segmentation could benefit from more sophisticated,
brain MRI-specific approaches. The better the intensity match-
ing, the higher the quality of the boundary probability volumes
(Figure 4) and the better the final segmentation.

Finally, it is important to discuss the computational re-
quirements and execution time of the algorithm. Most of
the methods discussed in this paper run in approximately
one minute on a modern desktop. The two exceptions are
BridgeBurner and BSE, which run in just two or three seconds.
The original BET algorithm is also extremely fast, but the two-
pass version used in this study requires registration to an atlas,
which is the bottleneck of the algorithm. Our single-threaded
implementation of ROBEX runs in two or three minutes. Half
of that time is spent on the registration. Making ROBEX
faster, refining the output mask and improving the intensity
standardization remain as future work.
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