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Abstract

Shape similarity and shape retrieval are very important topics in computer vision. The recent

progress in this domain has been mostly driven by designing smart shape descriptors for providing

better similarity measure between pairs of shapes. In this paper, we provide a new perspective to this

problem by considering the existing shapes as a group, and study their similarity measures to the query

shape in a graph structure. Our method is general and can be built on top of any existing shape similarity

measures. For a given similarity measures0, a new similaritys is learned through graph transduction.

Intuitively, for a given query shapeq, the similaritys(q, p) will be high if neighbors ofp are also similar

to q. However, even ifs0(q, p) is very high, but the neighbors ofp are not similar toq, thens(q, p) will

be low. The new similarity is learned iteratively so that theneighbors of a given shape influence its final

similarity to the query. The basic idea here is related to PageRank ranking, which forms a foundation of

google web search. The presented experimental results demonstrate that the proposed approach yields

significant improvements over the state-of-art shape matching algorithms. We obtained a retrieval rate

of 91% on the MPEG-7 data set, which is the highest ever reported in the literature. Moreover, the

learned similarity by the proposed method also achieves thepromising improvements on both shape

classification and shape clustering.

Index Terms

Shape matching, shape retrieval, shape classification, shape clustering, graph transduction

I. I NTRODUCTION

Shape matching/retrieval is a very critical problem in computer vision. There are many different

kinds of shape matching methods, and the progress in increasing the matching rate has been

substantial in recent years. However, all of these approaches are focused on the nature of shape

similarity. It seems to be an obvious statement that the moresimilar two shapes are, the smaller

is their difference, which is measured by some distance function. Yet, this statement ignores the

fact that some differences are relevant while other differences are irrelevant for shape similarity.

It is not yet clear how the biological vision systems performshape matching; it is clear that

shape matching involves the high-level understanding of shapes. In particular, shapes in the same

class can differ significantly because of distortion or non-rigid transformation. In other words,

even if two shapes belong to the same class, the distance between them may be very large if

the distance measure cannot capture the intrinsic propertyof the shape. It appears to us that
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all published shape distance measures [1]–[11] are unable to address this issue. For example,

based on the inner distance shape context (IDSC) [3], the shape in Fig. 1(a) is more similar to

(b) than to (c), but it is obvious that shape (a) and (c) belongto the same class. This incorrect

result is due to the fact that the inner distance is unaware that the missing tail and one front leg

are irrelevant for this shape similarity judgment. On the other hand, much smaller shape details

like the dog’s ear and the shape of the head are of high relevance here. No matter how good a

shape matching algorithm is, the problem of relevant and irrelevant shape differences must be

addressed if we want to obtain human-like performance. Thisrequires having a model to capture

the essence of a shape class instead of viewing each shape as aset of points or a parameterized

function.

Fig. 1. Existing shape similarity methods incorrectly rank shape (b) as more similar to (a) than (c).

Fig. 2. A key idea of the proposed distance learning is to replace the original shape distance between (a) and (e) with a

geodesic path in the manifold of know shapes, which is the path (a)-(e) in this figure.

In this paper, we propose to use a graph-based transductive learning algorithm to tackle this

problem, and it has the following properties: (1) Instead offocusing on computing the distance

(similarity) for a pair of shapes, we take advantage of the manifold formed by the existing shapes.

(2) However, we do not explicitly learn the manifold nor compute the geodesics [12], which are
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time consuming to calculate. A better metric is learned by collectively propagating the similarity

measures to the query shape and between the existing shapes through graph transduction. (3)

Unlike the label propagation [13] approach, which is semi-supervised, we treat shape retrieval

as an unsupervised problem and do not require knowing any shape labels. (4) We can build our

algorithm on top of any existing shape matching algorithm and a significant gain in retrieval

rates can be observed on well-known shape datasets.

Given a database of shapes, a query shape, and a shape distance function, which does not need

to be a metric, we learn a new distance function that is expressed by shortest paths on the manifold

formed by the know shapes and the query shape. We can do this without explicitly learning this

manifold. As we will demonstrate in our experimental results, the new learned distance function

is able to incorporate the knowledge of relevant and irrelevant shape differences. It is learned

in an unsupervised setting in the context of known shapes. For example, if the database of

known shapes contains shapes (a)-(e) in Fig. 2, then the new learned distance function will rank

correctly the shape in Fig. 1(a) as more similar to (c) than to(b). The reason is that the new

distance function will replace the original distance (a) to(c) in Fig.1 with a distance induced

by the shortest path between in (a) and (e) in Fig.2.

In more general terms, even if the difference between shapeA and shapeC is large, but there

is a shapeB which has small difference to both of them, we still claim that shapeA and shape

C are similar to each other. This situation is possible for most shape distances, since they do not

obey the triangle inequality, i.e., it is not true thatd(A,C) ≤ d(A,B) + d(B,C) for all shapes

A,B,C [14]. We propose a learning method to modify the original shape distanced(A,C). If we

have the situation thatd(A,C) > d(A,B)+d(B,C) for some shapesA,B,C, then the proposed

method is able to learn a new distanced′(A,C) such thatd′(A,C) ≤ d(A,B)+d(B,C). Further,

if there is a path in the distance space such thatd(A,C) > d(A,B1) + . . . + d(Bk, C), then

our method learns a newd′(A,C) such thatd′(A,C) ≤ d(A,B1) + . . . + d(Bk, C). Since this

path represents a minimal distortion morphing of shapeA to shapeC, we are able to ignore

irrelevant shape differences, and consequently, we can focus on relevant shape differences with

the new distanced′.

Our experimental results clearly demonstrate that the proposed method can improve the

retrieval results of the existing shape matching methods. We obtained the retrieval rate of91%

on part B of the MPEG-7 Core Experiment CE-Shape-1 data set [15], which is the highest ever
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Fig. 3. The first column shows the query shape. The remaining 10 columns show the most similar shapes retrieved from

the MPEG-7 data set. The first row shows the results of IDSC [3]. The second row shows the results of the proposed learned

distance.

bull’s eye score reported in the literature. As the input to our method we used the IDSC, which

has the retrieval rate of 85.40% on the MPEG-7 data set [3]. Fig. 3 illustrates the benefits of the

proposed distance learning method. The first row shows the query shape followed by the first 10

shapes retrieved using IDSC only. Only two flies are retrieved among the first 10 shapes. The

results of the learned distance for the same query are shown in the second row. All of the top 10

retrieval results are correct. The proposed method was ableto learn that the shape differences

in the number of fly legs and their shapes are irrelevant. A preliminary version of this paper

appeared as [16]. The remainder of this paper is organized asfollows. In Section II, we briefly

review some well-known shape matching methods and the semi-supervised learning algorithms.

Section III describes the proposed approach to learning shape distances. Section IV relates the

proposed approach to the class of machine learning approaches called label propagation. The

problem of the construction of the affinity matrix is addressed in Section V. Besides, a novel

shape clustering algorithm is introduced in Section VI. Section VII gives the experimental results

on several famous shape data sets to show the advantage of theproposed approach. Conclusion

and discussion are given in Section VIII.

II. RELATED WORK

The semi-supervised learning problem has attracted an increasing amount of interest recently,

and several novel approaches have been proposed. The existing approaches could be divided

into several types, multiview learning [17], generative model [18], Transductive Support Vector

Machine (TSVM) [19]. Recently there have been some promisinggraph based transductive

learning approaches proposed, such as label propagation [13], Gaussian fields and harmonic

functions (GFHF) [20], local and global consistency (LGC) [21], and the Linear Neighborhood
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Propagation (LNP) [22]. Zhou et al. [23] modified the LGC for the information retrieval. The

semi-supervised learning problem is related to manifold learning approaches, e.g., [24].

The proposed method is inspired by the label propagation. The reason we choose the frame-

work of label propagation is it allows the clamping of labels. Since the query shape is the only

labeled shape in the retrieval process, the label propagation allows us to enforce its label during

each iteration, which naturally fits in the framework of shape retrieval. Usually, GFHF is used

instead of label propagation, as both methods can achieve the same results [13]. However, in

the shape retrieval, we can use only the label propagation, the reason is explained in detail in

Section IV.

Since a large number of shape similarity methods have been proposed in the literature, we

focus our attention on methods that reported retrieval results on the MPEG-7 shape data set (part

B of the MPEG-7 Core Experiment CE-Shape-1) [15]. This allows us to clearly demonstrate

the retrieval rate improvements obtained by the proposed method. Belongie et al. [1] introduced

a novel 2D histograms representation of shapes called ShapeContexts (SC). Ling and Jacobs

[3] modified the Shape Context by considering the geodesic distance between contour points

instead of the Euclidean distance, which significantly improved the retrieval and classification

of articulated shapes. Latecki and Lakäemper [4] used visual parts represented by simplified

polygons of contours for shape matching. Tu and Yuille [2] combined regions and contours

together within a generative model for shape matching. In order to avoid problems associated

with purely global or local methods, Felzenszwalb and Schwartz [7] described a dynamic

and hierarchical curve matching method. Other hierarchical methods include the hierarchical

graphical models in [25] and hierarchical procrustes matching [6]. Alajlan et al. proposed a

mutiscale representation of triangle areas for shape matching, which also included partial and

global shape information [26]. Daliri and Torre defined a symbolic descriptor based on Shape

Contexts, then used edit distance for final matching in order to overcome the difficulty caused

by deformation and occlusions [27]. The methods above all focused on designing nice shape

descriptors or representation. Although the researchers started to integrate the global and partial

shape similarity recently and achieved some progress, the improvement was not obvious as

shown in Table I of Section VII (In this table, we summarized all the reported retrieval results

on MPEG-7 database, and the retrieval rates of the recent publications are all around 85%). There

are two main reasons that limit the progress in shape retrieval: 1) The case for large deformation
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and occlusions still can not be solved well. 2) The existing algorithms can not distinguish the

relevant and irrelevant shape differences, which has been pointed out by us in Section I.

There is a significant body of work on distance learning [28].Xing et al. [29] propose

estimating the matrixW of a Mahalanobis distance by solving a convex optimization problem.

Bar-Hillel et al. [30] also use a weight matrixW to estimate the distance by relevant component

analysis (RCA). Athitsos et al. [31] proposed a method called BoostMap to estimate a distance

that approximates a certain distance. Hertz’s work [32] uses AdaBoost to estimate a distance

function in a product space, whereas the weak classifier minimizes an error in the original feature

space. All these methods’ focus is a selection of suitable distance from a given set of distance

measures. Our method aims at learning new distance to improve the retrieval and clustering

performance.

III. L EARNING NEW DISTANCE MEASURES

We first describe the classical setting of similarity retrieval. It applies to many retrieval

scenarios like key word, document, image, and shape retrieval. Given is a set of objectsX =

{x1, . . . , xn} and a similarity function sim:X × X → R+ that assigns a similarity value (a

positive integer) to each pair of objects.

We assume thatx1 is a query object (e.g., a query shape),{x2, . . . , xn} is a set of known

database objects (or a training set). Then by sorting the valuessim(x1, xi) in decreasing order

for i = 2, . . . , n we obtain a ranking of database objects according to their similarity to the

query, i.e., the most similar database object has the highest value and is listed first. Sometimes a

distance measure is used in place of the similarity measure,in which case the ranking is obtained

by sorting the database objects in the increasing order, i.e., the object with the smallest value is

listed first. Usually, the firstN ≪ n objects are returned as the most similar to the queryx1.

As discussed above, the problem is that the similarity function sim is not perfect so that

for many pairs of objects it returns wrong results, althoughit may return correct scores for

most pairs. We introduce now a method to learn a new similarity function simT that drastically

improves the retrieval results ofsim for the given queryx1.

Let wi,j = sim(xi, xj), for i, j = 1, . . . , n, be a similarity matrix, which is also called an

affinity matrix. We also define an×n probabilistic transition matrixP as a row-wise normalized
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matrix w.

Pij =
wij

∑n
k=1

wik

(1)

wherePij is the probability of transit from nodei to nodej.

We seek a new similarity measures. Sinces only needs to be defined as similarity of other

elements to queryx1, we denotef(xi) = s(x1, xi) for i = 1, . . . , n. We formulate now a key

equation of the proposed approach. We seek a functionf that satisfies

f(xi) =
n

∑

j=1

Pij f(xj) (2)

Thus, the similarity ofxi to the queryx1, expressed asf(xi), is a weighted average over all

other database objects, where the weights sum to one and are proportional to the similarity of

the other database objects toxi. In other words we seek a functionf : X → [0, 1] such that

f(xi) is a weighted average off(xj), where the weights are based on the original similarities

wi,j = sim(xi, xj). Our intuition is that the new similarityf(xi) = s(x1, xi) will be large iff all

pointsxj that are very similar toxi (largesim(xi, xj)) are also very similar to queryx1 (large

sim(x1, xj)).

The recursive equation (2) is closely related to PageRank. Asstated in [33], a slightly simplified

version of simple rankingR of a web pageu in PageRank is defined as

R(u) =
∑

v∈Bu

c

Nv

R(v), (3)

whereBu is a set of pages that point tou, Nv is the number of links from pagev and c is a

normalization factor.

Consequently, our equation (2) differers from PageRank equation (3) by the normalization

matrix, which is defined in Eq. (1) in our case, and is equal toc
Nv

for PageRank. The PageRank

recursive equation takes a simple average over neighbors (aset of pages that point to a given

web page), while we take a weighted average over the originalinput similarities. Therefore, our

equation admits recursive solution analog to the solution of the PageRank equation. Before we

present it, we point out one more relation to recently proposed label propagation [13].

Label propagation belongs to a set of semi-supervised learning methods, where it is usually

assumed that class labels are known for a small set of data points. We have an extreme case of

semi-supervised learning, since we only assume that the class label of the query is known. Thus,
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we have only one class that contains only one labeled elementbeing the queryx1. We define a

sequence of labeling functionsft : X → [0, 1] with f0(x1) = 1 andf0(xi) = 0 for i = 2, . . . , n,

whereft(xi) can be interpreted as probability that pointxi has the class label of the queryx1.

We obtain the solution to Eq. (2) by the following recursive procedure:

ft+1(xi) =
n

∑

j=1

Pij ft(xj) (4)

for i = 2, . . . , n and we set

ft+1(x1) = 1. (5)

We define a sequence of new learned similarity functions restricted tox1 as

simt(x1, xi) = ft(xi). (6)

Thus, we interpretft as a set of normalized similarity values to the queryx1. Observe that

sim1(x1, xi) = w1,i = sim(x1, xi).

We iterate steps (4) and (5) until the stept = T for which the change is below a small

threshold. We then rank the similarity to the queryx1 with s = simT . Our experimental results

in Section VII demonstrate that the replacement of the original similarity measuresim with

simT results in a significant increase in the retrieval rate.

The steps (4) and (5) are used in label propagation, which is described in Section IV. However,

our goal and our setting are different. Although label propagation is an instance of semi-

supervised learning, we stress that we remain in the unsupervised learning setting. In particular,

we deal with the case of only one known class, which is the class of the query object. This

means, in particular, that label propagation has a trivial solution in our caselimt→∞ ft(xi) = 1

for all i = 1, . . . , n, i.e., all objects will be assigned the class label of the query shape. Since

our goal is ranking of the database objects according to their similarity to the query, we stop the

computation after a suitable number of iterationst = T . As is the usual practice with iterative

processes that are guaranteed to converge, the computationis halted if the difference||ft+1−ft||

becomes very slow, see Section VII for details.

If the database of known objects is large, the computation with all n objects may become

impractical. Therefore, in practice, we construct the matrix w using only the firstM < n most

similar objects to the queryx1 sorted according to the original distance functionsim.
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IV. RELATION TO LABEL PROPAGATION

Label propagation is formulated as a form of propagation on agraph, where node’s label

propagates to neighboring nodes according to their proximity. In our approach we only have one

labeled node, which is the query shape. The key idea is that its label propagates “faster” along a

geodesic path on the manifold spanned by the set of known shapes than by direct connections.

While following a geodesic path, the obtained new similaritymeasure learns to ignore irrelevant

shape differences. Therefore, when learning is complete, it is able to focus on relevant shape

differences. We review now the key steps of label propagation and relate them to the proposed

method introduced in Section III.

Let {(x1, y1) . . . (xl, yl)} be the labeled data,y ∈ {1 . . . C}, and{xl+1 . . . xl+u} the unlabeled

data, usuallyl ≪ u. Let n = l+ u. We will often useL andU to denote labeled and unlabeled

data respectively. The Label propagation supposes the number of classesC is known, and all

classes are present in the labeled data [13]. A graph is created where the nodes are all the data

points, the edge between nodesi, j represents their similaritywi,j. Larger edge weights allow

labels to travel through more easily. Also define al × C label matrixYL, whoseith row is an

indicator vector foryi, i ∈ L: Yic = δ(yi,c). The label propagation computes soft labelsf for

nodes, wheref is an×C matrix whose rows can be interpreted as the probability distributions

over labels. The initialization off is not important. The label propagation algorithm is as follows:

1) Initially, set f(xi) = yi for i = 1, . . . , l andf(xj) arbitrarily (e.g., 0) forxj ∈ Xu

2) Repeat until convergence: Setf(xi) =
∑n

j=1
Pij f(xj), ∀xi ∈ Xu and

3) setf(xi) = yi for i = 1, . . . , l (the labels of the labeled objects should be fixed).

In step 2, all nodes propagate their labels to their neighbors for one step. Step 3 is critical,

since it ensures persistent label sources from labeled data. Hence instead of letting the initial

labels fade way, we fix the labeled data. This constant push from labeled nodes, helps to push

the class boundaries through high density regions so that they can settle in low density gaps.

If this structure of data fits the classification goal, then the algorithm can use unlabeled data to

improve learning.

Let f = (
fL

fU
). SincefL is fixed toYL, we are solely interested infU . The matrixP is split
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into labeled and unlabeled sub-matrices

P =





PLL PLU

PUL PUU



 (7)

As proven in [13] the label propagation converges, and the solution can be computed in closed

form using matrix algebra:

fU = (I − PUU)
−1PULYL (8)

However, as the label propagation requires all classes be present in the labeled data, it is not

suitable for shape retrieval. As mentioned in Section III, for shape retrieval, the query shape is

considered as the only labeled data and all other shapes are the unlabeled data. Moreover, the

graph among all of the shapes is fully connected, which meansthe label could be propagated on

the whole graph. If we iterate the label propagation infinitetimes, all of the data will have the

same label, which is not our goal. Therefore, we stop the computation after a suitable number

of iterationst = T .

V. THE AFFINITY MATRIX

In this section, we address the problem of the construction of the affinity matrixW . There

are some methods that address this issue, such as local scaling [34], local liner approximation

[22], and adaptive kernel size selection [35].

However, in the case of shape similarity retrieval, a distance function is usually defined,

e.g., [1], [3], [4], [7]. Let D = (Dij) be a distance matrix computed by some shape distance

function. Our goal is to convert it to a similarity measure inorder to construct an affinity matrix

W . Usually, this can be done by using a Gaussian kernel:

wij = exp(−
D2

ij

σ2
ij

) (9)

Previous research has shown that the propagation results highly depend on the kernel sizeσij

selection [22]. In [20], a method to learn the properσij for the kernel is introduced, which has

excellent performance. However, it is not learnable in the case of few labeled data. In shape

retrieval, since only the query shape has the label, the learning of σij is not applicable. In

our experiment, we use use an adaptive kernel size based on the mean distance to K-nearest

neighborhoods [36]:

σij = α ·mean({knnd(xi), knnd(xj)}) (10)
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where mean({knnd(xi), knnd(xj)}) represents the mean distance of the K-nearest neighbor

distance of the samplexi, xj and α is an extra parameter. BothK and α are determined

empirically.

VI. SHAPE CLUSTERING BASED ON THELEARNED DISTANCE

Besides the shape retrieval, the learned distance by the proposed approach could also be used

for improving the performance of shape clustering. The difficulty of the shape clustering is also

from the property of the shapes, which may have high variancein the same class and sometimes

small difference in different classes. Similar to shape retrieval, the learned distance could improve

the shape clustering results a lot. The basic idea here is using the learned distance to replace

the original distance based on shape similarity, then the clustering algorithm can be applied on

the new distance space.

In this paper, we choose Affinity Propagation [37] for shape clustering. Compared to other

classic clustering algorithm, such as k-means, the main advantage of Affinity Propagation is

that it doesn’t need the prior knowledge for the number of clusters. As mentioned above, two

shapes in the same class may be very different to each other and the distribution of difference

is different for different classes. If the number of clusters is fixed before clustering, it may ruin

the results because of the outliers. Therefore, Affinity Propagation is more suitable for the task

of shape clustering, as the outliers or unusual shapes whichare totally different to other shapes

from the same class will be automatically classified to separate clusters and it will not affect

other clusters. A simple review for Affinity Propagation algorithm is given below.

In [37], there are two kinds of messages communicated between data points: responsibility

and availability, and each takes a different kind of competition into account.

To begin with, the availability are initialized to zero:a(i, j) = 0. The responsibilityr(i, j),

sent from data pointi to candidate exemplar pointj, reflects the accumulated evidence for how

well point j is to serve as the exemplar for pointi, taking into account other potential exemplars

for point i. The responsibilities are computed as

r(i, j)←− s(i, j)−maxj′ 6=j{a(i, j
′) + s(i, j′)} (11)

where s(i, j) represents the similarity between data pointj and i, which is directly obtained

by s(i, j) = −d(i, j), whered(i, j) is the distance between data pointj and i. For the learned
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distance, assimt is the similarities between shapes, the similarity is transformed to distance by

D(xi, xj) = − log(simt(xi, xj)) (12)

since the shapesxi, xj are considered as the data points in the clustering algorithm, the distance

d(i, j) = D(xi, xj). For j = i, the self-responsibilityr(j, j) reflects accumulated evidence that

point j is an exemplar, based on its input preference. In our experiments,r(j, j) is determined

by the average distance from data pointj to all other data points.

The availability a(i, j), sent from the candidate exemplar pointj to point i, reflects the

accumulated evidence for how appropriate it would be for point i to choose pointj as its

exemplar, taking into account the support from other pointsthat pointj should be an exemplar.

Whereas the above responsibility update lets all candidate exemplars compete for ownership of

a data point, the following availability update gathers evidence from data points as to whether

each candidate exemplar would make a good exemplar:

a(i, j)←− min{0, r(j, j) +
∑

i′ /∈{i,j}

max{0, r(i′, j)}} (13)

The self-availabilitya(j, j) is updated differently:

a(j, j)←−
∑

i′ 6=j

max{0, r(i′, j)} (14)

This message reflects accumulated evidence that pointj is an exemplar, based on the positive

responsibilities sent to candidate exemplarj from other points.

After the convergence, availability and responsibilitiesare combined to identify exemplars.

For point i, its corresponding exemplar is obtained as

j∗ = argmaxj{a(i, j) + r(i, j)} (15)

This means to either identify pointi as an exemplar ifj∗ = i, or identify data pointj∗ that is

the exemplar for pointi.

As shown in Section VII, the clustering results by Affinity Propagation based on the learned

distance achieve a significant improvement on three challenge shape data sets than without

learning.

VII. E XPERIMENTAL RESULTS

In this section, we show that the proposed approach can significantly improve the performance

of shape retrieval, shape classification and shape clustering of existing shape similarity methods.
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A. Improving shape retrieval/matching

1) Improving MPEG-7 shape retrieval:The IDSC [3] significantly improved the performance

of shape context [1] by replacing the Euclidean distance with shortest paths inside the shapes, and

obtained the retrieval rate of 85.40% on the MPEG-7 data set.The proposed distance learning

method is able to improve the IDSC retrieval rate to91.00%. For reference, Table I lists almost

all the reported results on the MPEG-7 data set. The MPEG-7 data set consists of 1400 silhouette

images grouped into 70 classes. Each class has 20 different shapes. The retrieval rate is measured

by the so-called bull’s eye score. Every shape in the database is compared to all other shapes,

and the number of shapes from the same class among the 40 most similar shapes is reported.

The bull’s eye retrieval rate is the ratio of the total numberof shapes from the same class to the

highest possible number (which is20 × 1400). Thus, the best possible rate is 100%. From the

retrieval rates collected in Table I, we can clearly observethat our method made a big progress

on this database, and the second highest result is 87.70% obtained by Shape Tree [7].

In order to visualize the gain in retrieval rates by our method as compared to IDSC, we

plot the percentage of correct results among the firstk most similar shapes in Fig. 4(a), i.e.,

we plot the percentage of the shapes from the same class amongthe first k-nearest neighbors

for k = 1, . . . , 40. Recall that each class has 20 shapes, which is why the curve increases for

k > 20. We observe that the proposed method not only increases the bull’s eye score, but also

the ranking of the shapes for allk = 1, . . . , 40.

We use the following parameters to construct the affinity matrix: α = 0.25 and the neighbor-

hood size isK = 10. As stated in Section III, in order to increase computational efficiency, it is

possible to construct the affinity matrix for only part of thedatabase of known shapes. Hence,

for each query shape, we first retrieve 300 the most similar shapes, and construct the affinity

matrixW for only those shapes, i.e.,W is of size300×300 as opposed to a1400×1400 matrix

if we consider all MPEG-7 shapes. Then we calculate the new similarity measuresimT for only

those 300 shapes. Here we assume that all relevant shapes will be among the 300 most similar

shapes. Thus, by using a larger affinity matrix we can improvethe retrieval rate but at the cost

of computational efficiency.

In addition to the statistics presented in Fig. 4, Fig. 5 illustrates also that the proposed approach

improves the performance of IDSC. A very interesting case is shown in the first row, where for
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TABLE I

RETRIEVAL RATES (BULL’ S EYE) OF DIFFERENT METHODS ON THEMPEG-7DATA SET.

Alg. CSS Vis. Parts Shape Aligning Distance Prob. Chance Skeletal Gen. Optimized

Contexts Curves Set Approach Prob. Context Model CSS

[38] [4] [1] [39] [40] [41] [42] [43] [2] [44]

Score 75.44% 76.45% 76.51% 78.16% 78.38% 79.19% 79.36% 79.92% 80.03% 81.12%

Alg. Contour Shape Multiscale Fixed Inner Symbolic Hier. Triangle Shape IDSC [3]

Seg. L’ Âne Rouge Rep. Cor. Distance Rep. Procrustes Area Tree + our

[45] [46] [47] [48] [3] [27] [6] [26] [7] method

Score 84.33% 84.40% 84.93% 85.40% 85.40% 85.92% 86.35% 87.23% 87.70% 91.00%

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of most similar shapes

pe
rc

en
ta

ge
 o

f c
or

re
ct

 r
es

ul
ts

(a)

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of most similar shape

pe
rc

en
ta

ge
 o

f c
or

re
ct

 r
es

ul
ts

(b)

Fig. 4. (a) A comparison of retrieval rates between IDSC [3] (blue circles) and the proposed method (red stars) for MPEG-7.

(b) A comparison of retrieval rates between visual parts in [4] (blue circles) and the proposed method (red stars) for MPEG-7.

IDSC only one result is correct for the query octopus. It instead retrieves nine apples as the most

similar shapes. Since the query shape of the octopus is occluded, IDSC ranks it as more similar

to an apple than to the octopus. In addition, since IDSC is invariant to rotation, it confuses

the tentacles with the apple stem. Even in the case of only onecorrect shape, the proposed

method learns that the difference between the apple stem is relevant, although the tentacles of

the octopuses exhibit a significant variation in shape. We restate that this is possible because

the new learned distances are induced by geodesic paths in the shape manifold spanned by the

known shapes. Consequently, the learned distances retrievenine correct shapes. The only wrong
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Fig. 5. The first column shows the query shape. The remaining 10 columns show the most similar shapes retrieved by IDSC

(odd row numbers) and by our method (even row numbers).

results is the elephant, where the nose and legs are similar to the tentacles of the octopus.

As shown in the third row, six of the top ten IDSC retrieval results of lizard are wrong.

since IDSC cannot ignore the irrelevant differences between lizards and sea snakes. All retrieval

results are correct for the new learned distances, since theproposed method is able to learn

the irrelevant differences between lizards and the relevant differences between lizards and sea

snakes. For the results of deer (fifth row), three of the top ten retrieval results of IDSC are

horses. Compared to it, the proposed method (sixth row) eliminates all of the wrong results so

that only deers are in the top ten results. It appears to us that our new method learned to ignore

the irrelevant small shape details of the antlers. Therefore, the presence of the antlers became

a relevant shape feature here. The situation is similar for the bird and hat, with three and four

wrong retrieval results respectively for IDSC, which are eliminated by the proposed method.
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Fig. 6. (a) The number of triangle inequality violations per iteration. (b) Plotof differences||ft+1 − ft|| as a function oft.

An additional explanation of the learning mechanism of the proposed method is provided by

examining the count of the number of violations of the triangle inequality that involve the query

shape and the database shapes. In Fig. 6(a), the curve shows the number of triangle inequality

violations after each iteration of our distance learning algorithm. The number of violations is

reduced significantly after the first few hundred iterations. We cannot expect the number of

violations to be reduced to zero, since cognitively motivated shape similarity may sometimes

require triangle inequality violations [14]. Observe thatthe curve in Fig. 6(a) correlates with

the plot of differences||ft+1 − ft|| as a function oft shown in (b). In particular, both curves

decrease very slow after about 1000 iterations, and at 5000 iterations they are nearly constant.

Therefore, we selectedT = 5000 as our stop condition. Since the situation is very similar inall

our experiments, we always stop afterT = 5000 iterations.

Besides the inner distance shape context [3], we also demonstrate that the proposed approach

can improve the performance ofvisual parts shape similarity [4]. We select this method since it

is based on very different approach than IDSC. In [4], in orderto compute the similarity between

shapes, first the best possible correspondence of visual parts is established (without explicitly

computing the visual parts). Then, the similarity between corresponding parts is calculated and

aggregated. The settings and parameters of our experiment are the same as for IDSC as reported

in the previous section except we setα = 0.4. The accuracy of this method has been increased

from 76.45% to 86.69% on the MPEG-7 data set, which is more than 10%. This makes the
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Fig. 7. Sample shapes from Kimia’s 99 shape database [8]. We show twoshapes for each of the 9 classes.

improved visual part method one of the top scoring methods inTable I. A detailed comparison

of the retrieval accuracy is given in Fig. 4(b).

2) Improving Kimia’s shape retrieval:Besides MPEG-7 database, we also present experi-

mental results on the Kimia’s 99 shape database [8]. The database contains 99 shapes grouped

into nine classes. In this dataset, some images have protrusions or missing parts. Fig. 7 shows

two sample shapes for each class of this dataset. As the database only contains 99 shapes, we

calculate the affinity matrix based on all of the shape in the database. The parameters used to

calculate the affinity matrix are:α = 0.25 and the neighborhood size isK = 4. We changed the

neighborhood size, since the data set is much smaller than the MPEG-7 data set. The retrieval

results are summarized as the number of shapes from the same class among the first top 1

to 10 shapes (the best possible result for each of them is 99).Table II lists the numbers of

correct matches of several methods. Again we observe that our approach could improve IDSC

significantly, and it yields a nearly perfect retrieval rate, which is the best result in the Table II.

3) Improving Face Retrieval:We used a face data set from [49], where it is calledFace (all).

It addresses a face recognition problem based on the shape ofhead profiles. It contains several

head profiles extracted from side view photos of 14 subjects.There exist large variations in the

shape of the face profile of each subject, which is the main reason why we select this data

set. Each subject is making different face expressions, e.g., talking, yawning, smiling, frowning,

laughing, etc. When the pictures of subjects were taken, theywere also encouraged to look a

little to the left or right, randomly. At least two subjects had glasses that they put on for half of

their samples. A few sample pictures are shown in Fig. 8.

The head profiles are converted to sequences of curvature values, and normalized to the length

of 131 points, starting from the neck area. The data set has two parts, training with 560 profiles

and testing with 1690 profiles. The training set contains 40 profiles for each of the 14 classes.
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TABLE II

RETRIEVAL RESULTS ONK IMIA ’ S 99 SHAPE DATA SET[8]

Algorithm 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

SC [1] 97 91 88 85 84 77 75 66 56 37

Gen. Model [2] 99 97 99 98 96 96 94 83 75 48

Path Similarity [5] 99 99 99 99 96 97 95 93 89 73

Shock Edit [8] 99 99 99 98 98 97 96 95 93 82

IDSC [3] 99 99 99 98 98 97 97 98 94 79

Triangle Area [26] 99 99 99 98 98 97 98 95 93 80

Shape Tree [7] 99 99 99 99 99 99 99 97 93 86

Symbolic Rep. [27] 99 99 99 98 99 98 98 95 96 94

IDSC [3] + our method 99 99 99 99 99 99 99 99 97 99

Fig. 8. A few sample image of theFace (all) data set.

As reported on [49], we calculated the retrieval accuracy bymatching the 1690 test shapes to the

560 training shapes. We used a dynamic time warping (DTW) algorithm with warping window

[50] to generate the distance matrix, and obtained the 1NN retrieval accuracy of 88.9% By

applying our distance learning method we increased the 1NN retrieval accuracy to95.04%. The

best reported result on [49] has the first nearest neighbor (1NN) retrieval accuracy of 80.8%.

The retrieval rate, which represents the percentage of the shapes from the same class (profiles

of the same subject) among the first k-nearest neighbors, is shown in Fig. 9(b).

The accuracy of the proposed approach is stable, although the accuracy of DTW decreases

significantly whenk increases. In particular, our retrieval rate fork = 40 remains high, 88.20%,

while the DTW rate dropped to 60.18%. Thus, the learned distance allowed us to increase the

retrieval rate by nearly 30%. Similar to the above experiments, the parameters for the affinity

matrix isα = 0.4 andK = 5.
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Fig. 9. (a) Conversion of the head profile to a curvature sequence. (b) Retrieval accuracy of DTW (blue circles) and the

proposed method (red stars).

4) Improving leaf retrieval:The Swedish leaf data set comes from a leaf classification project

at Linkoping University and Swedish Museum of Natural History [51]. Fig. 10 shows some

representative examples. The data set contains isolated leaves from 15 different Swedish tree

Fig. 10. Typical images from the Swedish leaf database [51], one imageper species. Note that some species are quite similar,

e.g., the first, third and ninth species.

species, with 75 leaves per species. Same to the experimental method in Inner-distance Shape

Contexts [3], 25 leaves of Each species are used for training,and the other 50 leaves are used

for testing. The 1NN accuracy reported in [3] is94.13%, but the results we obtained with their

software1 is 91.2%. Instead of the 1NN classification rate, we report the retrieval rate of the first

50 nearest neighbors. As the way we calculate the retrieval rate is similar to we did for MPEG-7

database, the Bull-eyes score, the score of the test is the ratio of the number of correct of all

images to the highest possible number of hits(which is25 × 750). Therefore, the retrieval rate

1http://vision.ucla.edu/∼hbling/code
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will increase after the number of nearest neighbor is largerthan 25. In Fig. 11, the retrieval rate

of the Swedish leaf is improved a lot by the proposed approach, especially, the 1NN recognition

rate is increased from91.2% to 93.8%. Moreover,the parameters for the affinity matrix isα = 0.2

andK = 5.
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Fig. 11. Retrieval accuracy of Inner distance (blue circles) and the proposed method (red stars).

Fig. 12. Sample trademarks of our dataset used for the experiment

5) Improving trademark retrieval:With the increase of the registered trademarks, trademark

retrieval is quite required by industry and commerce. Retrieval of trademark images by shape

feature has proved a great challenge, though there has been considerable research into this topic
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[52], [53]. Although Shape Contexts [1] did not give a full solution to shape-based trademark

retrieval, we use it to calculate the shape similarity for trademark images and prove that our

method has a potential to improve the retrieval results. A trademark dataset that contains 165

images are used for the experiment, which is collected by us from google. Some sample images

of this dataset are shown in Fig. 12. For each image, we firstlycomputed its edge images

with Canny operator [54], then randomly sample them into 300 points for matching with Shape

Contexts. After we obtained the distance matrix, the proposed approach is used to learn the new

distance, where the parameters are:K = 5 andα = 0.4.

We only show several experimental results to demonstrate that our method can improve

trademark retrieval. As shown in Fig. 13, the retrieval results by Shape Contexts and the improved

retrieval results by the proposed method are listed together for comparison. We can clearly see

the potential for our method to improve trademark retrieval.

B. Improving 1NN shape classification

The k-nearest neighbor algorithm is amongst the simplest ofall machine learning algorithms.

An object is classified by a majority vote of its neighbors, with the object being assigned

to the class most common amongst itsk nearest neighbors.k is a positive integer, typically

small. If k = 1, then the object is simply assigned to the class of its nearest neighbor. The

proposed distance learning algorithm could improve the recognition rate of 1NN classification.

The retrieval results ofFace (all) and Swedish leaf databases have shown the improvement.

Besides, we divided the MPEG-7 dataset into two sets: training set and testing set. For each

class, ten shapes are chosen as the training samples and the rest ten shapes are then used for

testing. The results are shown in Table III. We can easily observe that all the performance on

these datasets have been improved. The improvements on Swedish leaf and MPEG-7 are not

so significant as on the Face dataset, which is normal due to two main reasons: 1) The 1NN

classification rate on the Swedish leaf and MPEG-7 have already been very perfect with the

original distances, which means there is no much potential on them; 2) The number of the

training samples per class for the Swedish leaf and MPEG-7 are much fewer than the Face

dataset. The parameters for all of the three datasets are thesame to the retrieval setting.
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Fig. 13. The first column show the query trademark. The remaining 4 columns show the most similar trademarks retrieved by

Shape Contexts [1] (odd row numbers) and by our method (even row numbers).

C. Improving Shape clustering

To evaluate the performance of the proposed approach on shape clustering in Section VI, we

tried it on three standard databases: one is Kimia’s 99 shapedatabase [8] as shown in Fig. 7.

Another one is Kimia’s 216 shape database [8], which is a selected subset of MPEG-7 database.

Fig. 14 shows two sample shapes for each class of Kimia’s 216 shape database. The last database

is the whole MPEG-7 database. In order to evaluate the performance of the shape clustering,

an measurement is used to measure the accuracy of clustering, the accuracy of the pairwise
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TABLE III

RESULTS OF1NN CLASSIFICATION IMPROVEMENT

Original Distance Learned Distance

Face (all) 88.9% 95.4%

Swedish leaf 91.2% 93.8%

MPEG-7 database 94.7% 95.7%

correctly clustered objects. In other words, if two objectsare clustered into one class and they

are actually in the same class, this pair would be consideredas correct. The score of the test

is the ratio of the number of correct hits of all pairs of objects to the highest possible number

of hits. The IDSC [3] is used to obtain the distance matrix of the three databases. The shape

clustering results on both three databases based on the original distance by IDSC [3] and the

learned distance by our algorithm proposed in Section VI areshown in Table VII-C. Notice

that the learned distance achieved the significant improvement on all of the databases, and the

numbers of the clusters are almost equal to the numbers of classes on Kimia’s two databases.

We believe that some other methods such as [12] can be also improved with our method. Here

we did not compare with the shape clustering method in [12], since they need to fix the number

of cluster centers before clustering.

As the goal of the shape clustering is different from the ranking, the number of iterations for

the distance learning should be less than the ranking. The reason is there is only one labeled data

point during the learning, if the number of iterations is toolarge, the difference between data

points will be small, which cannot be used to distinguish theobjects in different classes. For

all of the clustering experiments, the number of iterationsT is 1000 for MPEG-7 data set and

300 for the Kimia’s two databases. The parameters to calculate the affinity matrix for MPEG-7

is the same to the retrieval. Besides, for Kimia’s 99 shape database, the parameters areK = 5

andα = 0.33, and for Kimia’s 216 shape database, the parameters areK = 7 andα = 0.32.
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Fig. 14. Sample shapes from Kimia’s 216 shape database [8]. We showtwo shapes for each of the 18 classes.

TABLE IV

RESULTS ON THEK IMIA ’ S 99 DATABASE [8], K IMIA ’ S 216 SHAPE DATABASE [8] AND MPEG-7DATABASE.

Kimia’s 99 shape database Kimia’s 216 shape database MPEG-7 shape database

Number of Classes 9 18 70

Original Dist. Learned Dist. Original Dist. Learned Dist. Original Dist. Learned Dist.

Number of Clusters 16 10 25 19 174 58

Accuracy 69% 95% 85% 97% 54% 86%

VIII. C ONCLUSION AND DISCUSSION

In this work, we adapted a graph transductive learning framework to learn new distances with

the application to shape retrieval, shape classification and shape clustering. The key idea is to

replace the distances in the original distance space with distances induces by geodesic paths

in the shape manifold. The merits of the proposed technique have been validated by significant

performance gains over the experimental results. However,like semi-supervised learning, if there

are too many outlier shapes in the shape database, the proposed approach cannot improve the

results. Our future work will focus on addressing this problem. We also observe that our method

is not limited to 2D shape similarity but can also be applied to 3D model retrieval, which will

also be part of our future work.
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