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Abstract Many different probabilistic tractography meth-
ods have been proposed in the literature to overcome the
limitations of classical deterministic tractography: i) lack of
quantitative connectivity information; and ii) robustness to
noise, partial volume effects and selection of seed region.
However, these methods rely on Monte Carlo sampling
techniques that are computationally very demanding. This
study presents an approximate stochastic tractography
algorithm (FAST) that can be used interactively, as opposed
to having to wait several minutes to obtain the output after
marking a seed region. In FAST, tractography is formulated
as a Markov chain that relies on a transition tensor. The
tensor is designed to mimic the features of a well-known
probabilistic tractography method based on a random walk
model and Monte-Carlo sampling, but can also accommo-
date other propagation rules. Compared to the baseline
algorithm, our method circumvents the sampling process
and provides a deterministic solution at the expense of
partially sacrificing sub-voxel accuracy. Therefore, the
method is strictly speaking not stochastic, but provides a
probabilistic output in the spirit of stochastic tractography
methods. FAST was compared with the random walk model
using real data from 10 patients in two different ways: 1.
the probability maps produced by the two methods on five
well-known fiber tracts were directly compared using
metrics from the image registration literature; and 2. the
connectivity measurements between different regions of the
brain given by the two methods were compared using the
correlation coefficient ρ. The results show that the
connectivity measures provided by the two algorithms are

well-correlated (ρ=0.83), and so are the probability maps
(normalized cross correlation 0.818±0.081). The maps are
also qualitatively (i.e. visually) very similar. The proposed
method achieves a 60x speed-up (7 s vs. 7 min) over the
Monte Carlo sampling scheme, therefore enabling interac-
tive probabilistic tractography: the user can quickly modify
the seed region if he is not satisfied with the output without
having to wait on average 7 min.

Keywords Probabilistic tractography . Diffusion-weighted
MRI .Markov chain

Introduction and Background

Diffusion weighted MRI (DW-MRI) is the only way of
imaging axonal fiber tracts in the brain in vivo. DW-MRI
consists of a reference T2-MRI scan and a number of
diffusion-weighted scans, each with a sensitizing magnetic
field gradient in a different direction. Comparing the
intensities with and without the gradient, the water
diffusion for each probed direction can be estimated. DW-
MRI makes it thus possible to reconstruct a full diffusion
profile at each location in the brain. From these profiles,
fiber tracts can be inferred using a tractography method.
The reconstructed fiber tracts are widely used in research to
study the functionality of the different parts of the brain and
to correlate anomalies in the fiber tracts with diverse
neurological disorders. In clinical environments, it is used
in surgical planning in order to avoid damaging fiber tracts
with important functionality.

There are different ways of reconstructing a continuous
diffusion profile at each location from a set of discrete
measurements. In diffusion tensor imaging (DTI, Basser et
al. 1994; Pierpaoli et al. 1996), an ellipsoid is fitted to a
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small number of diffusivity measurements (as few as six).
To resolve complex fiber geometries (e.g. crossings), it is
necessary to acquire a higher number of directions
(typically 50 or more). This is known as high angular
resolution diffusion imaging (HARDI (Tuch et al. 2002;
Frank 2001; Ozarslan and Mareci 2003)). Mathematical
entities more complicated than an ellipsoid, such as fourth-
order tensors or expansions in spherical harmonics, can
then be fitted to the data (Barmpoutis et al. 2007; Ghosh et
al. 2008; Frank 2002; Alexander et al. 2002; Alexander et
al. 2001; Behrens et al. 2003).

Fiber tracking cannot be performed directly on the
diffusion MRI data because, in presence of more than one
fiber population, the directions of maximal signal attenua-
tion by diffusion do not correspond to the fiber orientations.
For example, in a 90º crossing of two fibers, the maximum
attenuation occurs at a 45º angle. Instead, the orientation
distribution function (ODF, Tuch 2004) can be used. Given
the 3D probability density function (PDF) of water
diffusivity i.e. the probability that water diffuses a certain
distance in a certain direction, the ODF is obtained as the
radial projection of this function. Therefore, it represents
how likely it is to observe any diffusion along a given
direction, and is defined on a spherical shell. The ODF
accounts for the uncertainty in water diffusion and its
maxima are assumed to correspond to the orientation of the
fibers.

There are two families of tractography methods: deter-
ministic and probabilistic/stochastic. In classic deterministic
streamline tractography (Basser et al. 2000; Lazar et al.
2003; Parker and Alexander 2003; Kreher et al. 2005;
Wedeen et al. 2008; Descoteaux et al. 2009; Qazi et al.
2009), the field of most likely fiber orientations as given by
the ODFs is followed from a seed voxel or region to obtain
the trajectory of a fiber tract. The tracking stops when a
point with low diffusion anisotropy (i.e. not corresponding
to fibers) is reached or when a high-curvature trajectory is
required to follow the field. It is possible to regularize the
trajectory of the track by imposing constraints on its
curvature or by using deflection i.e. combining the local
ODF information and the direction from the previous
tracking step to calculate the new direction of propagation,
rather than following the direction of maximum diffusion
directly. For example, in DTI this can be done by
multiplying the incoming direction by the local tensor
(Lazar et al. 2003). While regularization can be useful in
certain scenarios (e.g. to follow relatively straight tracts that
go through fiber crossings, especially in DTI), they have
the disadvantage that they can lose track of highly curved
fiber tracts.

On the other hand, stochastic tractography accounts for
the uncertainty of the fiber orientation estimates as captured
by the ODF. Rather than using just the directions

corresponding to the most likely orientations, the whole
ODF is used in a probabilistic framework. These methods
achieve higher robustness to noise, partial volume effects
and selection of seed region. Moreover, they have the
advantage that they provide quantitative connectivity
information between different brain regions. The main idea
is to sample the ODF field at each step to decide the
direction of the next move (Behrens et al. 2003; Parker and
Alexander 2003; Descoteaux et al. 2009; Koch et al. 2002;
Friman et al. 2006; Behrens et al. 2007; Perrin et al. 2005;
Kaden et al. 2007; Jbabdi et al. 2007; Parker and Alexander
2005), as opposed to updating the direction of the tract
deterministically as in streamline tractography. The sam-
pling can be limited to a certain angle within the incident
direction to regularize the trajectory. Descoteaux et al. 2009
suggest that the fiber ODF (fODF) should be used instead
of the ODF in stochastic tractography to improve the
results. The fODF is a PDF of the orientation of the fibers
in a given location, and it can be estimated directly from the
diffusion signal (Tournier et al. 2004) or from the ODF
(Descoteaux et al. 2009) using deconvolution. The fODF is
sharper than the ODF; ideally it would be zero everywhere
except for the exact directions in which the voxel is crossed
by fibers.

If a large amount of tracking instances (particles) are
generated from a seed region in a Monte-Carlo scheme, a
connection probability map can be obtained by computing
the fraction of particles that reaches each voxel in the
volume. This map provides a measure of the probability
that the voxel is connected to the seed. The computational
load is much higher than for deterministic methods, which
typically run in less than a second. A high-quality
connection probability map requires sampling a large
number of particles, up to 105–106, depending on the seed
region size, desired level of granularity in the map, noise
level and distance to target region (the longer the tract and
the noisier the data, the more particles are lost on the way).
This makes interactive use very impractical: the user cannot
quickly modify the position of the seed and re-run the
algorithm if he is not satisfied with the obtained map.

This paper extends our previous work (Iglesias et al.
2010) on “fast approximate stochastic tractography”
(FAST), an approach that can quickly compute the
connection probability map analytically at the expense of
limiting the directional resolution of the path propagation.
Since the algorithm is deterministic, the method is strictly
speaking not stochastic, but we call it so because it provides
a quantitative estimate of the connectivity in the spirit of
stochastic tractography algorithms. The diffusion from a
seed region is modeled as a discrete Markov process in
which each variable corresponds to a position/direction
pair. The probability mass shifts from a seed region to the
rest of the brain following a Markov process that is
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governed by a transition tensor. This circumvents the time-
consuming stochastic Monte-Carlo sampling. The probabi-
listic connectivity map for any seed region can then be
calculated in a few seconds, which enables interactive
exploration of the connectivity of the brain.

There are a number of studies in which the movement of
particles is discretized to the orientations corresponding to
neighboring voxels. The data are seen as a graph in which
the voxels are nodes and neighboring nodes are connected
by edges. Then, if the user defines a seed and a target
region, the strength of the connection can be estimated as
the probability of the most likely path between them. The
path with minimum cost can be found using Dijkstra-like
algorithms. For example, Fout et al. (2005) used a 26-
neighborhood to construct the graph and dynamic program-
ming for finding the most likely path. Merhof et al. (2006)
used a hexahedral grid (each voxel has 74 neighbors) and
A* for the optimization. Iturria-Medina et al. (2007),
Liftshits et al. (2009), Sotiropoulos et al. (2010a) and
Zalesky (2008) used different variants of Dijkstra’s algo-
rithm and neighborhood sizes. Despite being designed to
compute the connectivity between two regions, some of
these methods (Iturria-Medina et al. 2007; Sotiropoulos et
al. 2010a; Zalesky 2008; Lifshits et al. 2009) can be
modified to provide a full brain connection probability map
from a seed region without the need of sampling trajectories
(see also Sotiropoulos et al. (2010b)).

Front propagation techniques also use discrete methods
to explicitly generate connection probability maps without
sampling. Parker et al. (2002) evolve a front from a seed
point in the field of main DTI eigenvectors using a variant
of the fast marching method (Sethian 2000). Fast marching
is a particular case of the level set method (Osher and
Fedwik 2003) in which the sign of the speed function never
changes and that can be solved very efficiently. Campbell et
al. 2005 use a flow-based surface evolution algorithm very
similar to Parker et al. 2002, but making use of the full
diffusion profile. Staempfli et al. 2006 proposed a speed
function designed to maintain the front evolution direction
in crossings and bifurcations.

While most of the discussed discrete propagation
methods can generate a full connection probability map,
they rely on very simple models of particle propagation
which tend to produce excessive branching (Sotiropoulos et
al. 2010b). The two main contributions of this study are: 1.
a second-order discretization of the particle propagation
model which, using a Markovian formulation, is able to
accommodate all the elements of sampling-based stochastic
tractography, including spatial regularization during track-
ing in a high angular resolution ODF field; and 2. a proper
quantitative evaluation to assess the impact of discrete path
propagation. We designed the tensor to mimic a well-
known stochastic tractography method (Perrin et al. 2005,

2008, we chose this algorithm because it is general and
includes a particle deflection term). This makes it possible
to compare the outputs from this algorithm and FAST in
order to quantitatively evaluate the impact of the made
approximations. Compared with our previous short con-
ference article (Iglesias et al. 2010), this paper includes a
more detailed explanation of the methods, experiments
with synthetic data, and more experiments with real patient
data.

The rest of the paper is organized as follows. “Methods”
describes the HARDI data used in this study, as well as the
methods to estimate the ODF, deconvolve it into the fODF,
and perform tractography. “Experiments and Results”
describes experiments on synthetic and real data. Finally,
“Discussion” includes conclusions and future work.

Methods

Dataset

Real Data

Ten HARDI volumes from ten different subjects were used
in this study. The data were acquired with a 4 Tesla Bruker
Medspec scanner. Each volume included 94 diffusion-
sensitized gradient directions and 11 baseline images with
no diffusion-sensitization (i.e. T2-weighted). The voxel size
was 1.8 mm×1.8 mm×2.0 mm, the image size 128×128×
55 voxels, and the acquisition parameters TE/TR=92.3/
8,259 ms, b-value=1159 s/mm2. The acquisition time was
approximately 15 min. The 11 baseline images were
merged into a single estimate of the T2 reference (Aja-
Fernandez et al. 2007). This reference was used to calculate
a mask corresponding to the brain using the BET algorithm
(Smith 2002). The mask was then applied to all the
diffusion images. In the rest of the paper, we use the terms
“scan” and “volume” interchangeably to refer to the
HARDI data from a subject.

Synthetic Data

Synthetic data simulating crossings and bifurcations at
1 mm×1 mm×1 mm resolution were generated for
preliminary experiments. For areas with one or no fiber
populations, the attenuation by diffusion is modeled as
(Basser 1995):

S r; bð Þ ¼ S0 rð Þe�bb tP rð ÞΛ rð ÞP rð Þtb ð1Þ

where r is the position vector, β is the probed diffusion
direction and P=[e1|e2|e3], Λ=diag (l1, l2, l3) are the
matrices with the orthonormal eigenvectors and the eigen-
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values of the diffusion tensor (ellipsoid) respectively. For
single fiber populations, e1 is oriented along the fiber
direction and l1>>l2=l3. Outside the simulated fibers,
isotropic diffusion is assumed: the direction of e1 is
irrelevant and l1=l2=l3.

In crossing and bifurcation regions, the following two-
tensor model was used (Basser 1995):

S r; bð Þ ¼ S0 rð Þw rð Þe�bb tP1ðrÞΛ1ðrÞP1ðrÞtb

þ S0ðrÞ 1� wðrÞ½ �e�bb tP2ðrÞΛ2ðrÞP2ðrÞtb ð2Þ
where the weights w and 1–w describe the contributions of
each fiber population to the MRI signal. In this study, the
following values are used: b=1200s/mm2, l1; l2; l3½ �t ¼
2:0; 0:2; 0:2½ �t10�3mm2=s for the fibers (these are typical
values for the corpus callosum), l1 ¼ l2 ¼ l3 ¼ 2:5 �
10�3mm2=s outside the fibers, and w=1–w=0.5 in cross-
ings and bifurcations. Eleven reference T2 volumes and D=
94 gradient images were generated using the same
directions that were available for the real data. Rician noise
was added to simulate a signal-to-noise ratio SNR=20.

Calculation of the fODF

It has been shown that using the fODF rather than the
smoother ODF in stochastic tractography can drastically
improve the tracking results (Descoteaux et al. 2009). If Si
(r) is the HARDI data for direction i (θi, 8i) at location r,
we define the signal vector gðrÞ ¼ S1ðrÞ; S2ðrÞ; . . . ;½
SDðrÞ�t, where D is the number of directions of the data.
Then the ODF can be reconstructed at an arbitrary set of H
directions as:

y ðrÞ ¼ 1

ZðrÞ A3A2A1gðrÞ ¼ 1

ZðrÞ AgðrÞ ð3Þ

where A is a matrix that summarizes the linear operations
that estimate the ODF from the signal vector g(r)(Descoteaux
et al. 2007) and Z(r) just ensures that y (r) is a PDF i.e.
1t y (r)=1. A=A3 A2 A1 is the product of three matrices.
A1 estimates the spherical harmonic (SH) coefficients of the
signal vector. Rather than using direct least squares estimation,
a Laplace-Beltrami regularization scheme (Descoteaux et al.
2007) is used. A2 converts the SH coefficients of the signal
vector to the SH coefficients of the ODF using the Funk-
Radon transform (again, see Descoteaux et al. 2007). A3
simply evaluates the SH expansion of the ODF at the H
directions at which it is to be reconstructed.

In this study, we assume a blurring model in which the
ODF is the convolution of the underlying fODF with a
kernel:

y ðrÞ / Ky f ðrÞ ð4Þ

If the mixing matrix K is known, the fODF y f can be
recovered with a simple matrix inversion. K is the result of
horizontally concatenating the responses to a single fiber
orientation for each of the H directions where the ODF is
reconstructed. The response for a single orientation can be
estimated from the data by averaging the ODFs of the most
anisotropic voxels, which must correspond to single fiber
populations. This response can then be aligned to each of
the H reconstruction directions through rotations in order to
obtain the H columns of K.

Finally, once the mixing matrix is known, the fODF can
be recovered by premultiplying the ODF by the Tikhonov-
regularized inverse of K:

y f ðrÞ / KtK þ "Ið Þ�1Kty rð Þ
h i

þ

/ KtK þ "Ið Þ�1KtAg rð Þ
h i

þ
/ A0g rð Þ½ �þ

) y f ðrÞ
1

Z 0ðrÞ A0g rð Þ½ �þ ð5Þ

In Eq. 5, A0 ¼ KtK þ "Ið Þ�1KtA is the final signal-to-
fODF reconstruction matrix. The parameter ε is the
regularizer for the fODF estimation. The operator [∙]+
denotes that the negative elements of the vector are set to
zero, in case the deconvolution produced negative coef-
ficients due to insufficient regularization. Finally, Z 0ðrÞ ¼
1t A0e rð Þ½ �þ is the updated partition function that ensures
1ty f ðrÞ ¼ 1 after the deconvolution. There are more
sophisticated deconvolution strategies in the literature that
better deal with the non-negativity constrain, but they are
much slower, they cannot be directly integrated into the
matrix framework and, as shown in (Jian and Vemuri
2007), their improvement with respect the strategy used in
the study is only marginal.

The State Bivector and the Transition Tensor

In FAST, the direction/velocity pairs for a particle are
designed to mimic a well-known tractography method
(described in Baseline Sampling-Based Method), but
limiting the particles to stay on grid locations. Thanks to
this discretization, the sampling process can be replaced by
a bivector-valued Markov chain to compute the connection
probability map analytically. The time-dependent state
bivector (State Bivector) stores the probability that a
particle would be located in a voxel at a given time instant
and moving in a certain direction. The bivector evolves
through time according to a transition tensor (Transition
Tensor) which simulates the movement of particles from the
seed. Once all the probability mass has exitted the brain
white matter, the connection probability map can be
approximated by marginalizing the state bivector along
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the time and directional dimensions (“Relationship with the
Connection Probability Map”).

Baseline Sampling-Based Method

In this study, Perrin et al.’s algorithm (Perrin et al. 2005;
Perrin et al. 2008) is used as a representative example of
probabilistic tractography algorithm. In their method,
particles follow a regularized random walk according to
the following rule. At each discrete step, the particle
follows the direction:

dðtÞ ¼ gðrÞdfODFðrÞ þ ½1� gðrÞ�dðt�1Þ ð6Þ

where dfoDF (r) is the result from sampling the fODF at
location r restricted to a 30° half cone defined by the
incident direction d(t–1). The scalar function + (r) corre-
sponds to the standard deviation of the fODF at each voxel
normalized to its maximum across the image, which is a
measure of the anisotropy of the diffusion. Therefore, the
trajectory is regularized because the direction of the
previous step is considered for: 1. giving it a weighted
contribution in d(t); and 2. using it to constrain the sampling
of the fODF. Particles keep traveling across the volume
until they exit the brain white matter, which is estimated as
the set of voxels for which + (r) remains above a certain
threshold +min.

The connection probability map is computed by letting a
large number of particles follow the random walk from the
seed and assigning to each voxel in the volume the fraction
of particles that has reached it. This procedure is slow for
two reasons. First, the number of particles that must be
sampled to obtain a smooth, reliable map can be large,
depending on the distance between the seed and target
regions and their sizes. Second, following the trajectory of
the particles requires interpolating the HARDI data at non-
grid locations. Ideally, the interpolation should be carried
out in the corresponding Riemannian manifold (Cheng et
al. 2009), which is very slow. Here we use trilinear
interpolation instead; this is a common choice in the
literature thanks to its simplicity and speed, despite being
less exact.

State Bivector

In our discrete formulation, no particle sampling is
necessary because the state bivector stores the continous
fraction of mass (equivalent to the fraction of particles in
“Baseline sampling-based method”) at each location, time
and direction of traveling. Specifically, we define the
bivector Q ¼ QðtÞ

p;u as the probability mass at spatial location
rp with direction u for discrete time t (Fig. 1a). Compared
with the sampling-based method, p and u play the role of r

and d(t−1) respectively in Eq. 6. The first index ranges from
p=1 to P=N, the number of voxels in the volume, while the
second index ranges from u=1 to u=98, corresponding to
the directions (ignoring colinearities) that connect a voxel
with the 124 neighbors in the 3-D lattice corresponding to a
5×5×5 cube (see Fig. 1b). The 98-neighborhood provides a
good compromise between: i) angular resolution: the larger
the neighborhood, the better the resolution (98 directions
here); ii) computational complexity: the larger the neigh-
borhood, the larger the memory requirements; and iii) step
length variability: the larger the neighborhood, the more
variable the step length is (between 1 and 3 voxels in our
case). Large step variabilities bias the propogation in certain
directions. Moreover, large step lengths can lead to artificial
jumps over structures outside the white matter mask. For
example, in Perrin et al. 2008, the probability mass could
jump between neighboring gyri.

The state bivector is illustrated in the upper row of
Fig. 2, which shows its distribution in space at different
time points without considering the direction of movement

i.e.
P98
u¼1

QðtÞ
p;u. These images are the equivalent of “freezing”

the particles in sampling-based methods, therefore ignoring
the direction u.

Transition Tensor

The evolution of the state bivector is determined by T, a
tensor of type (2, 2). Tp;u

q;v represents the transition
probability from position-direction (p, u) to (q, v). T is
very large (dimensionality N×98×N × 98) but extremely
sparse. The transition from step t to step t+1 is mathemat-
ically a tensor contraction:

Qðtþ1Þ
q;v ¼

XN
p¼1

X98
u¼1

Tp;u
q;v Q

ðtÞ
p;u ð7Þ

The elements of the transition tensor T can be designed
to mimic the behavior of a particle in the baseline method
as accurately as possible. First, all the elements that do not
satisfy all of the following four conditions must be set to
zero:

1. The origin voxel p must be in the brain white matter. A
mask that defines the white matter is calculated by
thresholding + (r); the output is refined by applying a
morphological closing operator with a spherical kernel
in order to smooth it and remove small holes (see
Fig. 1c–d).

2. Voxels p and q must be 98-neighbors in the 3D lattice
to avoid jumps.

3. Direction v has to be equal (parallel) to the vector rq–
rp. This is the way of “memorizing” the direction of the
previous movement of the probability mass.
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4. Direction u is deflected into v by a vector dfODF (see
Eq. 6) such that u and dfODF form an angle under a
certain threshold (30° in Perrin et al.’s study). This
regularizes the trajectory of the probability mass.

Then, if a transition is compatible with these conditions,
it is assigned a probability proportional to the sum of the
values of y f (rp) in the directions dfODF that deflect
direction u into direction v according to Eq. 6 i.e. the
directions that, when substituted in the equation, yield a
direction that is closer to v than to any other direction of the
98. To ensure that no probability mass in lost in the Markov
chain, the probabilities are scaled so that

P
q

P
v T

p;u
q;v ¼ 1,

unless the sum is zero, meaning that the voxel is a dead end
i.e. it is out of the white matter mask. In that case, all
transitions from the voxel are equal to zero, simulating the
end of the trajectory a particle. The algorithm to calculate
the elements of T is detailed in Table 1.

Compared with the sampling-based method, u and v $
rq � rp play the roles of d(t–1) and d(t) respectively in Eq. 6.
The tensor Tp;u

q;v controls the evolution of the state bivector
the same way as dfODF(r) controls the movement of the
particles in Eq. 6 (see upper row of Fig. 2 for an example of
the evolution of the bivector according to the tensor).

Relationship with the Connection Probability Map

The main advantage of FAST is that, once the transition
tensor T has been calculated, the connection probability
map for any seed voxel or region can be generated very
quickly. Given a seed region, one just builds the seed vector
Qð0Þ

p;u as:

Qð0Þ
p;u ¼

1

jSj
XH
h¼1

y f ;hðrpÞd Υ qh; 8 hð Þ � u½ �; rp 2 S

0; rp =2 S

8>><
>>:

ð8Þ

where S is the set of seed voxels, δ[∙] denotes the
Kronecker delta and and Υ(θ, 8) is a function that dis-
cretizes an arbitrary angle to the 98-neighborhood (see
caption of Table 1). In other words, we are spreading the
probability mass evenly across the voxels in the seed region
(1/|S|) and, within each voxel, the distribution of the
probability mass is proportional to the fODF. Then the
distribution at time t is:

QðtÞ
q;v ¼ Tp;u

q;v

� �ðtÞ
Qð0Þ

p;u ð9Þ

Fig. 2 Evolution of the probability mass and the state bivector
throughout the tractography, shown for an axial slice. The seed
region is marked in red. Upper row: probability mass resulting
from marginalizing the state bivector with respect to the directional

variable
P98

u¼1 QðtÞp;u. This is equivalent to freezing the particles in

a sampling-based method. Lower row: cumulative connection probabil-
ity map i.e. how they would look like if tractography had been terminated

early at time t. They are generated as
P98

u¼1

Pt
t0¼0 Qðt0Þp;u. The images

are log-transformed for easier visualization

Fig. 1 a State bivector at a given time step: at each location rp, each
orientation u=1,2,…98 has a probability that a particle from the seed
is traveling in that direction. b Unique directions connecting a pixel
with its neighbors in a 5×5 square. In three dimensions, there are 98

neighbors defined by unique directions out of the 124 in a 5×5×5
cube. c Brain extraction provided by BET. d White matter mask
obtained by thresholding + (r) and refining the output with a closing
operator
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where Tp;u
q;v

� �ðtÞ
denotes successive application of the

contraction operator t times. If the bivector is unfolded into
a vector and the transition tensor into a matrix, the
contraction can be implemented as a matrix product; this
has the advantage that one of the many implementations of
sparse matrices which are publicly available can be used
(an in-house Java implementation was used in this study).

Each contraction is equivalent to allowing all the
particles to take one step simultaneously in the baseline
method, so the sampling process is circumvented. The
contraction must be applied a sufficient number of times
tmax so that all the probability mass exits the volume, i.e.
until the state bivector is approximately zero. Then, the
connection probability map, which is the probability mass
that has visited each voxel (fraction of particles in the
baseline method) can be approximated by the sum of the
state bivector across time and direction:

M 0 rp
� � ¼

X98
u¼1

Xtmax
t¼0

QðtÞp;u ð10Þ

The state bivector must be marginalized with respect to
both direction and time because, in the baseline method,
neither the directions in which particles are traveling nor
their time of arrival is considered when computing the
connection probability map. When summing across time,
we are not considering that some probability mass can be
counted twice if there are any loops. However, this effect is
negligible because the white matter is well structured. The
lower row of Fig. 2 illustrates the process of formation of
the connection probability maps by showing how the map
would look like if the tractography was stopped early at
different time points.

Finally, because a 5×5×5 neighborhood is used, the
probability mass can skip some rows of voxels, causing
some striation artifacts. To ameliorate this problem, the
final output is calculated by smoothng M’(r) with a
Gaussian kernel. For visualization purposes, the logarithm
of the result is taken to compress its range and the output
min-max normalized to obtain values between zero and
one:

MðrÞ ¼ log½M 0ðrÞ»Gðr; ssÞ� �Mmin

Mmax �Mmin
ð11Þ

where G(r,σs) is a Gaussian smoothing kernel with standard
deviation σs and Mmin/Mmax are the minimum and
maximum of the smoothed connection probability after
taking the logarithm.

The tensor contraction runs sufficiently fast so that the
user can explore the connectivity of different regions of the
brain interactively. Once a volume is loaded in memory and
the transition tensor has been precomputed, which is done
in a relatively short time (under a minute), the T2 baseline
or the anisotropy image + (r) can be displayed on the screen
so that the user can click on different points of the volume
and get their connectivity maps very quickly.

Experiments and Results

Experimental Setup

First, the synthetic data was used in preliminary experi-
ments to tune the system parameters. Then, the real data
was used for formal evaluation through two experimental
studies. In the first experiment, the connection probability

∙ Calculate and normalize + (r) the standard deviation of the fODF: gðrÞ ( gðrÞ=max
r
½gðrÞ�

∙ Calculate white matter mask as + (r)> +min and refine it with a morphological closing operator.

∙ Initialize all elements of Tp;u
q;v to zero

∙ FOR each position/direction pair (p, u) such that rp belongs to the white matter mask

∙ SET PROBS[v]⇐0, for v=1,…,98

∙ SET SUM⇐0

∙ FOR each direction of the fODF dh,h=1,…H

∙ IF ANGLE(du,dh)<ANGLE_MAX

∙ SET CDIR⇐ + (rp)dh+(1-+ (rp))du
∙ SET PROBS[Υ(CDIR)] += y h(r)

∙ SET SUM += y h(r)

END

∙ IF SUM>0

∙ FOR each direction v=1,…98

∙ SET q⇐p+v (point+vector=point)

∙ SET Tp;u
q;v ⇐ PROBS[v]/SUM

END; END; END; END

Table 1 Pseudocode for calcu-
lating the transition tensor. + (r)
corresponds to the standard de-
viation of the fODF at each
voxel normalized to its maxi-
mum across the image. Υ(θ, 8) is
a function that downsamples the
H directions of the fODF to the
98 directions allowed in our
method: Υ(θ, 8)=u when the
angle formed by directions (θ,
8) and u is smaller than the
angle formed by (θ, 8) and any
other direction of the 98
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maps are compared directly as a whole using well-known
similarity metrics from the image registration literature: the
mean square error and the normalized cross-correlation (see
Table 2 for the definitions). Since the goal of stochastic
tractography is to assess the connectivity between regions
in the brain, a second experiment comparing the connec-
tivities was set up as follows. First, seeds were placed on
well-known tracts in the brain. Then, target regions of
interest (ROI) which are known to be connected to the
seeds were defined. Finally, the connectivities from both
methods were obtained by summing the connection
probability maps within the target ROIs and then compared.

Five well-known tracts were used in the experiments.
The target ROI was in all cases a 10 mm diameter sphere.
The seed/ROI pairs were the following:

1. Seed in the genu of the corpus callosum, two target
ROIs (left/right) in the frontal lobe near the lower part
of the superior front gyrus.

2. Seed in the splenium of the corpus callsoum, two target
ROIs (left/right) in the occipital lobe, near the most
posterior part of the middle occipital gyrus.

3. Seed in the corticospinal tract near the hippocampus,
target ROI between the leg and hand areas of the motor
cortex.

4. Seed in the central region of the cingulate gyrus, above
the corpus callosum, and target ROI near the para-
hippocampal gyrus.

5. Seed in the central region of the corpus callosum, two
target ROIs (left/right) at the superior region of the
frontal cortex near the central fissure.

The system parameters were set as follows. The HARDI
data were modeled by a spherical harmonic expansion of
order six to compute the signal to ODF matrix (Descoteaux
et al. 2007), setting the Laplace-Beltrami regularizer to
0.006, as suggested in that study (this is reflected in matrix
A1 in Eq. 3). The ODF was calculated for H=321 directions
corresponding to the 7th order, icosahedron-based tessella-
tion of the unit sphere. The ODF was deconvolved into the
fODF using ε=0.0005 for the Tikhonov regularization
(Eq. 5). The white matter mask was calculated as + (r)>+min=
1/3. The step size used in Perrin et al.’s method was made
equal to 0.5 mm, and the number of particles was set to 5×
104 for the synthetic data and 106 for the real images.

Regarding the maximum angle, ANGLE_MAX=30° was used
for Perrin et al.’s algorithm, as suggested in their paper.
However, it is convenient to allow a larger angle in our
method in order to compensate for the larger step size. This
parameter was determined from the experiments using
synthetic data (see “Results on Synthetic Data”). Finally,
For the mixing matrix K in Eqs. 4 and 5, the 10,000 voxels
with highest anisotropy were extracted from the data, their
ODFs computed, their directions of maximal diffusion
aligned with the z axis and the average taken.

Results on Synthetic Data

The synthetic data was used to tune the maximum turning
angle ANGLE_MAX and the width of the smoothing kernel
σs (Eq. 11). Several values of the parameters were tested,
and ANGLE_MAX =45° and σs =1.5 mm were selected
based on similarity with the output from Perrin et al.’s
method and knowledge of ground truth.

Tracking results with these parameter values are shown
in Fig. 3 for crossings at different angles and a smooth
bifurcation. The connectivity maps are stretched to the
interval [0,1], thresholded at 0.1 and log-transformed for
easier visualization. Even though the maps are already
normalized fractions, the ratio of probability mass that
reaches the target ROI is usually small and normalizing the
scores makes comparisons easier. Thresholding eliminates
artifacts of the random walk that hinder the visualization.
The middle row shows the output provided by Perrin at al.’s
method. When the angle is 30°, the detected tract bifurcates
into the crossing fiber in the orientation that is closest to the
direction of movement of the particles traveling from the
seed, while it suffers from minimal leaking in the opposite
direction. At 60° and 90°, there is also some leaking along
the crossing fiber.

The lower row in the figure displays the results from
FAST. Compared with the output from the stochastic
tractography, FAST provides very similar results for both
the bifurcation and the crossings. At the tuned value of
ANGLE_MAX, even the leakage patterns produced by
FAST are very similar to those from the output of the
method by Perrin et al.

Results on Real Data

Direct Comparison of Connection Probability Maps

In a first experiment, the connection probability maps from
FAST and Perrin et al.’s method are compared directly
using the metrics from Table 2. The metrics were computed
on the unthresholded maps. The average results accross the
ten subjects and the standard deviations are displayed in
Table 3. The highest similarity is achieved when the seeded

Table 2 Metrics used for directly comparing tractograms. Ai and Bi

are the ith voxels of the volumes to compare A and B respectively

Metric Definition

Mean squares MS ¼ 1
N

PN
i¼1 ðAi � BiÞ2

Normalized cross-correlation NCC ¼
PN

i¼1
AiBiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1
A2
i

PN

i¼1
B2
i

q
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region is located at the genu of the corpus callosum, but the
metrics for the other locations are also satisfactory and quite
consistent with one another. Even the cingulum, which is the
most curved of the evaluated tracts, displays good correlation.
Figure 4 compares the maximum intensity projection of the
unthresholded outputs for the different tracts in a sample
volume. Again, the visual appearance of the connection
probability maps for the two methods is very similar.

Comparison of Connectivity Measurements

Since the goal of stochastic tractography is to estimate how
strongly connected different parts of the brain are, it is
interesting to compute the connectivity between regions
with FAST and Perrin et al.’s algorithm and compare the
scores. Given a seed region and a target ROI, the
connectivity is defined as the sum of the connection
probability map (again, unthresholded) within the target
ROI. For these experiment, the five seed/ROI pairs defined
in “Experimental Setup” were used.

Figure 5 shows renderings of the seeds, target ROIs and
output connection probability maps for the five tracts. The
maps are very similar, and the connectivity values provided

by FAST and Perrin et al.’s method are well correlated (ρ=
0.83). Figure 6 shows a scatter plot for the connection
probabilities given by the two methods for the five seed-
target regions and the ten subjects (50 points in total).
Because the output of the stochastic method is not
deterministic, the range of the results for three executions
is displayed in the plot. These results indicate that FAST is
a good approximation of the stochastic method it is based
on (even for the highly curved cingulum bundle), except
when a very high-precision probability map is required. In
that case, it can still be beneficial to use FAST to
interactively find a good location for the seed regions, and
then run the sampling-based method. This way the output
of the stochastic method will be assuredly satisfactory, as
opposed to possibly having to modify the seed location and
rerun the slow probabilistic method multiple times.

Execution Speed

The most noteworthy feature of the proposed method is
its speed. Both approaches were implemented in Java
and tested on a desktop with an Intel i7 CPU. In the
implementation of the stochastic method, one million particles

Fig. 3 Axial slice of synthetic fiber crossings at different angles and a
smooth bifurcation: anisotropy (top row), connection probability map
from method by Perrin et al. (middle) and probability map from FAST
(bottom). The red box in the fractional anisotropy images marks the

seed region. The intensity of the connectivity map is stretched to [0,1],
thresholded at 0.1 and log-transformed for display. The threshold,
which removes artifacts of the random walk, was determined by visual
inspection

Table 3 Similarity metrics comparing the normalized tractograms
produced by FAST and by Perrin et al’s method. For each seed region
and metric, the mean and standard deviation across the ten subjects is

displayed. MS stands for mean squares, and NCC for normalized
cross-correlation

Seed Region

Metric Genu of corpus
callosum

Splenium of corpus
callosum

Cingulum Pyramidal
tract

Corpus callosum
(left/right)

All five
combined

MS (×10−3) 0.101±0.132 0.482±0.284 0.265±0.166 0.363±0.272 0.468±0.255 0.336±0.269

NCC 0.869±0.071 0.778±0.079 0.752±0.040 0.824±0.088 0.867±0.064 0.818±0.081
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were sampled in order to obtain a high-quality connection
probability map. The algorithms were parallelized to take
advantage of the multi-core structure of the computer.
Parallelization is simple in both cases: for the stochastic
method, each particle is independent of the others. For each
time step in FAST, different threads can work on different
parts of the state bivector corresponding to different image
regions. The preprocessing can also be parallelized easily,
because both the estimation of the fODF and the calculation of
the transition tensor can be divided into regions which are
handled by different threads.

The running times of the different steps of the two
methods, averaged over ten tractographies of the pyramidal
tract on the volume in Fig. 6, are displayed in Table 4. The
speed-up is especially large if the seed region is to be
moved due to unsatisfactory results or if a connection

probability map from a different brain structure is to be
computed. In this case, recalculating the transition tensor
(the most computationally expensive step of our algorithm)
is not necessary and the new output can be generated in a
few seconds, whereas the stochastic sampling would take
approximately 7 min. This makes it feasible to use FAST in
an interactive fashion, which is not possible with stochastic
methods.

Discussion

A very fast probabilistic tractography method has been
presented in this study. Given HARDI data, the algorithm
produces a connectivity map for a seed region in the
brain. The method relies on discretizing the directions of

Fig. 4 Maximum intensity pro-
jections of the connection proba-
bility map for one of the ten
subjects. The seeds are marked
with purple asterisks. The proba-
bility maps have been normalized
to [0,1] and log-transformed for
display, but not thresholded.
a Splenium and genu of corpus
callosum, Perrin et al.’s method,
axial projection. b Cingulum,
saggital projection. c Pyramidal
tract, coronal projection. d Left/
right connections of corpus
callosum, coronal projection.
e–h Outputs from FAST

Fig. 5 rendering of T2 baseline volume, seed and target regions, and
resulting connection probability map. The seeds are marked with
yellow asterisks, whereas the target ROIs and marked with colored
spheres. The intensity of the probability maps is normalized to [0,1],
thresholded at 0.04 and log-transformed for display. Once more, the

threshold was determined by visual inspection. a Genu (purple
spheres) and splenium (red spheres) of corpus callosum for Perrin et
al.’s method. b Cingulum tract c Corticospinal tract. d Left/right
connections of corpus callosum. e–h) Output provided by FAST
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propagation to calculate the connection probability map
in a deterministic fashion in a very short time. Probabil-
ity mass represented by a state bivector flows from the
seed region following a transition tensor in a similar way
in which particles do in sampling-based stochastic
tractography methods. The bivector and the tensor
include information not only on the position but also
on the direction of movement, which allows the proposed
framework to accomodate second-order models of parti-
cle propagation such as trajectory regularization through
particle deflection.

The main difference between FAST and other fast
discrete propagation methods is this second-order model.
Neither graph-based techniques nor front propagation
algorithms can simulate the propagation of a particle
with inertia in the white matter, which can be desirable
in some tracking applications. On the other hand, all the
discrete propagation methods discussed in the introduc-
tion (Fout et al. 2005; Merhof et al. 2006; Iturria-Medina
et al. 2007; Sotiropoulos et al. 2010a; Parker et al. 2002;
Zalesky 2008; Lifshits et al. 2009; Sotiropoulos et al.
2010b; Staempfli et al. 2006) can be formulated in our
framework, since:

– It supports all the affinity functions used in those
studies. We used a function of the direction of arrival
and the ODF in order to replicate the results from
Perrin el al., but it would be immediate to replace it by
an arbitrary function (for example including the ODF
of the proposed destination voxel).

– It supports any type of neighborhood.
– It supports shortest path search using Dijkstra’s

algorithm, even though this aspect has not been
analyzed in this study.

Another contribution of this paper is to quantitatively
assess the impact of the discretization on the tractog-
raphy results. We have compared FAST to an imple-

mentation of Perrin et al.’s stochastic tractography
method. The transition tensor was designed to mimic
the behaviour of particles in the baseline method as
closely as possible. The results on synthetic and real data
show that FAST produces connectivity measures that
correlate well with the output of the baseline stochastic
method.

The best feature of FAST is that, once the transition
tensor has been computed, it is approximately 60 times
faster than the stochastic method it is based on. Loading the
volume, computing the fODF and the transition tensor takes
approximately 45 s. We did not use correction for solid
angle (Aganj et al. 2010) when computing the ODF nor
constrained optimization methods when deconvolving it
into the fODF (Jian and Vemuri 2007), which would make
these initial computations slower. Once the tensor is ready,
the tracking part of the algorithm runs in approximately 7 s.
This way, a user can utilize FAST to explore the
connectivity of different parts of the brain, quickly refining
the position and size of the seed regions if he is not satisfied
with the results.

Though 98 orientations typically suffice to capture a wide
range of fiber bundles, the limited directional resolution of the
method can still be a disadvantage when tracking very thin
and/or curved fiber tracts: if the fibers happen to lie along a
direction that is relatively far from the 98 allowed orientations,
the algorithm might still have problems following the bundle.
Another minor disadvantage of the method is that, as
explained above, it requires precomputing the transition
matrix before starting the tracking.

Finally, it is important to note that FAST requires a
certain amount of memory to store the transition tensor.
The implementation takes advantage of the fact that the
majority of the elements of the tensor are zero elements
because they correspond to illegal transitions, but it still
requires 11 GB of RAM. However, there are different
ways in which the memory requirements could be
lowered. First, it could be possible to replace our in-
house implementation of sparse matrices by a more
efficient one. Another possibility would be to use 16-bit
floating point data to represent the elements of the
transition tensor, instead of the 32-bit representation used

Fig. 6 scatter plot of the connectivity measures provided by our
method and Perrin et al.’s. Each data point shows the range over three
executions of the latter. The connectivity was normalized to the
maximum value. The correlation coefficient is ρ=0.83

Table 4 Execution times for the different computations required by
FAST and the method by Perrin et al.

Method

Computation Perrin et al. FAST

Fiber ODF (fODF) 2.58±0.14 s 2.70±0.12 s

Transition tensor N/A 43.9±2.1 s

Fiber tracking 442±18 s 7.28±0.33 s
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in the current version. The impact on the results should
be minimal, whereas the memory requirements would be
reduced by 50%. Finally, it would also be possible to use
memory compression techniques, but that would make
the method slower.

Information Sharing Statement

The data used in this study belong to an ongoing study and
cannot be shared at the moment. However, they will
eventually be released and posted at the website of the
Laboratory of Neuro Imaging (http://www.loni.ucla.edu/
Research/Databases/). At that time, the JAVA code (both
source and compiled) will be made available at the first
author’s website (http://www.jeiglesias.com) so that the
results in this study can be reproduced.
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