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Abstract Automatically segmenting anatomical structures from 3D brain
MRI images is an important task in neuroimaging. One major challenge is
to design and learn effective image models accounting for the large variability
in anatomy and data acquisition protocols. A deformable template is a type
of generative model that attempts to explicitly match an input image with a
template (atlas), and thus, they are robust against global intensity changes.
On the other hand, discriminative models combine local image features to cap-
ture complex image patterns. In this paper, we propose a robust brain image
segmentation algorithm that fuses together deformable templates and informa-
tive features. It takes advantage of the adaptation capability of the generative
model and the classification power of the discriminative models. The proposed
algorithm achieves both robustness and efficiency, and can be used to segment
brain MRI images with large anatomical variations. We perform an extensive
experimental study on four datasets of T1-weighted brain MRI data from dif-
ferent sources (1, 082 MRI scans in total) and observe consistent improvement
over the state-of-the-art systems.
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1 Introduction

In neuroimaging studies, brain MRI segmentation is often a critical preprocess-
ing step. Automated segmentation enables morphometric analysis of cortical
and subcortical structures in large datasets [19], a scenario in which manual
labeling is impractical. The automatically segmented regions can be used to
extract informative characteristics of structures, such as volumes and shape. In
the clinic, these features have the potential to be used to evaluate the condition
of a subject. Moreover, the identified boundaries between cortical and subcor-
tical structures can aid the planning of brain surgery [76]. In neuroscience
research, statistics derived from the segmentations of control and experimen-
tal groups can be used to identify structural differences between them. In the
context of disease studies, such differences can lead to the identification of new
pathological biomarkers. For instance, the atrophy and morphological change
of hippocampus have been identified as important markers for Alzheimer’s
disease [31].

Several practical segmentation methods are widely used in neuroimaging
studies, e.g. Caret [15], FreeSurfer [19], FSL [65], ITK-SNAP [88], SPM [21],
and the segmentation utilities in 3D Slicer [51]. However, robustness against
variations in the input imaging data remains an open problem. The main diffi-
culties are due to: (1) variations in image intensities due to differences in MRI
acquisition (hardware, pulse sequence, imaging parameters); (2) anatomical
variations within and across populations. Intensity normalization and image
registration [29,35] can be used to standardize the images prior to segmenta-
tion, but only to some extent, since many of the variations are intrinsic.

In this paper, we aim to build a robust system that automatically seg-
ments T1-weighted brain MRI volumes into anatomical sub-cortical and corti-
cal structures. We approach the 3D brain image segmentation problem from a
statistical modeling perspective, combining a generative and a discriminative
model with feature augmentation and adaptation. Generative and discrimi-
native models were first explored and compared in the machine learning and
computer vision literatures [49,67]. It has been shown that, while generative
models outperform discriminative models when the size of the training dataset
is small, the latter often have a better asymptotic behavior [44]. Works that
attempt to combine both types of model include [32,56,37,28], which show
that integrating the two types of models can be beneficial.

Specifically, the goal of brain MRI segmentation is to separate the voxels
of an input scan into a number of classes. In some studies, these classes cor-
respond to the three basic tissue types in the brain: gray matter (GM), white
matter (WM), and cerebrospinal fluid (CSF) [75,50,39,61,81,6,43]. Other
works have attempted to produce labels at the level of brain structures (e.g.,
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hippocampus, pallidum, putamen, etc.) [19,58,34,7], which is a more difficult
problem but yields a richer description of the data.

To produce these labels, generative models typically rely on two compo-
nents: a prior term that summarizes the statistical frequency and spatial dis-
tribution of labels and a likelihood term that models how these labels translate
into intensities. Then, Bayesian inference can be used to estimate which la-
bels (i.e., which segmentation) are the most likely given the observed image
intensities. The prior term is usually in the form of a statistical atlas endowed
with deformation model [22,39,19]. Other priors include the use of principal
component analysis (PCA) to model whole shape variations [53,85] or Markov
random fields (MRF) to impose local shape constraints [19,80,59,9]. For the
likelihood term, Gaussian distributions or mixtures thereof have been predom-
inant in the literature, due to their ease of inference [18,85,52,13]. Because
the Gaussian parameters (means and variances) are estimated during the opti-
mization, these algorithms are robust against changes in MRI contrast. More-
over, they can also explicitly model image artifacts such as the MRI bias field,
making them robust against them as well (see for instance [39]).

Recently proposed multi-atlas methods such as [26,82,35,3,27,78,7,57] can
also be seen as generative models. These methods are based on deforming a
number of labeled templates to a test scan, and then fusing the deformed labels
into a single, enhanced estimate of the segmentation. As explained in [57], these
algorithms can be interpreted as generative models in which the intensity and
label of each voxel are taken from one of the deformed templates as indexed
by a latent, discrete field.

Discriminative models attempt to directly estimate the label of each voxel
given the local appearance of the image around it. To do so, a number of fea-
tures are computed for each voxel and fed to a classifier that attempts to infer
the corresponding label. Popular choices of features include image intensities,
gradients, textures and other derived local measures [69]. Choices of classifier
range from simple rule-based classifiers [41] to more complicated frameworks
such as support vector machines (SVM [38,36,1,89]), AdaBoost [55,48] and
the increasingly popular random forests [8,87,25,86]. These techniques show
promising results when segmenting tissues, structures, and even tumors ([5,
42]) if the variations of the test data with respect to the training data are
relatively small. Unfortunately, changes in MRI contrast due to differences in
imaging hardware or acquisition protocol considerably reduce the performance
of these methods, limiting their applicability to MRI scans that have not been
acquired the same way as the training dataset.

Comparing generative and discriminative models, we observe that de-
formable templates [17,52] guided by generative models can efficiently model
anatomical structures, thanks to their flexibility and adaptability. However,
their simplified assumptions on underlying image statistics (e.g., Gaussian
distributions) limit their ability to deal with complex intensity patterns. On
the other hand, such patterns can be efficiently captured by discriminative
models thanks to their capacity of fusing together a large number of features.
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However, as described above, they are sensitive to global intensity changes and
have difficulties to include spatial information.

In this paper, we propose combining the strengths of the two approaches by
fusing deformable templates (generative) and informative features (discrimi-
native). The presented approach is based on using the estimated segmentation
and the parameters of the generative model to normalize the image intensities
and extract robust, invariant local features. This creates an augmented feature
space that can be used in a discriminative framework, effectively fusing the
two types of model.

The rest of this paper is organized as follows. First, Section 2 surveys
other attempts of combining generative and discriminative models in brain
MRI segmentation. Section 3 describes the proposed segmentation framework.
Section 4 describes how to train the model and use it to segment previously
unseen test cases. A set of experiments and their corresponding results are
described in Section 5. Finally, Section 6 concludes the paper.

2 Further related work

Here we discuss other works in the literature that are similar to the proposed
approach, highlighting the differences between them:

– Verma et al. [73] use Bayesian and SVM models to classify the intra- and
inter-patient tissue distributions. However, the two families of methods are
separately used for the different sub-problems, rather than in an integrated
fashion.

– In [69], a discriminative classifier is used for appearance, and its classifi-
cation results are regularized by generative models (PCA) capturing the
shape prior. The two types of models are represented as separate modules
and not jointly considered. In this paper, we utilize the same discriminative
model, whereas the generative models are totally different. As shown in the
experiments later on in this paper, the proposed method outperforms this
algorithm, which is not robust across datasets due to the inability of the
discriminative model to adapt to the new data.

– Wels et al. [76] cast the subcortical segmentation as a posterior maximiz-
ing problem with shape parameters. The whole problem is decomposed into
four sub-problems in sequence and each is solved by a discriminative model.
Their segmentation then locates, rotates, scales, and refines the boundaries
of structures in order, which performs a rough generative process. Never-
theless, the four underlying classifiers are purely discriminative so their
weaknesses remain. If some stage fails, wrong information is propagated
without any adaptation or correction. On the contrary, our discriminative
model can benefit from the adaptation capability of generative models so
the robustness is achieved.

– Wels et al. [77] also propose a hybrid method for tissue segmentation.
However, their approach is sequential: the discriminative model serves for
initializing and constraining the subsequent fitting of the generative model,
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which is carried out with an expectation maximization algorithm. The
approach is validated on 38 scans from the same dataset (Internet Brain
Segmentation Repository) using only three classes (WM/GM/CSF). It is
unclear how this method would generalize to a higher number of brain
structures, since the application of discriminative models at the structure
level is more challenging than at tissue class level (i.e., just three classes).

– Fan et al. [16] use a deformable template (generative) to estimate a rough
region of each tissue, and a discriminative classifier (SVM) is trained on
all tissue volumetric measures.

– Wang et al. [74] propose a two-stage classifier wrapper for adapting dif-
ferent labeling protocols. They use the second stage classifier to learn the
systematic errors from the first stage. As in Fan et al., the classifier inde-
pendently refines an initial solution provided by the generative model.

Compared with these approaches, the key aspect that differentiates our
algorithm is the use of an adaptive, augmented feature space that allows us
to effectively fuse generative and discriminative models (as described in Sec-
tion 3.3), rather than simply cascading them.

3 Model description

In this section, a general formulation of the segmentation problem is provided.
We first compare the generative and discriminative approach to the segmen-
tation problem. The comparison reveals their complementary properties, and
inspires our hybrid method. The idea is to first use a deformable template (the
generative component, described in Section 3.2) that produces a first estimate
of the segmentation for an input volume. This rough estimate is then used
(as described in in Section 3.3) to: (1) calculate the regional statistics of the
input volume for local (discriminative) feature normalization, and (2) derive
local features such as region boundaries and label priors. These features, in
combination with local appearance-based, discriminative features, give an aug-
mented set that yields a rich description of the data by integrating information
from the generative and discriminative sides. This augmented feature set will
be used to train a classifier as described in Section 4.

3.1 Problem formulation

Our goal is to segment a given 3D volume/image V into K anatomical struc-
tures, where K is a fixed number. A training set of N volumes with their
corresponding annotations (no less than K labels) is assumed to be available,
and we denote this set as S = {(Vtr

1 , Atr
1 ), · · · (Vtr

N , Atr
N )}, where Vtr

i and Atr
i

are the i’th training volume and its corresponding annotation. We represent
each structure by a region Ri. A segmentation is denoted as

W = {(Ri, Θi), i = 0...K}, (1)
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where R0 refers to the background region, and each Ri consists of all the voxels
of the ith anatomical structure.

These regions are disjoint and they cover the entire volume:
∪K

i=0 Ri = Λ,
where Λ defines the 3D lattice of the input V, and Ri ∩Rj = ∅,∀i ̸= j. Θi is
a vector that includes the model parameters for the appearance and shape of
region i.

If we define p(V(Ri)|Ri, Θi) as the likelihood of the volume confined in
region Ri under model parameters Θi, the optimal solution in a Bayesian
framework can be obtained as:

W ∗ = argmax
W

p(W |V) = argmax
W

p(V|W )p(W )

= argmax
W

K∏
i=0

p(V(Ri)|Ri, Θi)p(Ri)p(Θi), (2)

where p(Ri) is the probability of the shape prior, whereas p(Θi) puts a prior on
the parameters and is usually assumed to be flat i.e., p(Θi) ∝ 1. Moreover, we
have assumed that the shapes of the different regions are independent, which
allows us to write p(W ) =

∏
p(Ri). Whereas a more faithful model would

consider dependencies between the shapes of the structures, this common as-
sumption greatly simplifies both the training of the model and the inference in
the Bayesian framework. We further assume that the intensity inhomogeneity
of a region is smooth and small enough [40].

In general, independent identical distribution (i.i.d.) assumptions are made
in the likelihood function, and the appearance of each structure is approxi-
mated by a Gaussian model [18,53]. Let G(·;Θi) denote a Gaussian distribu-
tion parameterized by Θi and let vj be the intensity value of voxel j. The
likelihood then can be represented as:

p(V(Ri)|Ri, Θi) =
∏

∀j∈Ri

G(vj ;Θi),

where Θi contains the mean and standard deviation of region i: Θi = {v̄i, σi}.
As argued in [69], using only generative models with i.i.d. assumptions is often
too simplistic to fully account for the realistic textures of MRI data. This
insufficiency, especially between structural boundaries, will be addressed by
the discriminative models in our method.

For a discriminative approach, there is no explicit data parameter esti-
mated for each input volume V; the model is instead learned in the form of
a classifier derived from a training dataset. Thus, the solution vector by a
discriminative model becomes

WR = {Ri, i = 0...K}. (3)

We use |V| to represent the total number of voxels in V and lj to denote the
label assigned to voxel j. Ri is therefore the set of all lj = i. A discriminative
classifier directly computes the class label at a voxel j which has the maximum
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class posterior, which is based on the local features computed on the sub-
volume V(Nj) centered at j:

W ∗
R ≡ (l∗j , j = 1..|V|) = argmax

WR

|V|∏
j=1

p(lj |V(Nj)), (4)

where the label of voxel j maximizing the equation is denoted as l∗j .

If we compare the solution vectors W and WR in Equations 2 (genera-
tive) and 4 (discriminative), we make two observations. First, generative mod-
els explicitly estimate the data parameters and thus are adaptive to the in-
put. Second, discriminative models can efficiently capture complex local image
statistics by combining many low- and mid-level features. As discussed above,
generative models make simplistic assumptions for the likelihood term model-
ing the local appearance, whereas discriminative models struggle capturing the
information from larger regions. Therefore, in this study we will use deformable
templates guided by generative models (as described in Section 3.2) and seek
to fuse them with the discriminative model in Equation 4 (as described in
Section 3.3).

3.2 Deformable templates guided by generative models

For the generative model of image intensities we adopt a Gaussian mixture
model due to its modeling capability [19,85,52] and relatively low computa-
tional complexity. Let Θ = {Θi, i = 0, . . . ,K}, we introduce the weights of
Gaussian components so the parameters for each region are given by:

Θi = {(v̄(m)
i , σ

(m)
i , β

(m)
i ),m = 1, 2},

where v̄
(m)
i , σ

(m)
i , and β

(m)
i are respectively the mean, standard deviation

and weight of Gaussian component m of region Ri. In this paper, we assume
two components m = 1, 2 for each model, which is empirically sufficient to
describe the appearance of the anatomical regions. The parameters of these
Gaussian components are obtained with a expectation maximization (EM)
algorithm [10]. According to this model, we have the following likelihood func-
tion of voxel j in region Ri:

p(vj ;Θi) =
2∑

m=1

β
(m)
i G(vj ; v̄

(m)
i , σ

(m)
i ), (5)
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Given a volume V, we seek to minimize an energy function under the
Bayesian formulation of Equation 2 with flat p(Θi):

E(WR, Θ,V)

=

K∑
i=0

− log p(V(Ri)|Ri, Θi)− log p(Ri)− log p(Θi)

≈
K∑
i=0

∑
j∈Ri

− log p(vj ;Θi) + κ
∑

j′∈Nj

δ(l(j
′
) ̸= l(j))

 ,

(6)

where the first term assumes the mixture model in Equation 5 and the second
term is a Markov Random Field prior for p(Ri) that encourages smooth region
boundaries/surfaces; using other priors is also possible. Nj is the set of neigh-

boring voxels of j and l(j
′
) and l(j) are respectively the region labels of j

′
and

j; δ(·) is Kronecker’s delta and κ is a constant that balances the weight of the
smoothness prior versus the likelihood of the intensities. We assume p(Θi) ∝ 1
so this term can be omitted. Such a flat prior implies that, a priori, we do not
prefer any values of the Gaussian parameters over others. In other words, we
assume no prior knowledge on the intensities of the image.

An estimate of WR and Θ can be obtained by minimizing E(WR, Θ,V):

Ŵ = (ŴR, Θ̂) = argmin
WR

E(WR, Θ,V). (7)

Starting from an initial solution (a deformed template containing a volume
Va and its label annotation Aa), we minimize the energy E(WR, Θ,V) in
Equation 6 using a region competition algorithm [69,91].Henceforth, we denote
this algorithm as gmDT (generative model based on a deformable template).

To avoid the initial solution is biased, we use the set of training volumes
with their corresponding labels, S = {(Vtr

1 , Atr
1 ), · · · (Vtr

N , Atr
N )}, to generate

the template denoted as (Va, Aa). We use D(V,Vn) to denote the dissimi-
larity between V and Vtr

n after applying a linear transformation (in our case,
computed with AIR [79]). The learned template volume Va minimizes the
total dissimilarity with all other volumes in the training set:

Va = arg min
V∈S

N∑
n=1

D(V,Vtr
n ), (8)

The corresponding manual annotation of Va, Aa, is used as the initial WR

in Equation 7. Then, the obtained segmentation estimated by gmDT , ŴR, is
an approximation to the optimal solution. A byproduct of gmDT is Θ̂, the
parameter estimates.
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3.3 Model fusion

Next, we discuss the discriminative model in our method, which is used to
incorporate the adapted information from gmDT . For a purely discriminative
model, we denote the total number of candidate features by B and the kth

feature for voxel j computed on volume V(Nj) by fd,k(j). The discriminative
feature vector Fd(j) of each voxel j can be written as:

Fd(j) ≡ [fd,1(V(Nj)), · · · , fd,B(V(Nj))] (9)

A discriminative classifier, e.g., boosting [23], selects a number of infor-
mative features (typically a couple of hundred) from Fd(·) and fuses them
with appropriate weights. The training process is driven by the minimization
of the classification error in the labeled training data and the generalization
power of the classifier (VC dimension, [71]). Hence, the quality of a trained
discriminative classifier is greatly determined by the effectiveness of its feature
set.

To achieve enhanced robustness, the basic idea here is to integrate the adap-
tiveness and the fusion capability respectively from generative and discrimina-
tive models. This is done by augmenting the feature vector Fd with (ŴR, Θ̂)
from the deformable template. This way, we achieve robustness against inten-
sity variations while we equip Fd with structure-adapted features.

Using ŴR for intensity normalization
Features computed directly from V(Nj) are often sensitive to geometrical

and intensity variations, but Θ̂ from Equation 7 can then be used to normalize
V. We denote the normalized volume as VΘ̂. The new, augmented feature
vector F(j) is:

F(j) ≡
[
FŴR

(j), fd,1(VΘ̂(Nj)), · · · , fd,B(VΘ̂(Nj))
]
,

(10)

Comparing Equation 10 with Equation 9, fd,k(VΘ̂(Nj)) is computed on the
normalized volumeVΘ̂,instead of fd,k(V(Nj)), for a voxel j. FŴR

(j) represents

the augmented features based on ŴR that will be discussed below.
Normalization is achieved by intensity correction based on matching the

intensity of the regions to those from the template volume [29]. Specifically,
we search for the linear transform that best matches the intensities in a least
squares sense, a problem that can be solved with standard techniques [66].
Augmenting atlas features from ŴR

From ŴR (given by gmDT ), we have an estimated region label for each

voxel j. To differentiate this estimated label from lj in Equation 4, we use l̂j
to denote it. From ŴR, the displacement vector of a voxel j to the centroid of
structure k, dR̂k

(j), can be calculated. This displacement vector is a spatial
feature which is more adaptive than the absolute coordinates. Similarly, we
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can compute the signed distance function of each voxel j with respect to the
estimated region boundary of each anatomical structure. The signed distance
sR̂i

(j) of voxel j to the boundary of region R̂i is:

sR̂i
(j) =

{
+minj′∈Ĉi

d(j, j
′
) if l̂(j) = i

−minj′∈Ĉi
d(j, j

′
) otherwise

, (11)

where d(j, j
′
) is the distance between j to any point j

′
on the region boundary

Ĉi. The positive/negative sign indicates that j is inside/outside R̂i. Now our
augmented feature vector becomes:

FŴR
(j) = (dR̂0

(j), · · · , dR̂K
(j), sR̂0

(j), · · · , sR̂K
(j)), (12)

Henceforth, we denote these features derived from ŴR as “atlas features”.
They correspond to FŴR

(j) in Equation 10.

4 Learning and using fusion models

Here we aggregate all the components in Section 3 to define the training and
classification (testing) stages of our method. An atlas (template) will first be
selected among the training data as the template. As described in Section 3.2,
the template will be guided by gmDT to adapt to the input volumes. Though
we know the true labels of the training data, gmDT is applied (normaliza-
tion and atlas features) in training the discriminative models so the resultant
classifiers can model the estimates from gmDT in the test stage.

4.1 Atlas selection and feature constitution

In the training stage, we have the set of training volumes with their cor-
responding labels S = {(Vtr

n , Atr
n ), n = 1..N}, which have been normalized

to the same scale and properly preprocessed. A template, (Va, Aa), can be
learned based on Equation 8.

For our model, we will need to learn the uncertainty from gmDT before
training the discriminative models. Using Aa as the initial labeling, we perform
gmDT on the rest of training volumes in S. For each training volume Vtr

n , an

estimated segmentation Ŵn
tr

is obtained from gmDT . On the other hand, we
define the feature set for the discriminative classifiers, Fd(·), as local features
such as gradients, curvatures, and Haar-like responses at various spatial scales
(approximately 5, 000 in total in this paper, but our method is not restricted
to the specific Fd(·)). Since the training volumes are in the same size, these
features can be computed directly on a pre-defined sub-window (of size 11 ×
11×11) centered at the target voxel. A detailed discussion of how these features
are computed can be found in [69].

We use the estimated Ŵn
tr

to: (1) normalize the intensity of Vtr
n to Va as

in Section 3.3 and then compute
[
fd,1(VΘ̂(Nj)), · · · , fd,B≈5000(VΘ̂(Nj))

]
on
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the normalized intensity volume; and (2) compute the atlas features FŴR
(j)

as in Equation 12. Combining the two sets yields the augmented feature set
(about 6,000 features), F (j), for each voxel j in the training volume Vtr

n .
In short, gmDT is also applied to the training volumes. The role of the

ground truth labels in the training stage is to train the discriminative, su-
pervised classifiers; they do not participate before computing the augmented
features.

4.2 Integration within a discriminative framework

Once all the features F(j) are computed, we train a classifier upon the training
set

ℵ = {(l(j),F(j)), j = 1..T},

where l(j) is the true label for voxel j, and T is the total number of voxels in
all the training volumes.

A learning algorithm either directly combines all the features in F(j) like
SVM [72], or selects a set of features out of F(j) such as boosting [23] and
random forests [8]. Either way, features are combined into the classifier in or-
der to minimize the training error. When training our model, no preference
was given to features derived from the atlas over those computed from image
intensities (e.g., Haar-like), and vice versa. Here we adopt the auto-context
algorithm using a cascade of PBT (Probabilistic Boosting Tree) classifiers [68]
as the discriminative model, which performs feature selection and fusion by
exploring a high-dimensional feature space. Note that, in addition to the fea-
tures in F(j), auto-context [68] itself is an iterative method that incorporates
contextual information into the classification by augmenting the feature space
as follows. In a first iteration, the classifier is trained on the available set of
features. In subsequent iterations, the label posteriors (as estimated by the
current classifier) at a fixed set of shifted locations are added to the feature

1: Given: A set of training volumes together with their image features F (j) after applying
gmDT , S = {(Vtr

n , Atr
n ), n = 1..N}. The size of each volume is |V |.

2: For each volume V tr
n , initialize probability maps P

(0)
n with uniform distribution on all

the labels.
3: Iteratively train T classifiers:
4: for t = 1 to T do
5: Make a training set of voxel samples from S: {(lni, (F (ni), P

(t−1)
n (i))), n = 1..N, i =

1..|V |}, where i is a voxel of volume V tr
n and lni is from Atr

n .
6: Train a classifier (in our implementation, a PBT classifier) on both image and context

features from F (ni) and P
(t−1)
n (i) respectively. Output the classifier.

7: Use the trained classifier to compute new probability maps P
(t)
n on all the labels for

each training volume V tr
n .

8: end for
9: The algorithm outputs a sequence of T trained classifiers for p(T )(li|F (i), P (T−1)(i))

Fig. 1 Training process of auto-context algorithm for our brain segmentation method.
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1: Given: N training volumes with their corresponding annotations
(V tr

1 , Atr
1 )· · · ...(V tr

N , Atr
N )

2: Learn (V tr
a , Atr

a ) from the N training volumes as the atlas.
3: for i = 1 to N do
4: Obtain Ŵi

tr
= {ŴR, Θ̂} by minimizing Equation 6. This step is called gmDT .

5: for j = 1 to |Λ| do
6: Obtain normalized feature set Fd(i, j) based on Θ̂:[

fd,1(Vi(Nj)), · · · , fd,B(Vi(Nj))
]

→
[
fd,1(Vi,Θ̂(Nj)), · · · , fd,B(Vi,Θ̂(Nj))

]
7: Merge Fd(i, j) with the atlas features based on ŴR:

8: F(i, j) ≡
[
FŴR

, fd,1(Vi,Θ̂(Nj)), · · · , fd,B(Vi,Θ̂(Nj))
]

9: end for
10: end for
11: Take samples from {Atr

i (j),F(i, j) : i = 1..n, j = 1..|Λ|} to train a multi-class classifier
p(l|F).

Fig. 2 Training process. All the training volumes are assumed to be skull-stripped and
aligned.

space, implicitly capturing the shape of the structures to segment. A summary
of the algorithm is described in Figure 1; the reader is referred to the original
paper [68] for further details.

Nevertheless, the key of our proposed method is the augmenta-
tion/normalization of features, which implicitly fuses the generative and dis-
criminate aspects of the model. It is not tied to any specific choice of classifier
so one could also use boosting, random forests, or any probabilistic classifiers
as the discriminative classifier.

Once a classifier has been trained on the training set ℵ = {(l(j),F(j)), j =
1..T}, we can use it to estimate p(l|F(i)) for a given test voxel i. A test
volume is required to have the same preprocessing steps and resized such that
all features can be correctly computed. Each test voxel will be assigned to the
label that maximizes the probability: l∗i = argmaxl p(l|F(i)).

Fig. 3 Training procedures of the proposed fusion method. A template of the volume/label
pair is selected and guided by gmDT using other training volumes as the input. The aug-
mented feature set F is then extracted to train the discriminative model giving the manual
labels of the training volumes.
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We summarize the training algorithm in Figure 2 and illustrate it in Fig-
ure 3. In Figure 3, the identical template, (Va, Aa), will be used in both train-
ing and testing. The testing procedure consists of three stages analogous to
those in the training procedure, except the last stage: performing classification
using the trained classifier.

5 Experiments

To examine the effectiveness of the proposed algorithm, we perform a thorough
empirical study using four MRI T1-weighted brain datasets and compare our
method against the state-of-the-art systems. We focus on sub-cortical struc-
tures due to their popularity in the literature. Besides comparing our method
with the two components in our method, gmDT and DM , we also include the
methods developed by other researchers to show the integration can achieve
better performance in most scenarios.

We will demonstrate the performance of the integrated method by four
parts: (1) Increased importance of the adapted atlas features using the fusion
mechanism; (2) Comparison using the same dataset for training and testing
(intra-dataset). This scenario is very suit for DM and the proposed method
is comparable to it; (3) Comparison using different datasets for training and
testing (inter-dataset). This scenario is favored by gmDT and our method
achieved better results; (4) Performance on longitudinal data, which shows
the potential of our method to capture the morphological changes by the same
subject. Though the fact that DM tends to fail in the last two parts is known,
we still show its quantitative results for completeness.

5.1 Experimental setup

In this section, we elaborate the datasets used in our four parts of experiments,
the three main algorithms to compare, the pre-processing steps we applied to
the heterogeneous datasets, and the measures we used for our comparisons.

5.1.1 T1 MRI datasets

All the datasets used in our experiments are the following (the suffix indicates
the number of volumes in the dataset):

(1) IBSR18: We use the 18 scans with 84 manually annotated structures
from the Internet Brain Segmentation Repository (IBSR) 1 (we do not in-
clude the 120 cortical/subcortical parcellations as 84 structures are sufficient
in our experiment). All volumes were scanned at 1.5T. This dataset has been
extensively utilized as a benchmark for evaluation in various papers 2.

1 http://www.cma.mgh.harvard.edu/ibsr
2 http://www.cma.mgh.harvard.edu/ibsr/PubsUsingIBSR.html
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(2) LPBA40: The LONI Probabilistic Brain Atlas dataset (LPBA) [62] con-
tains volumes from 40 healthy subjects with 56 anatomical structures manually
annotated. These structures include both cortical and subcortical regions. All
subjects were scanned with a GE Signa 1.5T systems with a SPGR sequence.

(3) LONI28: 28 scans from normal subjects were acquired on a GE Sigma
1.5T scanner with a SPGR sequence. Eight subcortical structures (left and
right hippocampus, putamen, caudate nucleus, and lateral ventricle) were
manually delineated by neuroanatomists.

(4)ADNI980: The Alzheimer’s Disease Neuroimaging Initiative (ADNI) [31]
was launched in 2003 by government, private pharmaceutical companies and
non-profit organizations. The goal of ADNI has been to develop measures for
the progression of mild cognitive impairment (MCI) and early Alzheimer’s dis-
ease (AD). ADNI is the result of efforts of many co-investigators from a broad
range of academic institutions and private corporations, and the data keeps
growing by its follow-up projects. Readers may see www.adni-info.org for more
information. In this study, 490 pairs of brain scans (980 volumes in total) were
selected from ADNI. They correspond to 490 subjects who are known to be
one of the three groups: elderly controls, mild cognitive impairment (MCI),
or Alzheimer’s Disease (AD). For each subject, two volumes were acquired 12
months apart for longitudinal analysis. This dataset is particularly challenging
because the subjects were scanned at different sites with different scanners.
Therefore, these volumes display high variability stemming from intrinsic lon-
gitudinal changes of subjects and scanning configurations. More details of the
various scanning protocols can be found in http://adni.loni.ucla.edu/

research/protocols/mri-protocols/.
Note that not all the datasets have manual delineations of all subcortical

structures. We summarize the main characteristics of these four datasets, as
well as the role they play in our experiments, in Table 1.

Dataset Number of labels Role in the study
IBSR18 84 (cortical+subcortical) Training,Testing
LPBA40 56 (cortical+subcortical) Training,Testing
LONI28 8 (subcortical) Testing
ADNI980 0 Testing

Table 1 Datasets used in this study. Note that we only use 14 subcortical structures in
IBSR18 out of the 84 that are available.

5.1.2 Algorithms to compare

We adopt region competition [69,91] as the gmDT process which iteratively
minimizes the energy E(WR, Θ,V) in Equation 6. We choose region competi-
tion due to its simplicity and effectiveness. The template (Va, Aa) is learned
according to Equation 8, using Mattes mutual information as the dissimilarity
function. The region competition process takes about 5 ∼ 15 minutes to reach
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a steady state (no more change of labels, or fluctuation of labels) of surface
evolution. It runs typically for less than 15 iterations. Other approaches such
as the level set methods [11,85] could also have been used to perform energy
minimization in a similar manner.

On the other hand, we use the auto-context algorithm [68] with PBT as
the baseline discriminative classifier. Henceforth, this discriminative model is
denoted asDM . Its running time is 10 ∼ 20 minutes, depending on the number
of structures for segmentation.

Comparisons between our method, gmDT and DM demonstrates the ad-
vantages due to the integration. We also list the measures from literatures for
the same T1 MRI dataset and structures if available.
5.1.3 Pre-processing

Before applying the three algorithms for comparison, these heterogeneous
datasets several preprocessing steps. We eliminate the dominant spatial dis-
parity between an input volume and an atlas by the following sequence of
preprocessing steps: (1) re-orientation using AIR 2.5 [79] (if the two volumes
were at different orientations); (2) skull stripping using BET in FSL 4.0.3 [65];
(3) a 12-parameter global affine registration using AIR 2.5; and (4) a diffeo-
morphic registration, SyN, from ANTS 1.9 [4].

We chose SyN as our non-linear method stage due to its speed and high
accuracy [35]. We use the following settings: three resolution levels (30x50x5
iterations), step-length 0.15, probability mapping (PR) with 4mm radius as
cost function, and regularization with a Gaussian filter with standard deviation
3mm. These parameters are obtained empirically and they provide sufficient
spatial alignments for gmDT across the four test datasets. Under these set-
tings, the SyN registration between an atlas and an image can be done under
30 minutes. Steps prior to SyN can be done in 5 minutes. Once the segmenta-
tion result is obtained, each preprocessing step is reverted to map the result
back to the original space.
5.1.4 Measures for comparison

The main evaluation measure used here is the Dice overlap,Dice = 2∗|L∩S|
(|L|+|S|) ,

where L and S are the sets of voxels manually annotated and those automat-
ically segmented. Precision and recall rates are also used in Table 6, where
Precision = |L ∩ S|/|S| and Recall = |L ∩ S|/|L|. Another popular mea-
sure in literature, Jaccard coefficient, can be directly calculated from Dice:
Jaccard−1 = 2Dice−1 − 1. In the inter-dataset tests, as our method and
gmDT are adaptive, we further compare them in surface consistency. Haus-
dorff distances [45] and the Mean distances [85] between two sets of surface
voxels are measured:

H(A,B) = max
a∈A

min
b∈B

D(a, b), M(A,B) =
∑
a∈CA

min
b∈CB

D(a, b)

|CA|
,

where A and B are sets of voxels. H(·) and M(·) are respectively the Hausdorff
distance and the Mean distance. D is the underlying distance metric, which is
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usually the Euclidean distance or the Manhattan distance. CA is the surface
of segment A. Note that both the directed Hausdorff distance and the Mean
distances are not symmetric. We will use H(A,B), H(B,A), and one direction
(segmented to ground truth) of the Mean distances in our evaluation.

5.2 Importance of atlas features

To demonstrate the importance of using atlas features based on deformable
templates, we compare the features used in two models trained to segment the
56 brain structures of LPBA, one with a fixed annotation Aa (no adaptation
to the input volume) and another with an adapted atlas based on gmDT . The
feature pool is dominated by Haar-like responses due to their effectiveness to
describe the appearance at different spatial scales. Derivative features perform
similarly to Haar, but are limited to eighteen local derivatives in the x, y, and z
directions. Features in the column “Others” include intensities, gradients, and
curvatures. As mentioned in Section 4.2, we perform feature selection when
training the Probability Boosting Tree (PBT). For each node in PBT, a limited
number of features are chosen to form a decision criterion (a boosting classifier)
such that the classification error is minimized for the training data arriving at
this node. Giving the same complexity of the trained classifiers (the same tree
depth and the same number of features used at each tree node), we observe
in the table that more atlas features are selected when using an adapted atlas
rather than a fixed one; the percentage of the selected atlas features increases
from <3% to 6%.

Atlas Haar Location Derivative Others

Proportion 0.02% 99.4% 0.2% 0.3% 0.04%

fixed atlas 2.9% 48.1% 31% 18% 0%

adapted atlas 6% 46% 29% 18% 1%

Table 2 Distributions of the first 120 selected (most informative) features for a fixed an-

notation Aa and an adapted ŴR. The first row shows the proportion of the corresponding
type of features in the whole candidate feature pool for reference. The column “Others”
includes the features of intensities, gradients, and curvatures.

5.3 Intra-dataset evaluation

In this section, we evaluate our algorithm using training and test data from
the same dataset, which is common in brain image segmentation. IBSR18 and
LPBA40 are included in this experiment.

(1) IBSR18 :

A total of 14 subcortical structures including the left and right lateral-
ventricles are evaluated. Due to the relatively few number of volumes in
IBSR18, we perform a three-fold cross-validation, i.e., six volumes in each
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LHippo. LCaud. LPut. LVent. LPal. LThal. LAmyg.
DM 0.709 0.785 0.827 0.794 0.724 0.841 0.610

(0.036) (0.056) (0.021) (0.082) (0.085) (0.036) (0.065)
SyN 0.708 0.734 0.822 NA 0.732 0.838 0.650

(0.021) (0.045) (0.008) NA (0.021) (0.012) (0.039)
gmDT 0.767 0.809 0.865 0.814 0.798 0.877 0.720

(0.030) (0.057) (0.011) (0.093) (0.031) (0.015) (0.086)
Our
Method

0.772 0.844 0.876 0.807 0.812 0.887 0.729

(0.029) (0.029) (0.016) (0.108) (0.027) (0.015) (0.062)
RHippo. RCaud. RPut. RVent. RPal. RThal. RAmyg.

DM 0.731 0.777 0.802 0.788 0.714 0.849 0.613
(0.040) (0.072) (0.028) (0.073) (0.057) (0.024) (0.104)

SyN 0.714 0.712 0.818 NA 0.732 0.840 0.647
(0.021) (0.053) (0.012) NA (0.016) (0.014) (0.043)

gmDT 0.789 0.815 0.859 0.797 0.797 0.879 0.718
(0.024) (0.042) (0.013) (0.104) (0.036) (0.013) (0.071)

Our
Method

0.787 0.836 0.862 0.815 0.802 0.885 0.721

(0.029) (0.034) (0.025) (0.082) (0.035) (0.019) (0.083)

(a) Dice coefficients of gmDT and our method on the IBSR18 dataset.

Method Hippo. Caud. Put. Lateral-
Vent.

Pal. Thal. Amyg.

Freesurfer 0.75 0.82 0.81 0.78 0.71 0.86 0.68
FSL 0.62 0.68 0.81 NA 0.73 0.85 0.59
[33] 0.76 0.83 0.87 0.85 0.72 0.89 0.66
[83] NA 0.80 0.82 NA NA 0.85 NA
[26] 0.69 0.76 0.78 0.84 0.72 NA 0.64
[2] 0.69 0.80 0.79 NA 0.74 0.84 0.63
[90] 0.70 0.80 0.81 NA NA 0.84 0.64
[76] 0.73 0.80 0.82 NA NA NA NA
[46] NA 0.78 0.80 NA NA 0.84 NA
[14] 0.72 0.80 0.83 0.88 0.77 0.83 0.74
Our
Method

0.78 0.84 0.87 0.81 0.81 0.89 0.73

(b) Related reports on IBSR subcortical structures [33].

Table 3 A comparison of our method and other methods on the IBSR18 dataset.
We perform a three-fold cross-validation test on IBSR, each fold used 12 volumes for
training and 6 volumes for testing. (a) The detailed Dice coefficients of DM, gmDT ,
and our method of the eight subcortical structures, where DM is the discrimina-
tive method and gmDT is the generative model based deformable template approach.
The abbreviations are: L/RHippo.=Left/Right Hippocampus, L/RCaud.=Left/Right Cau-
date Nucleus, L/RPut.=Left/Right Putamen, L/RVent.=Left/Right Lateral Ventricle,
L/RPal.=Left/Right Pallidum, L/RThal.=Left/Right Thalamus, L/RAmyg.=Left/Right
Amygdala. The standard deviations of the Dice coefficients are shown in parentheses. (b)
Other representative, subcortical segmentation results on the IBSR18 dataset [33]. Values
are the averages of the left and right structures if they were separately reported. The best
values are marked in bold.
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Fig. 4 Box plots of the Dice coefficients of the discriminative model, the generative model
based deformable template approach (gmDT ), and our method on IBSR18. The top and
bottom ends of a vertical line are the maximum and minimum values; The upper and lower
edges of a box are the quartiles (25% and 75% data). The line inside a box indicates the
average value, which is the same as Table 4.

fold are used as the test set, and the other twelve volumes are used to train
our model.

We use the box plots in Figure 4 to compare the three methods and Table 3a
to lists the Dice overlaps produced by DM, pure SyN , gmDT , and our method.
The measures of SyN were included to clarify the improvements between it
and our generative process.

In Table 3a, the row SyN lists six of the intermediate DICE overlaps before
using gmDT . SyN performs a diffeomorphic transform mainly adapted to
larger spatial variations of the whole brain so it can reduce location errors.
Based on its rough results, gmDT utilized the relatively reliable statistics of
each structure so the DICE values can be boosted at least 0.039(Thalami).
Therefore, the use of SyN in our system is to reduce the risk of failure in
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True Labels (a)DM (b)gmDT (b)Our Algorithm

Fig. 5 Segmentation results on a typical slice view by (a) discriminative method (DM), (b)
the generative model based deformable template (gmDT ), and (c) our algorithm. The left-
most picture shows the ground truth labeling for comparison. Only partial of the extracted
structures are shown in this 2D view. The example image is IBSR 09 from the IBSR18
dataset.

gmDT ; it is still a preprocessing step instead of a main factor in the whole
our method.

The data in IBSR18 display larger variations in appearance and shape, and
therefore, DM trained upon just 12 images in each fold could not generate sat-
isfactory results. In this scenario, gmDT showcases its superior adaptiveness.
From Figure 4, we observe that the advantage of gmDT is inherited by our
fusion method but the similar and better measures.

A visual example of the extracted structures by DM, gmDT and our
method is shown in Figure 5. Although not all of the 18 structures can be
shown in a single 2D slice, better matched caudate nuclei, thalami, and puta-
mens by our algorithm due to the fused information can still be observed.
Table 3b lists several published reports on IBSR18, and our measures are at
the top on the seven types of gray matter structures, with particularly sig-
nificant improvements for the pallidum and amygdala. The results are close
to [33] which is based on a computationally expensive multi-atlas approach.
Their method outperforms ours for the ventricles (0.85 versus 0.80), but is
inferior for the pallidum (0.72 versus 0.81) and amygdala (0.66 versus 0.73).

(2) LPBA40 : In the LPBA40 dataset [62], 40 subjects with fifty-six anatom-
ical structures, both cortical and sub-cortical, were manually delineated for
each T1-weighted MRI volumes. We randomly choose 25 volumes for training
and use the remaining 15 for testing.

To compare our algorithm against gmDT and DM , we use Figure 6 and
the detailed measures in Table 4 for a comprehensive comparison. From Fig-
ure 6, we observe that fusing the two models in our method achieves higher
average Dice coefficients than the two baseline methods. Our method gives
better measures on L/R hippocampus (p-value=0.017/0.003) than both the
discriminative and the generative models, but the measures of caudate nuclei
are worse than DM due to the considerably degraded performance of the gen-
erative model. Reasons for this could be (1) the intra-dataset test of LPBA40
containing smaller data variance is favored by DM, and (2) the boundaries
between the caudate nuclei and the ventricles in LPBA40 are obscured so
gmDT could be misled. The weaknesses of gmDT in this scenario are the in-
ferior DICE scores and quartile positions. These are all improved by our fusion
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LHippo. LCaud. LPut. RHippo. RCaud. RPut. Total 56
structures

DM 0.796 0.813 0.831 0.786 0.828 0.807 0.767(0.06)
gmDT 0.804 0.726 0.817 0.782 0.795 0.830 0.812(0.04)
Our Method 0.835 0.791 0.838 0.819 0.822 0.845 0.822(0.04)
p-value 0.017 0.136 0.053 0.003 0.051 0.063 2.5E-04

Table 4 Accuracy measures (Dice coefficients) on the LPBA40 test volumes for extract-
ing the 56 structures. We show the average Dice of the 56 structures and the results
of six subcortical structures which are highly referred in the later tests. The abbrevia-
tions are: L/RHippo.=Left/Right Hippocampus, L/RCaud.=Left/Right Caudate Nucleus,
L/RPut.=Left/Right Putamen. Our model is trained on 25 volumes from LPBA40. Values
in parentheses are the standard deviations and we mark the best measures in bold. DM is
the discriminative method and gmDT is our generative model based deformable template
approach. The two-sided p-values between our method and gmDT of the six structures are
also shown in the last row.

method due to the corrections in the discriminative framework, especially in
the left/right caudates and the left putamen. The difference in the average
Dice overlap between our method and gmDT is relatively small (∼ 1%), but
still very statistically significant by the p-values shown in Table 4.

In summary, the two intra-dataset tests show the proposed fusion method
successfully combine the advantages of DM and gmDT , and its performance
is at least comparable to DM .

5.4 Robustness across different datasets (Inter-dataset)

Caudate Putamen Hippocampus

FreeSurfer 0.65(0.040) 0.64(0.105) 0.57(0.029)

FSL 0.63(0.063) 0.79(0.042) 0.53(0.043)

DM 0.73(0.058) 0.69(0.083) 0.58(0.037)

gmDT 0.74(0.064) 0.79(0.035) 0.57(0.029)

Our Method 0.77(0.045) 0.80(0.035) 0.61(0.029)

Table 5 Inter-dataset measures (Dice coefficients) on 40 LPBA40 volumes for extracting
the six subcortical structures. All values are the averages of the corresponding measures
of the left and right structures, and the standard deviations are shown in parentheses.
The model was trained from IBSR18. DM is the discriminative method and gmDT is our
generative model based deformable template approach. The p-values between our method
and gmDT are 1.58×10−5 (Caudate), 0.0135 (Putamen), and 4.87×10−14 (Hippocampus).

In the previous experiments, we trained and tested our method on volumes
from the same dataset. To build a practical system dealing with clinical data,
it is important to test its robustness on a large number of volumes from various
sources.
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Fig. 6 Box plots of the Dice coefficients of the discriminative model, the generative model
based deformable template approach (gmDT ), and our method on LPBA40. The top and
bottom ends of a vertical line are the maximum and minimum values; The upper and lower
edges of a box are the quartiles (25% and 75% data). The line inside a box indicates the
average value, which is the same as Table 4. All models were trained by the 25 images from
LPBA40.

We use the same model trained from IBSR18 as in Section 5.3(1). The test
datasets include LPBA40 and LONI28. Both of them have manual annotations
of subcortical structures (caudate nuclei, putamens, and hippocampi for both
sets, lateral ventricles only for LONI28). These structures are all covered by
the annotations of IBSR (see Section 5.3(1). We choose these subcortical struc-
tures because: (1) they are frequently used to evaluate automatic segmentation
methods; and (2) they are very relevant in neuro-image studies of diseases such
as Alzheimer’s and Parkinson’s. To keep the results comparable with other lit-
eratures on the same test datasets, we chose not to re-annotate the structures
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LCaud. LPut. LHippo. RCaud. RPut. RHippo.

gmDT 7.365 5.733 19.07 6.576 6.117 20.618

Our Method 6.188 5.356 17.628 5.818 5.806 19.101

P-value (2-tailed) 0.119 0.167 0.012 0.153 0.308 0.002
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gmDT 4.596 7.306 8.391 3.98 6.915 7.76
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Fig. 7 Inter-dataset Hausdorff distance measures in mm, on 40 LPBA40 volumes for ex-
tracting the three types of subcortical structures (smaller is better). We denote the auto-
mated segmented result as W ∗ and the ground truth as W .

but keep the annotations as they were. In the following experiments, DM ,
gmDT , and our algorithm are trained from the same training data. The other
methods (FreeSurfer and FSL) are off-the-shelf systems without any parame-
ter adjustments. Although the difference among the three protocols introduce
intrinsic Dice errors, they still share a high proportion of common structure
regions and the relative performance between the three models trained by the
same data can be observed.

In addition to the quantitative analyses on the two test datasets, we also
test the model trained on LPBA40 - Section 5.3(2) - and show visual examples
on ADNI980, LPBA40 and LONI28 at the end of this section.

LCaud. LPut. LHippo. RCaud. RPut. RHippo.

gmDT 1.192 0.982 3.43 1.126 1.004 3.593

Our Method 0.956 0.863 2.935 0.984 0.906 3.374

P-value (2-tailed) 0.001 0.004 0.0003 0.101 0.033 0.093
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Fig. 8 Inter-dataset Mean distance measures in mm, on 40 LPBA40 volumes for extracting
the three types of subcortical structures (smaller is better). The standard deviations are
shown in parentheses.

(1) LPBA40 : Table 5 gives the Dice measures of three types of subcor-
tical structures in LPBA40. All values are the averages of the corresponding
measures of the left and right structures. Our method demonstrates the best
performance among all five competing algorithms. Compared with the intra-
dataset results in Table 4, noticeable degradation of the Dice overlaps is found
in hippocampus among all methods in Table 5. This is because the subiculum
region of hippocampus in LPBA40 was annotated differently from IBSR and
many other datasets.

The improvement in surface distance measures given by our method is
shown in Figures 7 and 8. We denote the automated segmented result as
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W ∗ and the ground truth as W . Our method achieves consistent improve-
ment over gmDT . According to the p-values, the mean distance measures
show especially significant improvement on the left caudate (p-value=0.0010),
left putamen (p-value=0.0041), left hippocampus (p-value=0.0003), and right
putamen (p-value=0.0326). The box plots in Figures 9 confirm the overall
better performance of our method in terms of Dice overlap.
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LPBA40: Left Subcortical Structures

Fig. 9 Box plots of the Dice coefficients of the generative model based deformable template
approach (gmDT ) and our method on LPBA40. The top and bottom ends of a vertical line
are the maximum and minimum values; The upper and lower edges of a box are the quartiles
(25% and 75% data). The line inside a box indicates the average value, which is the same
as Table 5. The model was trained by IBSR18.

(2) LONI28 : The segmentation accuracy in eight subcortical structures
on LONI28 (Left/Right Hippocampi, Left/Right Caudate Nuclei, Left/Right
Putamens, and Left/Right lateral ventricles) by the model trained from IBSR18
is shown in Table 6. The results from Freesurfer and Hybrid are from [69].
The Hybrid model is trained by 14 LONI28 volumes and the measures are
calculated from the other 14 test volumes. Although our model is trained by
IBSR18, our method provides the best F-values in five structures as well as the
averages in the last column. This shows the robustness of our method when
segmenting the subcortical, gray matter structures in a different dataset.

The Dice overlaps in Table 6 show similar performances by gmDT and
our method. Surface distance measures are showed in Figures 10 and 11. Our
method gives smaller Mean and Hausdorff distances, while gmDT provides
smallerH(W,W ∗). We notice thatH(W ∗,W ) yields a significant improvement
on most structures (LH, RH, LC, RC, LP, RP). From the four tables, we
observe that W ∗ produced by our method has more consistent surface with
W than gmDT (better H(W ∗,W ) and smaller Mean distance).

The improvement produced by our method can also be observed in the box
plots in Figure 12. Our method not only increases the average Dice coefficient
in all the tested structures (higher average values), but the worst cases have
all improved.

(3) 56 structures on ADNI980, LONI28, and IBSR18 : In addition to the
two subcortical tests on our IBSR18 subcortical model, we used the fifty-six
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LH RH LC RC LP RP LV RV Av

Precision 47% 54% 78% 78% 71% 77% 81% 72% 70%

Recall 66% 84% 77% 77% 83% 83% 76% 76% 78%

F-value 0.55 0.66 0.77 0.77 0.77 0.80 0.78 0.74 0.74

(a) FreeSurfer

LH RH LC RC LP RP LV RV Av

Precision 77% 64% 81% 83% 68% 72% 81% 81% 76%

Recall 69% 62% 84% 81% 75% 75% 90% 90% 78%

F-value 0.73 0.63 0.82 0.82 0.71 0.73 0.85 0.85 0.77

(b) Hybrid [69](discriminative+shape)

LH RH LC RC LP RP LV RV Av

Precision 61% 56% 83% 83% 78% 78% 78% 78% 74%

Recall 81% 85% 78% 82% 81% 85% 77% 77% 81%

F-value 0.69 0.68 0.80 0.82 0.79 0.81 0.77 0.78 0.77

(c) gmDT

LH RH LC RC LP RP LV RV Av

Precision 63% 58% 86% 86% 78% 83% 82% 82% 77%

Recall 83% 86% 79% 80% 81% 82% 75% 77% 80%

F-value 0.72 0.69 0.82 0.83 0.79 0.83 0.78 0.79 0.78

(d) Our Method

Table 6 Inter-dataset measures (Dice coefficients) on 28 LONI28 test volumes for ex-
tracting the eight subcortical structures. The measures of FreeSurfer and Hybrid tested on
14 volumes of LONI28 were from [69], so we use the same measures (precision and recall
rates) and F-values for comparison. [69] can be considered as a combination of DM and
a shape prior. gmDT is the generative model based deformable template approach. The
abbreviations are: L/RH=Left/Right Hippocampus, L/RC=Left/Right Caudate Nucleus,
L/RP=Left/Right Putamen, L/RV=Left/Right Lateral Ventricle, Av=Average. In [69], the
Hybrid model is trained by another 14 volumes of LONI28. Our model is trained from
IBSR18 and still showed the best average values among the four methods. The best F-value
of each structure is marked in bold.

LH RH LC RC LP RP LV  RV

gmDT 6.743 6.606 11.699 9.36 6.284 5.818 8.388 7.374

Our Method 5.744 5.748 9.331 7.768 5 4.367 5.725 6.267

P-value (2-tailed) 0.005 0.006 0.021 0.034 0.001 3E-07 0.253 0.587
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LH RH LC RC LP RP LV  RV

gmDT 4.314 4.62 4.368 3.863 5 4.916 40.975 41.711

Our Method 4.993 4.811 5.124 4.659 5.837 5.276 42.502 42.862
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Fig. 10 Inter-dataset Hausdorff distance measures in mm, on 28 LONI28 volumes for
extracting the eight subcortical structures (smaller is better). We denote the automated
segmented result as W ∗ and the ground truth as W .

structure model trained upon LPBA40 in Section 5.3(2) to perform corti-
cal and subcortical segmentation on three datasets: ADNI980, LONI28, and
IBSR18. Figure 13 shows a number of 2D MRI slices together with their seg-
mentation results. We see from the figure that the intensity patterns and tex-
tures are quite different for these datasets. Even within the same dataset,
ADNI980, the MRI slices show large variation since not all of them were ac-
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LH RH LC RC LP RP LV  RV

gmDT 1.271 1.382 1.105 0.972 1.102 1.011 0.906 1.193

Our Method 1.19 1.318 0.967 0.86 1.059 0.867 0.735 0.695

P-value (2-tailed) 0.200 0.315 0.063 0.031 0.494 0.0003 0.052 0.098
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Fig. 11 Inter-dataset Mean distance measures in mm, on 28 LONI28 volumes for extracting
the eight subcortical structures (smaller is better). The standard deviations are shown in
parentheses.

quired with the same scanner. However, despite such a high degree of variabil-
ity in the data, the segmentation results are mostly satisfactory.
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LONI28: Left Subcortical Structures

Fig. 12 Box plots of the Dice coefficients of the generative model based deformable tem-
plate approach (gmDT ) and our method on LONI28. The top and bottom ends of a vertical
line are the maximum and minimum values; the upper and lower edges of a box are the
quartiles (25% and 75% ranked data). The line inside a box indicates the average value.

By the first two parts of tests containing disparate training and test datasets,
we see the proposed fusion method can achieve the highest compatibility be-
tween different protocols, all by experts, than DM and gmDT given the same
training set. The third test further shows its robustness to large data varia-
tion. Both properties are important when applying the proposed method as a
common brain segmentation tool.

5.5 Performance in longitudinal studies

Section 5.4 demonstrated the effectiveness of the proposed algorithm for seg-
menting structures from several datasets with high variability in anatomy and
image intensities. In this section, we show the results of our algorithm on data
in a longitudinal study where the main source of variation is the temporal
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(a)LPBA40 (b)ADNI980 (c)LONI28 (d)IBSR18

Fig. 13 Typical examples of the proposed brain segmentation method on different datasets.
We use 2D slices of similar brain locations for comparison. Slice (a) is from LPBA40 to
show the original imaging conditions of the training dataset. For clear comparison, these
slices shown were skull-stripped and scaled to similar size. These four sets contain totally
more than 1,000 volumes, and all the results are obtained by the identical system without
parameter tuning.

changes within the same subject. Since the results from [30] indicate the sig-
nificant atrophy of hippocampi in both MCI and AD cases, and the scans from
ADNI980 provide the longitudinal (12 months) data of 490 subjects from AD,
MCI, and normal control groups, we use this dataset as our testbed. ADNI980
volumes also display large variations between subjects due to different scan-
ning settings; nevertheless, volumes from the same subject still share the same
acquisition configurations. Although our method may need more specific de-
sign for high precision hippocampus segmentation, this experiment still shows
our advantage with respect to the baseline methods in the longitudinal study.

The tested segmentation methods include DT, gmDT , and our algorithm.
The training data contains volumes from 7 AD, 7 MCI, and 7 control subjects
in ADNI with manual annotations of hippocampi by an expert (these subjects
are not part of the 490). The measures listed in Table 7 include the average
volume of baseline, the average volume after 12 months, the volume difference
between the two times, and the percentage of volume loss.

All the measures obtained by a discriminative approach [68] are listed in
Table 7a and those by gmDT are listed in Table 7b. As DM is not adap-
tive, the coverage of the segmented region by DM is conservative if the test
hippocampus has a drifted position, a shape distortion like that typically pro-
duced by AD, or a different statistical distribution of appearance. DM also fails
to identify the hippocampal regions of 13 subjects, so we needed exclude their
volumes from Table 7a. For the rest of the scans, the averages of volume change
and percentage of loss show noticeable differences between groups. However,
their standard deviations are relatively large, indicating that the measures
from the direct discriminative model are not stable for the three groups. In
Table 7b, the longitudinal differences between AD and normal are not fully
demonstrated because gmDT (with a simple appearance model) could include
more non-hippocampal regions than DM and our method. Instead, our ap-
proach gives apparent differences in all columns among the three groups; see
Table 7c. The smaller standard deviations provide a better separation of the
three groups compared to DM. In addition, the balanced performance among
the left hippocampus, the right hippocampus and the average is evident.
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baseline average volume (mm3) 12-month average volume (mm3)
Left Right Average Left Right Average

AD 2301.22 2372.67 2336.95 2009.52 2158.16 2083.84
MCI 2527.80 2717.52 2622.66 2342.51 2546.46 2444.48
Normal 3039.01 3082.53 3060.77 2927.31 2980.78 2954.05

volume change (mm3) percentage loss (%)
Left Right Average Left Right Average

AD 291.71(544)214.52(506) 253.11(504) 10.23%(35%)8.27%(30%) 9.44%(30%)
MCI 185.29(449)171.06(504) 178.18(453) 7.30%(22%) 6.64%(24%) 7.12%(21%)
Normal 111.70(520)101.75(592) 106.72(539) 1.65%(21%) 1.40%(24%) 1.67%(22%)

(a) DM : DM fails to process the volumes from 13 subjects so the statistics here are based
on 477 subjects. The difference between the three groups as well as the longitudinal change
inside each group are demonstrated. However, the standard deviations of all measures are

big.

baseline average volume (mm3) 12-month average volume (mm3)
Left Right Average Left Right Average

AD 3545.03 3884.74 3714.89 3507.99 3778.29 3643.14
MCI 3607.94 3870.49 3739.21 3579.45 3846.53 3712.99
Normal 3751.34 4008.77 3880.05 3706.05 3962.01 3834.03

volume change (mm3) percentage loss (%)
Left Right Average Left Right Average

AD 37.04(413) 106.45(433) 71.75(382) 0.53%(13%) 2.18%(13%) 1.50%(11%)
MCI 28.49(408) 23.96(462) 26.22(401) 0.19%(11%) 0.21%(12%) 0.29%(11%)
Normal 45.28(359) 46.76(353) 46.02(345) 0.62%(9%) 0.64%(10%) 0.72%(9%)

(b) gmDT : The extracted volumes are consistent due to the adaptation power of
generative model, but it fails to represent the longitudinal changes of the three groups.

baseline average volume (mm3) 12-month average volume (mm3)
Left Right Average Left Right Average

AD 2999.04 3115.78 3057.41 2837.53 2970.87 2904.20
MCI 3238.77 3415.67 3327.22 3352.16 3150.12 3251.14
Control 3788.27 3938.24 3863.26 3751.32 3897.77 3824.54

volume change (mm3) percentage loss (%)
Left Right Average Left Right Average

AD 161.52(161)144.92(176) 153.22(141) 5.56%(6%) 4.96%(6%) 5.25%(5%)
MCI 88.65(168) 63.51(177) 76.08(149) 2.70%(6%) 1.79%(6%) 2.27%(5%)
Normal 36.95(153) 40.47(153) 38.71(136) 0.98%(4%) 1.06%(4%) 1.03%(4%)

(c) Our Algorithm: The results faithfully reflect both the absolute volumes and
longitudinal changes of the three groups compared with DM (a) and gmDT (b).

Table 7 12-month longitudinal analysis of the extracted hippocampi from the 490 subjects.
DM is the discriminative model [68] and gmDT is the generative model based deformable
template approach. We demonstrate the changes in left hippocampus, right hippocampus,
and the average of both sides. Individual volume change is obtained by the baseline volume
subtracting the volume of 12-month after. Values listed are the averages of the 490 subjects,
and those in parentheses are the standard deviations.

We further compare the results by our method with the estimated hip-
pocampal volume changing rates reported by [60]. Their estimated rates are
modeled as nonlinear curves based on manual segmentations of ADNI data. As
the average ages of our three groups are 76.82(standard deviation(SD)=6.63 )
for Normal, 76.05(SD=6.67) for MCI, and 76.82(SD=6.44) for AD, our data
are mostly located in the range [70-80], where their estimated curves are still
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close to linear. Using the average hippocampal volume of 75 years old normal
subjects as the standard level, their chart shows the estimated average volume
losses as 400 mm3 (sMCI, the subjects do not convert to AD), 650 (cMCI, the
subjects would progress to AD), and 750 (AD). Our average volume of the
whole MCI group is 573.40mm3 less than the Normal group and consistent
with this estimation. However, the number of our AD group is 920.34mm3

which is 170mm3 larger than their estimation. This is a hint of what direction
to work in if we want to specifically adjust our work in order to obtain precise
hippocampal segmentations. Table 7 shows that our method achieves higher
robustness when identifying inter- and intra- individual differences, and its
potential to help indicate different pathological stages.

6 Conclusion and future work

In this paper, we have proposed a system for brain MRI image segmentation
by fusing together deformable templates (generative) and informative features
(discriminative). It takes the advantages of the generative model for being
adaptive and the discriminative classifier for achieving classification power on
high dimensional data. This approach uses a new way of combining generative
and discriminative models and the complementary properties between them
can be efficiently exerted; the information extracted from generative models is
considered as an additional channel of features for training the discriminative
models. The trained models are improved in two ways: (1) The original features
can be normalized according to intrinsic structural statistics. Typical methods
to accommodate large variation, such as performing histogram matching [64]
or extracting features invariant to intensity change [70], are only based on the
statistics of whole volume data. (2) The feature set is augmented with features
derived from the estimation by gmDT .

A thorough experimental study on T1-weighted datasets demonstrates the
robustness of our algorithm. Although discriminative models can perform well
if the training and the test data share the same condition of variances, bet-
ter performance can still be observed by our method as our discriminative
models augment the informative feature set with generative features. This ad-
vantage leads to improvement over several state-of-the-art algorithms. The
inter-dataset and the longitudinal tests show the deficiency of discriminative
models in practice and the necessity of introducing the generative information.
Our method demonstrates both adaptiveness and precision in these challeng-
ing tests and outperforms the two direct models in region overlaps (Dice) and
surface fitness. This is different from [74] that the first stage classifier is consid-
ered as a black box approach. These advantages also lead to the improvement
over several state-of-the-art algorithms on standard datasets such as IBSR18,
LPBA40, and ADNI.

An important aspect of the proposed method is its running time, which is
approximately one hour. Whether the system is practical depends on the ap-
plication. In neuroimaging studies, in which research labs often spend months
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collecting the data, slow running times are not a problem. For instance, our
method is much faster than the widely used FreeSurfer, which requires on av-
erage 12 hours to segment a single brain scan. In clinical practice, one hour
might no be sufficiently fast. The bottleneck of the algorithm is, as for many
other brain MRI segmentation methods, the nonlinear registration. However,
the registration can be dramatically sped-up through parallelization.

An aspect of the framework that was not evaluated was its performance
on multispectral data. In this scenario, the different data channels represent
images acquired with different MRI contrast [54,47,84,24] or even different
modalities [20,12]. Segmentations on multispectral data have the potential to
be more accurate thanks to the larger amount of information present in the dif-
ferent channels. In our framework, generalization to multispectral scenarios is
immediate: the intensities of the additional channels are just extra dimensions
of the feature vectors. Another possible line of research would be to analyze
the performance of the framework using other generative or discriminative
models. For instance, it would be interesting to assess whether introducing
explicit shape, regional, or context information in the generative prior has a
positive impact of the segmentation. Exploring all these directions remains as
future work.

Information Sharing Statement

An implementation of the method is publicly available for download at the
LONI3 and NITRC 4 websites. We provide a Windows R⃝, a Linux R⃝, and a
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this paper is cited in any material using the results of their application. For
other usage, contact the authors.
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