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The hippocampus is involved at the onset of the neuropathological pathways leading to Alzheimer's disease
(AD). Individuals with mild cognitive impairment (MCI) are at increased risk of AD. Hippocampal volume has
been shown to predict which MCI subjects will convert to AD. Our aim in the present study was to produce a
fully automated prognostic procedure, scalable to high throughput clinical and research applications, for the
prediction of MCI conversion to AD using 3D hippocampal morphology. We used an automated analysis for
the extraction and mapping of the hippocampus from structural magnetic resonance scans to extract 3D
hippocampal shape morphology, and we then applied machine learning classification to predict conversion
from MCI to AD. We investigated the accuracy of prediction in 103 MCI subjects (mean age 74.1 years) from
the longitudinal AddNeuroMed study. Our model correctly predicted MCI conversion to dementia within a
year at an accuracy of 80% (sensitivity 77%, specificity 80%), a performance which is competitive with previous
predictive models dependent on manual measurements. Categorization of MCI subjects based on
hippocampal morphology revealed more rapid cognitive deterioration in MMSE scores (pb0.01) and
CERAD verbal memory (pb0.01) in those subjects who were predicted to develop dementia relative to those
predicted to remain stable. The pattern of atrophy associated with increased risk of conversion demonstrated
initial degeneration in the anterior part of the cornus ammonis 1 (CA1) hippocampal subregion. We conclude
that automated shape analysis generates sensitive measurements of early neurodegeneration which predates
the onset of dementia and thus provides a prognostic biomarker for conversion of MCI to AD.
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Introduction

Mild cognitive impairment (MCI) refers to a clinical syndrome
characterized by significant cognitive impairments which are beyond
normal for healthy adults but not sufficient to meet clinical criteria for
Alzheimer's disease (AD). The rate of conversion from MCI to overt
dementia is substantial, at 10%–15% per year, the majority of which is
AD (Petersen et al., 2001). As the clinical features of AD are the
outcome of at least a decade of progressive neuropathological changes
(Nelson et al., 2009; Jack et al., 2010), structural neuroimaging has
shown potential in predicting the onset of AD in MCI subjects (Jack
et al., 1999; Killiany et al., 2002; Teipel et al., 2007; Misra et al., 2009;
Frisoni et al., 2010).

In particular, hippocampal atrophy has emerged as an indepen-
dent risk factor of progress towards dementia (Jack et al., 1999;
Kantarci et al., 2009; Risacher et al., 2009; Frisoni et al., 2010). The
hippocampus and entorhinal cortex suffer the earliest neuropatho-
logical changes of AD (Braak and Braak, 1991), and the ensuing
hippocampal neurodegeration may be more directly linked to
cognitive and clinical decline than other features of the pathological
process (Price et al., 2001; Savva et al., 2009; Jack et al., 2008).
Longitudinal studies have indicated that MCI subjects destined to
convert towards dementia have reduced hippocampal volume
relative to non-converters (Kantarci et al., 2009; Risacher et al., 2009).
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Table 1
Demographic and clinical characteristic of the participants.

MCI (N=103) HC (N=88) AD (N=71)

Mean SD Mean SD Mean SD

Demographics
Age 74.1 5.8 73.6 6.7 74.9 5.8
Female sex (No. %) 51 51 46 52 50 70
Years of education 9 4.3 10.6 4.8 7.6 4

Clinical measures
Baseline
CDR score 0.5 0 0 0 1.3 0.6
GDS score 2.3 0.5 1 0 3.7 0.8
MMSE score 27.1 1.7 29.1 1.2 21.1 4.6
CERAD delayed recall⁎ 3.9 2 6.5 2.1
Change at 12 months
Diagnostic changes (No.%) 22 21% 0 0 0 0
MMSE score −1.2 4 −0.2 1.3 −1.7 6.2
CERAD delayed recall⁎ −0.4 1.9 0.5 1.8

Volume (cm3)
Right hippocampus 4.1 0.6 4.3 0.5 3.8 0.6
Left hippocampus 3.9 0.5 4.1 0.4 2.5 0.6

MCI: mild cognitive impairment, HC: healthy controls, AD: Alzheimer's disease. ⁎: AD
subjects were not assessed using the CERAD battery. All diagnostics changes were
conversions from MCI to AD.
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Three-dimensional shape analysis can pinpoint the precise
localization of early hippocampal atrophy (Csernansky et al., 2005;
Apostolova et al., 2006; Morra et al., 2009). Shape analysis may
therefore provide more accurate prognostic predictions of cognitive
decline than hippocampal volume, as already suggested using manual
expert segmentation (Ferrarini et al., 2009; Frisoni et al., 2010).
Manual segmentation, however, is highly resource intensive and is
not scalable to routine clinical use. Developing a fully automated
approach able to capitalize on the predictive potential of hippocampal
shape abnormalities for prognostic prediction would be a key step
towards clinical application. In the present study, we sought to
investigate to what extent 3D hippocampal shape abnormalities
predicted 1-year conversion to overt AD and cognitive decline in
individuals with MCI. We employed an automated segmentation
technique, which has been validated in AD (Morra et al., 2008), to
ensure efficient and consistent hippocampal measurements in a large
sample. We applied a novel mapping algorithm (Shi et al., 2009) to
transform the segmented hippocampi into 3D shapeswith one-to-one
point correspondence across subjects to permit direct inter-subject
statistical analysis. This algorithm models the intrinsic geometric
properties of each hippocampus and thus achieves a correspondence
robust to variations in orientation or position of the hippocampus
across subjects.

From the AddNeuroMed multisite study (Lovestone et al., 2007;
Simmons et al., 2009, 2011), 103 amnestic MCI subjects with baseline
and 1-year neuroimaging and behavioral assessments were investi-
gated. We hypothesized that those MCI subjects already expressing at
baseline a hippocampal atrophic phenotype that is compatible with
AD would suffer an accelerated cognitive decline and would be more
likely to convert to dementia than those not presenting with this
atrophic phenotype. To test this hypothesis, we used the baseline
scans of 71 AD and 88 age-matched healthy controls (HC) from the
same study to develop a classifier trained to separate AD from HC
individuals based on hippocampal shape. The trained classifier can
therefore be seen as an accurate detector of the atrophic phenotype
characteristic of AD. We then inputed the baseline morphometric
features for each MCI individual into the trained classifier and
received for each subject a label as to whether the atrophic phenotype
characteristic of AD was present or not at the beginning of the follow-
up in a given MCI individual. To test whether this phenotypic labeling
was valuable for prognostic prediction, we then compared the clinical
and cognitive 1-year outcome ofMCI individuals with andwithout the
atrophic phenotype. In addition to this individual classification
analysis, we employed a conventional group analysis to reveal the
hippocampal subregions most associated with conversion to AD and
cognitive decline.

The shape-based predictive model was developed using Support
Vector Machine (SVM) (Vapnik, 2000) classification, which has been
shown to be a powerful tool for statistical pattern recognition in
neuroimaging-based clinical prediction (Davatzikos et al., 2005; Fu
et al., 2008; Fan et al., 2008b; Kloppel et al., 2008; Vemuri et al., 2008;
Costafreda et al., 2009; Nouretdinov et al., in press). For comparison
purposes, we also trained a volume-based SVM model, with the
expectation that shape-based models would result in superior
prediction accuracy of conversion to AD.

Methods

Participants and behavioral assessment

AddNeuroMed is a longitudinal, multisite study of biomarkers for
AD (Lovestone et al., 2007), recruiting subjects from six European
sites. Ethical approval was obtained at each data acquisition site, and
informed consent was obtained for all subjects (Table 1). Control
subjects were aged 65 years or above, in good general health and had
a baseline Mini Mental State Examination (MMSE, (Tombaugh and
McIntyre, 1992)) score higher than 24. Subjects with MCI had
subjective memory impairment and a score below 1.5 SD of
population age-adjusted norms on the Consortium to Establish a
Registry for Alzheimer's Disease cognitive battery (CERAD, (Welsh
et al., 1994)), a score of 0.5 on the Clinical Dementia Rating scale (CDR,
(Hughes et al., 1982)), an MMSE score above 24 and did not have any
functional impairments. Subjects with AD were recruited as defined
by both NINCDS–ADRDA criteria for mild to moderate AD (McKhann
et al., 1984) and DSM-IV criteria for probable AD. AD subjects also had
an MMSE score range between 12 and 28, Hachinski Modified
Ischemic (HMI, (Hachinski et al., 1975)) score of at most 4 and a
Global Deterioration Scale (GDS, (Reisberg et al., 1982)) score
between 2 and 5. Clinical assessments included a detailed case and
family history, the CDR, HMI, MMSE, GDS and CERAD cognitive
battery, the latter only for MCI and HC subjects. General exclusion
criteria were neurological or psychiatric disease other than AD,
significant unstable systemic illness or organ failure, and alcohol or
substance misuse. Recruited subjects underwent MRI scanning, with
follow-up assessments at 3 and 12 months.

In the present report, we included those MCI and control subjects
who had satisfactorily completed their baseline and 12-month
behavioral assessment, resulting in a final sample of 103 MCI, 71
ADC and 88 HC1. At follow-up, the clinical diagnosis of 22 of the MCI
subjects was changed to AD, according to NINCDS–ADRDA criteria
(McKhann et al., 1984). This binary measure of clinical deterioration
was complemented by two continuous measures: change in MMSE
score between baseline and 12 months as an estimate of general
cognitive decline and the change in delayed recall test score of the
CERAD battery as a specific measure of memory function (Welsh et al.,
1991) dependent on hippocampal integrity (Kramer et al., 2004).

MR data acquisition and pre-processing

The neuroimaging protocol was designed for compatibility with
the Alzheimer's disease Neuroimaging Initiative (ADNI) magnetic
resonance (MR) protocol and has been presented in detail previously
(Jack et al., 2008; Simmons et al., 2009, 2011). Briefly, MR data were
obtained from six 1.5 T MR systems with a standardized protocol,
including quality assurance and control. The present report is based
on high resolution sagittal 3D MP-RAGE scans acquired at baseline
with full brain and skull coverage, optimized for morphometric
analyses. After reconstruction, in-plane resolution was 256×256 with
in-plane voxel size of 0.9375×0.9375 mm and slice thickness of
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1.2 mm. Pre-processing was performed with the FreeSurfer software
suite (Fischl et al., 2002). Images were interpolated to an isotropic
voxel size of 1 mm3, and their intensity was normalized using the
automated N3 algorithm (Sled et al., 1998), followed by skull
stripping and neck removal (Segonne et al., 2004; Fischl et al.,
2002). The skull stripped brain images were the input for the
automated hippocampal segmentation.

Automated hippocampal segmentation and mapping

Automated hippocampal segmentation was performed using a
pattern recognition algorithm designed for use in AD studies and
validated on data from the ADNI study (Morra et al., 2008). Briefly, the
pattern recognition algorithm was trained on a sample of “ground
truth,”manually segmented hippocampi of 21 representative subjects
(7 AD, 7MCI and 7 healthy controls) from the ADNI data set, produced
following a standardized segmentation protocol (http://cms.loni.ucla.
edu/ncrr/protocol.aspx?id=732). The pattern recognition algorithm
itself implements an auto-context model that learns a classification
rule for hippocampal vs nonhippocampal voxels based on a large set
of local image features extracted from the ground truth segmented
brains, such as image intensity, position and curvatures (Tu and Bai,
2010; Morra et al., 2008). Segmented outputs of the algorithm have
been shown to be in good agreement with independent hippocampal
segmentations produced by human experts (Morra et al., 2008).

An initial 3D mesh representation of each hippocampus was
constructed based on the segmented images. Direct hippocampal
mapping (Shi et al., 2007, 2009) was then used to map this initial
mesh representation into a common triangulation with one-to-one
vertex correspondence across all subjects, thus making possible the
between-subject local-shape statistical analysis. To achieve this
correspondence, DHM models the intrinsic geometric properties of
each hippocampus and thus achieves a correspondence robust to
variations in orientation or position of the hippocampus across
subjects.

Intrinsic local radial distances, reflecting the distance between a
point in the common triangulation and a medial core of the
hippocampus, were employed as the features for both conventional
group analysis and patient classification. A simple interpretation for
radial distance can be given as the “thickness” of the hippocampus
at that particular point. Direct comparisons between radial
distances at analogous points between subjects can be made, and
a reduction in radial distance can be interpreted as evidence of
atrophy. In the intrinsic approach presented by Shi et al. (2009), the
medial core is defined as a 3D curve characterizing the geometric
tail-to-head trend of the hippocampus. This curve is obtained from a
general shape modeling approach, appropriate for elongated
structures, and crucially, it is intrinsic in the sense that it is
completely defined by the shape of the hippocampus. In particular,
determining this intrinsic medial core does not necessitate any a
priori sectioning of the hippocampus (Thompson et al., 2004). It is
therefore robust to differences in the position and orientation of the
hippocampus across subjects. The raw intrinsic radial distance,
computed in the subject's native brain space, was normalized for
global head size effects using the cube-root of the total intracranial
volume as computed by FreeSurfer. This normalized intrinsic radial
distance measure was then used for between-subject statistical
shape analysis. We also produced a normative atlas for display
purposes by averaging the hippocampal-mapped surfaces of the
healthy subjects.

Conventional analysis of group differences in volume and shape analysis

We used general linear modeling (GLM) to study the effects of
clinical status at 12 months (MCI converters vs non-converters) and
changes in score between baseline and follow-up for the continuous
variables (MMSE and CERAD-recall) on normalized hippocampal
volume and radial distance. Covariates of no interest were age, sex
and baseline scores. Continuous variables were standardized before
model estimation. When mapping the association between hippo-
campal shape and the variables of interest, we fitted independent
models at each vertex (2000 models in total for each statistical map).
Multiple comparisons correction was performed by permutation
testing using a set-level statistic, namely the number of vertices
whose t-value for the covariate of interest survived an initial
uncorrected threshold of pb0.01 (Friston et al., 1996). The experi-
mental statistic obtained from the observed map was then compared
to a permutation-driven t-distribution. This t-distribution was
generated under the null hypothesis of no association between local
radial distance and the variable of interest by permuting the values of
the predicted variable across subjects, refitting the model with the
permuted labels and re-computing the statistic for the covariate of
interest (Anderson and Robinson, 2001). We used 10,000 iterations of
this permutation procedure to test the overall statistical significance
of the statistical maps. Statistical significance was set at a unilateral
α=0.05 reflecting the hypothesis that reduced volume and radial
distance would be associated with cognitive decline (clinical
conversion, MMSE score decrease and CERAD delayed recall score
decrease). The interpretation of these set-level corrected p-values is
whether it is likely to find such an extensive pattern of association
between atrophy in the hippocampus and a given variable by chance
alone. If the corrected p-value is less than 0.05, then the whole pattern
of association can be declared statistically significant. We refer to
evidence for atrophy at the level of whole hippocampal pattern as “3D
shape atrophy.” This procedure differs from simply testing volumetric
differences in that in the 3D shape atrophy procedure we introduce
the belief that the atrophy does not occur uniformly throughout the
hippocampus, but rather, there are some areas where atrophy
initiated earlier or is faster. The set level procedure can then focus
on these areas withmore extreme change (which we identify through
the initial thresholding procedure at pb0.01, uncorrected), and if the
assumption of focalised changes is correct, then the 3D shape atrophy
test should be more sensitive than a simple volumetric procedure,
where atrophic reduction in some areas may be dampened by the
relative lack of atrophy in the rest of the hippocampus.

Classification analysis

Classification analysis was conducted using Support Vector
Machines (SVM) (Vapnik, 2000), which have demonstrated optimal
empirical results in neuroimaging-based applications (Davatzikos
et al., 2005; Fu et al., 2008; Fan et al., 2008a; Kloppel et al., 2008;
Costafreda et al., 2009; Nouretdinov et al., in press). Briefly, SVM
treats the measurements from a given individual as a single point in a
multidimensional space, with the number of dimensions being, in our
application, the number of vertices for left and right hippocampus.
The location of the point representing a subject in this space is
determined by the normalized intrinsic radial distance at each vertex.
SVM finds an optimal separation (the maximal margin separating
hyperplane) between points belonging to different classes (e.g. AD vs
HC) after mapping the original features via a kernel function. The
position of the separating hyperplane is entirely defined by those data
instances closest to the group boundaries, the so-called support
vectors. The kernel function may be linear, in which case the optimal
separation is a hyperplane defined in the original feature space, or it
may be non-linear, leading to non-linear separation of classes in the
original space. Following previous applications in AD (Ferrarini et al.,
2009; Misra et al., 2009), we chose the non-linear Gaussian radial
basis kernel as it affords more modeling flexibility, which can lead to
better performance. The downside of this flexibility is that non-linear
separation may result in model overfitting. In our application, the risk
of overfitting was reduced by the relatively large sample sizes
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Table 3
Association of baseline hippocampal 3D shape atrophy to clinical conversion to
Alzheimer's disease and cognitive decline at 12 months in subjects with mild cognitive
impairment.

Right p-value Left p-value

Clinical conversion: MCI to AD b0.0001 0.0072
Correlation to verbal memory (CERAD delayed recall) 0.0018 0.0052
Correlation to MMSE total score 0.0101 0.1206

The p-values have been corrected for multiple comparisons using a set-level procedure
(see Methods).
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available for model training (N=159) and the fact that the test set of
MCI subjects was completely independent from the training samples.

A binary classification model was trained to distinguish AD from
HC subjects. We computed the four-fold cross-validated diagnostic
accuracy, to assess to what extent this approach identified the
atrophic phenotype associated with AD. Then, the model was trained
with the full training sample of AD and HC subjects and applied to the
shape data from the MCI subjects. Each MCI individual was
categorized as AD or HC shape phenotype, and this prediction was
comparedwith the 1-year clinical outcomes. Permutation testingwith
10,000 random allocations of classmembership was used to assess the
statistical significance of the difference in conversion rate between
MCI subjects with and without the atrophic phenotype and of the
accuracy in predicting conversion. Repeated-measures analysis of
variance (ANOVA) was also employed to assess the statistical
significance in the differential rate of cognitive decline between
both groups of MCI subjects. To visualize the discriminative shape
patterns, we employed a recently described approximate method
(Koutsouleris et al., 2009) whereby pairs of support vectors from
opposite classes with the minimum distance across the separating
hyperplane are selected to compute a set of “nearest neighbor”
difference vectors, which are then averaged to create the discrimina-
tive shape pattern. Throughout the analysis, the SVM parameter Cwas
fixed to 1. Image preprocessing, automated segmentation and 3D
mapping were performed using the LONI Pipeline (Dinov et al., 2009),
while GLM analysis and SVM classification were conducted using R
(http://cran.r-project.org/).
Results

Conventional group analysis

MCI subjects who converted to AD experienced faster cognitive
decline than non-converters: the 1-year decline of MMSE score was of
5.0 points in converters and 0.2 points in non-converters (repeated-
measures ANOVA time-by-group interaction test: pb0.001), and the
1-year decline in CERAD delayed recall score was of 1.1 points in
converters and 0.2 points in non-converters (pb0.01).

Those MCI subjects who later converted to AD showed a smaller
baseline volume right (9.2%, pb0.0001) and left (6.7%, pb0.0035)
hippocampi (Table 2). Reduced hippocampal volume was also
correlated with memory decline bilaterally as measured by CERAD
delayed recall, while the association with decline in cognitive
performance as measured by the MMSE score was not statically
significant.

Three-dimensional shape analysis showed that bilateral focal
hippocampal atrophy at baseline was associated with MCI clinical
conversion to AD (Table 3, Fig. 1a). Hippocampal thinning was
distributed in the left and right hippocampal head and body, with the
Table 2
Association of baseline hippocampal volume to clinical conversion to Alzheimer's
disease and cognitive decline at 12 months in subjects with mild cognitive impairment.

Right Left

% atrophy p-value % atrophy p-value

Clinical conversion: MCI to AD −9.2 b0.0001 −6.7 0.0035
Correlation to verbal memory
(CERAD delayed recall)

−3.0 0.0019 −1.7 0.0092

Correlation to MMSE total score −1.2 0.1420 −0.9 0.2094

Atrophy is the percent decrease in volume in converters from mild cognitive
impairment to Alzheimer's disease or, for the continuous variables, the percent
volume change associated with a subsequent decrease of 1 standard deviation in the
scores. The p-value is the unilateral test for the association between atrophy in volume
and subsequent changes in the variable of interest.
most intense changes localized in the right hippocampal head.
Bilateral focal hippocampal atrophy was also associated with
subsequent decline in CERAD scores (Fig. 1b), while right hippocam-
pal atrophy was linked to subsequent deterioration in MMSE scores
(Fig. 1c).
Individual classification analysis

Prognostic prediction for MCI subjects was based on a Support
VectorMachine (SVM) classificationmodel trained to discriminate AD
patients from healthy controls based on their baseline hippocampal
morphometric features. This model identified the diagnostic category
of AD and HC subjects with an accuracy of 85% (pb0.0001). The
discriminative shape pattern pointed to bilateral atrophy in lateral
Fig. 1. Statistical significance maps for a) differences in atrophy between subjects with
mild cognitive impairment who developed Alzheimer's disease (AD) within 12 months
of follow-up (N=22) and those who did not (N=81); b) correlation in MCI subjects
between atrophy and 12-month memory decline as measured by the CERAD delayed
recall score (N=103) and c) correlation between atrophy and MMSE total score
(N=103). The maps are adjusted for age, sex, baseline score (CERAD and MMSE) and
intracranial volume.While the maps represent uncorrected p-values for local atrophy, a
significant effect remained after multiple comparison correction at the set-level
through permutation testing, except for the association between left hippocampal
atrophy and MMSE score. Figures are in radiological convention (left is right).
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Table 4
Prognostic classification performance for the prediction of conversion to Alzheimer's
disease in subjects with mild cognitive impairment based on 3D shape analysis and
volume of both hippocampi.

Shape Volume

True positive 17 16
True negative 65 60
False positive 16 21
False negative 5 6
Sensitivity, % 77 73
Specificity, % 80 74
PPV, % 52 43
NPV, % 93 91
Accuracy, % 80 74
Model significance b0.0001 0.0008

PPV: positive predictive value, NPV: negative predictive value. Model significance was
computed through 10000 random permutations of the prognostic outcomes
(conversion to Alzheimer's disease or no conversion; see Methods).
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and medial aspects of hippocampal head and to a lesser extent in
hippocampal body as phenotypic features of AD (Fig. 2).

This model was then used for individualized prognostic prediction
in the MCI sample (Table 4). MCI subjects with a pattern of
hippocampal atrophy suggestive of AD at baseline demonstrated a
statistically significant higher rate of conversion to AD of 52% at 1-year
(17 converters out of 33 MCI subjects with the baseline AD atrophic
phenotype) as compared to those subjects who did not express the
baseline phenotype, who had a conversion rate of 7% (only 5
converters out of 70 MCI subjects without the baseline atrophic
phenotype; test for equality of proportions pb0.0001). Those MCI
subjects with the atrophic phenotype at baseline also suffered from
faster cognitive deterioration in MMSE scores (ANOVA time-by-group
interaction test: pb0.01, Fig. 3) and CERAD verbal memory (pb0.01),
although their baseline scores were not significantly different (pb0.3
in both cases). Overall, the shape-based model predicted conversion
to ADwith 80% accuracy (the probability of achieving this accuracy by
chance was pb0.0001) (Table 4).

For comparison purposes, another SVM model was also trained
following identical procedures but based on bilateral volumetric
measures; although this model was also accurate (74%, pb0.001,
Table 4), it did not reach the same performance as the prognostic
prediction based on 3D hippocampal morphology.
Discussion

Baseline hippocampal morphology measured by automated
methods accurately predicted 1 year progression towards dementia
in MCI subjects. MCI subjects with and without the AD hippocampal
phenotype at baseline were not distinguishable by neuropsycholog-
ical measures in general cognitive or memory function. However, the
MRI-identified MCI subjects with the AD phenotype at baseline
showed a substantially higher rate of conversion to AD and
accelerated cognitive decline as compared to MCI subjects without
the AD phenotype.

These findings suggest that hippocampal morphological analysis
may offer added prognostic value relative to standard clinical and
neuropsychological evaluation. As the prognostic test was developed
and tested in different clinical samples (AD and HC for development,
MCI for testing), these findings are likely to be robust and may be
generalizable to other clinical settings. The clinical applicability of our
approach is greatly enhanced by using an automated procedure for
hippocampal extraction, thus achieving reproducible and user-
independent measurements, validated against expert manual seg-
mentation in a similar population (Morra et al., 2008) and efficiently
scalable to large samples.

Such a prognostic test could have clinical applications, for example
by encouraging watchful waiting in an individual with MCI identified
Fig. 2. Hippocampal shape pattern discriminative between Alzheimer's disease (AD)
and healthy controls, which was also predictive of the risk of transition to AD in subjects
with mild cognitive impairment. Negative numbers represent atrophy in AD subjects.
Figure in radiological convention (left is right).
as low-risk but more active clinical management which may include
pharmacological interventions in an MCI subject at high-risk for
developing AD. Our study followed the MCI subjects for 12 months,
and it is likely that prognostic prediction of conversion to AD based on
pre-existing atrophy is most accurate for MCI subjects within this
relatively short period (Frisoni et al., 2010; Risacher et al., 2009).
Prediction of imminent transition may be particularly useful for
clinical trial enrichment, whereby test positive subjects could be
selectively included with the expectation of transition within the time
frame of a typical disease modification trial in ADs, which is rarely
much longer than 12 months (Lovestone et al., 2007). This strategy
increases the proportion of patients who could benefit from the
intervention and optimizes the statistical power of the trial (Kohan-
nim et al., in press; Frisoni et al., 2010).

The accuracy of the prediction of conversion to AD reached 80%
(sensitivity=77%, specificity=80%), which is in the top range of
previously published results of prognostic classification using struc-
tural neuroimaging (Table 5; Teipel et al., 2007; Ferrarini et al., 2009;
McEvoy et al., 2009; Misra et al., 2009; Plant et al., 2010; Duchesne
et al., 2010). It is noticeable that the studies that used only
hippocampal shape ((Ferrarini et al., 2009), and the present paper)
achieved a predictive performance comparable or superior to those
employing a multi-region or whole brain approach (Teipel et al.,
2007; McEvoy et al., 2009; Misra et al., 2009; Plant et al., 2010;
Duchesne et al., 2010). This finding is in accordance with the early
involvement of the hippocampus in the neuropathological pathway
leading to AD (Braak and Braak, 1991). Hippocampal atrophy also has
the largest effect size across brain areas for the differentiation of stable
and progressive MCI (Risacher et al., 2009). We found that volumetric
measures alone resulted in inferior prognostic performance relative to
shape analysis. The same findingwas verified by Ferrarini et al. (2009)
Fig. 3. Subjects with mild cognitive impairment predicted to develop Alzheimer's
disease based on their hippocampal morphometry (N=33, dashed lines) show faster
decline over the 12 month follow-up in both verbal memory (CERAD delayed memory
scores, pb0.01) and general cognitive function (MMSE total score, pb0.01) than MCI
subjects predicted to remain stable (N=70, solid lines).
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Table 5
Selected recent literature on the prognostic capacity of structural neuroimaging for the prediction of conversion to Alzheimer's disease in subjects with mild cognitive impairment.

Study Data type Region Converters/total MCI Follow-up (months) Classifier Training Test Acc Se Sp

Ferrarini et al., 2009 Shape (manual) Hippocampus 15/30 33 nSVM MCI C-V 80 80 80
Volume (manual) Hippocampus 15/30 33 nSVM MCI C-V 73 63 77

McEvoy et al., 2009 Volume (semi-auto) Multi-regiona 33/160 12 ROC AD+HC MCI 58 79 52
Teipel et al., 2007 VBM (CSF) Whole Brain 9/24 27 ROC+LR AD+HC MCI 80 67 93
Misra et al., 2009 VBM (GM and WM) Whole Brain 27/103 15 nSVM MCI C-V 75–80 NR NR
Duchesne et al., 2010 local VBM-likeb Medial Temp 11/31 28 LD AD+HC C-V 81 70 100
Plant et al., 2010 VBM (GM) Whole Brain 9/24 30 VFI AD+HC MCI 75 56 87
Weighted Average 74 72 76
Present study Shape (automated) Hippocampus 22/103 12 nSVM AD+HC MCI 80 77 80

Acc: accuracy; Se: sensitivity; Sp: specificity; VBM: voxel-basedmorphometry; CSF: Cerebrospinal fluid; GM: greymatter;WM:whitematter; ROC: receiver operating characteristic;
LR: logistic regression; nSVM: non-linear support vector machines classification; VFI: voting feature interval; LD: linear discriminant; C-V: cross-validation; NR: not reported. Only
those studies which reported prognostic accuracy in a separate sample (the test sample) from that used to develop the prognostic model (the training sample) were included; the
testing sample may consist of fully independent subjects or may have been obtained through cross-validation (leaving aside a part of the training sample for testing). The average
performance metrics were obtained by weighting each individual study results by their sample size.

a Regions of interest included mesial and lateral temporal, isthmus cingulate and orbitofrontal areas.
b Duchesne et al., 2010 employed as classification features the image intensity and local volume change in a medial temporal ROI.
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based on manual hippocampal segmentation. In general, we observe
that prognostic prediction based on detailed morphometric pattern
analysis generally outperformed those based on summary measures
such as volume (Table 5), suggesting that detailed three-dimensional
atrophy analysis of hippocampus may be an optimal approach for
prognosis in MCI subject (Frisoni et al., 2010).

Several strategies could further improve the accuracy of prognostic
prediction. The entorhinal cortex is affected by the neuropathological
changes leading to AD at least as early as the hippocampus (Hyman
et al., 1984; Braak and Braak, 1991; Frisoni et al., 2006; Frisoni et al.,
2010). The addition of entorhinal atrophy could therefore increase
prognostic performance relative to the analysis of hippocampal
changes alone (Dickerson et al., 2001).

Additionally, previous 3D morphometric studies on changes
associated with future cognitive decline have pointed to atrophy in
similar hippocampal subregions as those reported here. Csernansky
et al. (2005) followed a sample of 49 individuals for an average of
5 years, demonstrating significant inward deformation of the hippo-
campal head and lateral left surface (approximately identified as the
cornus ammonis 1 or CA1 subfield) between 14 subjects who
converted from CDR 0 to 0.5 and those that did not. Apostolova
et al. (2006) studied 20 MCI subjects during 3 years, of which 6 later
developed AD (converters), 7 reverted to a normal cognitive level
(improvers) and 7 remained diagnosed with MCI (stable). Although
there were no significant differences between converters and stable
subjects, there were bilateral shape differences between converters
and improvers, identified in the CA1 and subiculum subregions. Using
the ADNI data set (N=243MCI subjects), Morra et al. (2009) found an
association between atrophy in lateral and medial aspects of the right
hippocampus, particularly in the hippocampal head, and future
decline in CDR Sum-of-Boxes scores.

In our sample, the most intense atrophy preceding cognitive
decline and conversion in MCI subjects was also located in the right
hippocampal head, particularly in its lateral aspect, with less
prominent atrophy extending to more posterior regions. Additionally,
the discriminative pattern of atrophy of the SVM classifier, predictive
of clinical decline in MCI subjects, also showed an antero-posterior
gradient in atrophy, with the most intense changes located in the
lateral and medial aspects of hippocampal head. The convergence
between our findings (using both group analysis and pattern
classification) and the existing literature (Csernansky et al., 2005;
Apostolova et al., 2006; Morra et al., 2009) strongly suggests that
hippocampal head atrophy may be an early warning sign of risk of
conversion to Alzheimer. Although our automated procedure seg-
ments the whole of the hippocampus, thus preventing the attribution
of changes to definite regions or subfields, our findings are broadly
compatible with early anterior CA1 involvement as defined in
previous studies (Csernansky et al., 2005; Apostolova et al., 2006;
Malykhin et al., 2010). Focusing on these early changes may further
increase the sensitivity of a prognostic probe.

Our group analyses also suggested that right hippocampus may
suffer from earlier and more intense atrophy than its left counterpart.
In contrast, the discriminative pattern of atrophy was strongly
symmetrical. While both strategies offer unbiased populational
estimates, the discriminative pattern is based on larger, clearly
separable and more balanced samples (AD vs healthy controls) than
the group analyses which are dependent on the relatively low number
of MCI subjects who converted to AD. These optimal statistical
properties of the AD vs healthy controls discriminative pattern should
lead to reduced statistical noise and therefore more reliable results
relative to the group contrasts, a feature that is apparent in the
smoother appearance of the discriminative pattern (Fig. 2). The
symmetry of the discriminative pattern therefore suggests that the
increased atrophy in right hippocampus apparent in our group results
could be a feature of our particular MCI sample rather than a fact
generalizable to the population. Replication in an independent sample
would be desirable to further explore the existence of potential
asymmetry.

The diagnosis of MCI conversion towards probable dementia of the
Alzheimer type was based on widely used clinical and neuropsycho-
logical criteria (McKhann et al., 1984). These criteria do not rely on
MRI scanning, and therefore the classification accuracy reported here
is unbiased. However, a limitation of our study is that the diagnosis
was based on these clinical criteria and not verified through
pathology. Hippocampal atrophy alone may not be a specific marker
of AD and may also occur in other dementia types (de Leon et al.,
2007). Rather, hippocampal atrophy, which correlates to neuronal
loss, may be a sensitive marker of cognitive and clinical deterioration,
with a more direct link to clinical decline than other neuropatholog-
ical changes (Savva et al., 2009; Mormino et al., 2009; Jack et al.,
2010). Hippocampal shape analysis may therefore be profitably
combined with additional biomarkers linked to other specific AD
processes, such as amyloidal deposition, that could provide comple-
mentary information (de Leon et al., 2006; Bouwman et al., 2007; Jack
et al., 2008; Jack et al., 2009; Hansson et al., 2009; Driscoll et al., in
press), leading to a precise staging of the neuropathological pathway
leading to AD.
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