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Abstract

Labeling a histopathology image as having cancerous regiomot is a critical
task in cancer diagnosis; it is also clinically importansggment the cancer tis-
sues and cluster them into various classes. Existing sigeeihapproaches for
image classification and segmentation require detailedialamnotations for the
cancer pixels, which are time-consuming to obtain. In tlapgy, we propose
a new learning method, multiple clustered instance legr@nCIL) (along the
line of weakly supervised learning) for histopathology geasegmentation. The
proposed MCIL method simultaneously performs image-lelassification (can-
cer vs. non-cancer image), medical image segmentatiorcécars. non-cancer
tissue), and patch-level clustering (different classé&f® embed the clustering
concept into the multiple instance learning (MIL) settingladerive a principled
solution to performing the above three tasks in an integré@mework. In ad-
dition, we introduce contextual constraints as a prior faCIM which further
reduces the ambiguity in MIL. Experimental results on tpsthiology colon can-
cer images and cytology images demonstrate the great adyant MCIL over
the competing methods.
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learning, histopathology image.

1. Introduction

Histopathology image analysis is a vital technology foraamecognition and
diagnosis (Tabesh et al., 2007; Park et al., 2011; Esgidr, @20®2; Madabhushi,
2009). High resolution histopathology images provideatdk information dif-
ferentiating abnormal tissues from the normal ones. Inghjger, we use tissue
microarrays (TMASs) which are referred to histopathologwagas here. Figure (1)
shows a typical histopathology colon cancer image, togetlih a non-cancer
image. Recent developments in specialized digital miciescranners make
digitization of histopathology readily accessible. Auttino cancer recognition
from histopathology images thus has become an increasingigrtant task in
the medical imaging field (Esgiar et al., 2002; Madabhusb. Some clinical
tasks (Yang et al., 2008) for histopathology image analysiside: (1) detecting
the presence of cancer (image classification); (2) segngentiages into cancer
and non-cancer region (medical image segmentation); (3jaiing the tissue re-
gion into various classes. In this paper, we aim to develdptegrated framework
to perform classification, segmentation, and clusteritagather.

(a) cancer image (b) non-cancer image

Figure 1: Example histopathology colon cancer and nonerintages: (a) positive bag (cancer
image); (b) negative bag (non-cancer image). Red rectangtsitive instances (cancer tissues).
Green rectangles: negative instances (non-cancer tjssues

Several practical systems for classifying and grading eahgstopathology
images have been recently developed. These methods ary foostsed on the
feature design including fractal features (Huang and L889) texture features
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(Kong et al., 2009), object-level features (Boucheron, 20&&d color graphs fea-
tures (Altunbay et al., 2010; Ta et al., 2009). Various c¢feess (Bayesian, KNN
and SVM) are also investigated for pathological prostateceaimage analysis
(Huang and Lee, 2009).

From a different angle, there is a rich body of literature apesvised ap-
proaches for image detection and segmentation (Viola andsJ®004; Shotton
et al., 2008; Felzenszwalb et al., 2010; Tu and Bai, 2010). é¥ew supervised
approaches require a large amount of high quality annotitd which are labor-
intensive and time-consuming to obtain. In addition, thernatrinsic ambiguity
in the data delineation process. In practice, obtainingéng detailed annotation
of cancerous regions from a histopathology image could bea#lenging task,
even for expert pathologists.

Unsupervised learning methods (Duda et al., 2001; Loeff.eP@05; Tuyte-
laars et al., 2009), on the other hand, ease the burden aidhavanual annota-
tions, but often at the cost of inferior results.

In the middle of the spectrum is the weakly supervised legrscenario.
The idea is to use coarsely-grained annotations to aid aittorexploration of
fine-grained information. The weakly supervised learnimgddion is closely re-
lated to semi-supervised learning in machine learning (2008). One particular
form of weakly supervised learning is multiple instancertéag (MIL) (Diet-
terich et al., 1997) in which a training set consists of a nemdf bags; each
bag includes many instances; the goal is to learn to preditt bag-level and
instance-level labels while only bag-level labels are giwvetraining. In our case,
we aim at automatically learning image models to recogrexeers from weakly
supervised histopathology images. In this scenario, ange-level annotations
are required. Itis relatively easier for a pathologist twelea histopathology image
than to delineate detailed cancer regions in each image.

In this paper, we develop an integrated framework to clagsgtopathology
images as having cancerous regions or not, segment casggegifrom a cancer
image, and cluster them into different types. This systetoraatically learns
the models from weakly supervised histopathology imagé@sgusultiple clus-
tered instance learning (MCIL), derived from MIL. Many preus MIL-based
approaches have achieved encouraging results in the rhddioain such as ma-
jor adverse cardiac event (MACE) prediction (Liu et al., 20Xblyp detection
(Dundar et al., 2008; Fung et al., 2006; Lu et al., 2011), mmary emboli valida-
tion (Raykar et al., 2008), and pathology slide classificafidundar et al., 2010).
However, none of the above methods aim to perform medicajésagmentation.
They also have not provided an integrated framework fordkk of simultaneous
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classification, segmentation, and clustering.

We propose to embed the clustering concept into the MILrggtiThe current
literature in MIL assumes single cluster/model/classiioerthe target of interest
(Viola et al., 2005), single cluster within each bag (Babegekal., 2008; Zhang
and Zhou, 2009; Zhang et al., 2009), or multiple componefise object (Dolar
et al., 2008). Since cancer tissue clustering is not alwegsadle, it is desirable
to discover/identify the classes of various cancer tisgped; this results in patch-
level clustering of cancer tissues. The incorporation o$tgdring concept leads to
an integrated system that is able to simultaneously perforage segmentation,
image-level classification, and patch-level clustering.

In addition, we introduce contextual constraints as a goocMCIL, which
reduces the ambiguity in MIL. Most of the previous MIL metisathake the as-
sumption that instances are distributed independenttitout considering the cor-
relations among instances. Explicitly modeling the inseamterdependencies
(structures) can effectively improve the quality of segtagan. In our experi-
ment, we show that while obtaining comparable results issifecation, cMCIL
improves the segmentation significantly (over 20%) conmgMEIL. Thus, it is
beneficial to explore the structural information in the dy&tthology images.

2. Related Work

Related work can be roughly divided into two broad categofiBsapproaches
for histopathology image classification and segmenta#iod,(2) MIL methods in
machine learning and computer vision. After the discusalmout the previously
work, we show the contributions of our method.

2.1. Existing Approaches for Histopathology Image Classifim and Segmen-
tation

Classification There has been rich body of literature in medical image clas-
sification. Existing methods for histopathology image sifisation however are
mostly focused on the feature design in supervised setti@géor graphs were
used in (Altunbay et al., 2010) to detect and grade coloneraimchistopathol-
ogy images; multiple features including color, textured amorphologic cues at
the global and histological object levels were adopted ostate cancer detec-
tion (Tabesh et al., 2007); Boucheron et al. proposed a maiboa) object-
based information for histopathology cancer detection (Bewon, 2008). Some
other work is focused on classifier design: for instance,|®ey al. developed
a boosted Bayesian multi-resolution (BBMR) system for autaradyi detecting
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prostate cancer regions on digital biopsy slides, which ieeessary precursor
to automated Gleason grading (Artan et al., 2012). In (Moretcal., 2010), a
Markov model was proposed for prostate cancer detectiorstolbgical images.
Segmentation A number of supervised approaches for medical image seg-
mentation have also been proposed before, for example tmphithology images
(Kong et al., 2011) and vasculature retinal images (Soara,e2006). Struc-
tured data has also been taken into consideration in theopiework. (Wang
and Rajapakse, 2006) presented a conditional random fieldssj@Ritlel to fuse
contextual dependencies in functional magnetic resonamaging (fMRI) data to
detecting brain activity. A CRF-based segmentation methalalso proposed in
(Artan et al., 2010) for localizing prostate cancer from taspbectral MR images.

2.2. MIL and Its Applications

Compared with fully supervised methods, multiple instaregning (MIL)
(Dietterich et al., 1997) has its particular advantagesutomatically exploit-
ing the fine-grained information and reducing efforts in lamnannotations. In
the machine learning community, many MIL methods have beamldped in
recent years such as Diverse Density (DD) (Maron and LoR&mez, 1997),
Citation-kNN (Wang et al., 2000), EM-DD (Zhang and Goldmaf0®), MI-
Kernels (Grtner et al., 2002), SVM-based methods (Andrews et al.3RGhd
ensemble algorithms MIL-Boost (Viola et al., 2005).

Although first introduced in the context of drug activity gretion (Dietterich
et al., 1997), the MIL formulation has made significant sssci the area of
computer vision, such as visual recognition (Viola et ab02, Babenko et al.,
2008; Galleguillos et al., 2008; Ddlt et al., 2008), weakly supervised visual cat-
egorization (Vijayanarasimhan and Grauman, 2008), andstodbject tracking
(Babenko et al., 2011). Zhang and Zhou (2009) proposed aptauitistance
clustering (MIC) method to learn the clusters as hidden téegto the instances.
Zhang et al. (2009) further formulated the MIC problem urtdermaximum mar-
gin clustering framework. MIC however is designed for datashat have no neg-
ative bags and it assumes each bag containing only one rcli&i®enko et al.
(2008) assumed a hidden variable, pose, to each face (oelyioran image.
In our case, multiple clusters of different cancer typeshhap-exist within one
bag (histopathology image). In addition, segmentatiomoabe performed. In
(Dollér et al., 2008), object detection was achieved by learmidiyidual compo-
nent classifiers and combining these into an overall classiithich also differs
from our work. Multiple components were learned for a sirgjigect class. How-
ever, we have multiple instances and multiple classesmvgach bag in our work.
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The MIL assumption was integrated into multiple-label keag for image/scene
classification in (Zhou and Zhang, 2007; Zha et al., 2008e0al., 2009) and for
weakly supervised semantic segmentation in (VezhnevetBahmann, 2010).
Multi-class labels were given as supervision in their mdgan our method, mul-
tiple clusters are hidden variables to be explored in a wesigbervised manner.

The MIL framework has also been adopted in the medical ingadiomain
with the focus mostly on the medical diagnosis (Fung et &0,72. In (Liu et al.,
2010), an MIL-based method was developed to perform meniiade classifica-
tion; in (Liang and Bi, 2007), pulmonary embolisms among thedidates were
screened by an MIL-like method; a computer aided diagn@Ad€X) system (Lu
et al., 2011) was developed for polyp detection with the nifagus on learn-
ing the features, which were then used for multiple instaegeession; an MIL
approach was adopted for cancer classification in histopadls slides (Dundar
et al., 2010). However, these existing MIL approaches westgthed for medical
image diagnosis and none of them perform segmentation. dergto the best of
our knowledge, the integrated classification/segmemtatiostering task has not
been addressed, which is the key contribution of this paper.

2.3. Our Contributions

Although several tasks in computer vision and medical danmaive been
shown to benefit from the MIL setting, we find that the canceagm classifi-
cation/segmentation/clustering task is a well-suited in@dmaging application
for the MIL framework. We propose a new learning method, ipldtclustered
instance learning (MCIL), along the line of weakly superdissarning. The pro-
posed MCIL method simultaneously performs image-levelsifi@sition (cancer
VS. non-cancer image), medical image segmentation (cascemon-cancer tis-
sues), and patch-level clustering (different classes)eliveed the clustering con-
cept into the MIL setting and derive a principled solutionperform the above
three tasks in an integrated framework. Furthermore, weodstrate the impor-
tance of contextual information by varying the weight of xtual model term.
Finally, we try to answer the following question: is timersoming and expen-
sive pixel-level annotation of cancer images necessaryitd & practical working
medical image analysis system, or could the weaker but mueaper image-level
supervision achieve the same accuracy and robustness?

Earlier conference versions of our approach were presentédu et al.,
2012b,a). Here, we further illustrate that: (1) the MCIL nuetltould be applied
to analyze image types other than histopathology, such tatogy images, (2)
additional features such as gray-level co-occurrenceixn@&@t. CM) are added to
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this paper, and (3) a new subset of histopathology imagebd&screated in this
experiment. In this paper, we focus on colon histopatholotgge classification,
segmentation and clustering. However, it is noted that oGilMormulation is
general and it can be adopted to other image modalities.

3. Methods

We follow the general definition of bags and instances in théiple instance
learning (MIL) formulation (Dietterich et al., 1997).

In this paper, théth histopathology image is considered as a baghe jth
image patch densely sampled from an image corresponds twstancer;;. A
patch of cancer tissue is treated as a positive instajace-(1) and a patch without
any cancer tissues is a negative instange € —1). Theith bag is labeled as
positive (cancer image), namely = 1, if this bag contains at least one positive
instance. Similarly, in histopathology cancer image asialya histopathology
image is diagnosed as positive by pathologists as long agb gant of image is
considered as cancerous. Figure (1) shows the definitioasifiye/negative bags
and positive/negative instances.

An advantage brought by MIL is that if an instance-level sifisr is learned,
the image segmentation task then can be directly perforinag:level (image-
level) classifier can also be obtained.

In the following sections, we first give the overview of the IMiterature,
especially recent gradient decent boosting based MIL aghes; then we in-
troduce the formulation for the proposed method, MCIL, whictegrates the
clustering concepts into the MIL setting; properties of M@ith various varia-
tions are provided. In addition, we introduce contextuaistmaints as a prior for
MCIL, resulting in context-constrained multiple clusteiadtance learning (cM-
CIL). Figure (2) and Algorithm 1 shows the flow diagram of ouga@ithms. The
inputs include both cancer images and noncancer imageseamages are used
to generate positive bags (red circles) and noncancer snageused to gener-
ate negative bags (green circles). Within each bag, eacherpatch represents
an instance. cMCIL/MCIL is used as a multiple instance leariramework to
perform learning. The learned models generate severdifitas for patch-level
cancer clusters. Red, yellow, blue and purple colors reptadiferent cancer
types while green represents the noncancer patches. Thalovege-level clas-
sification (caner vs. non-cancer) can be obtained basedegréhiction from the
patch-level classification.



Cancer

Cancer

Noncancer %

Noncancer 2.

Red: positive bags
Green: negative Cbags

Positive
cluster 1 gz

Positive
cluster 2

Positive

dlisster 3 \ Positive
cluster 4

Different frame colors of the images indicate
the presence in different positive bags

Classification, segmentation
and clustering results

Figure 2: Flow diagram of our algorithms. The inputs inclid¢h cancer images and noncancer
images. Cancer images are used to generate positive bdgsr@ies) and noncancer images are
used to generate negative bags (green circles). Withinkesgreach image patch represents an in-
stance. cMCIL/MCIL is used as a multiple instance learniagrfework to perform learning. The
learned models generate several classifiers for patchdaweer clusters. Red, yellow, blue and
purple colors represent different cancer types while grepresents the noncancer patches. The
overall image-level classification (caner vs. non-cancan) be obtained based on the prediction
from the patch-level classification.

Algorithm 1 Algorithm
Input : Colon histopathology images
Output: Image-level classification models for cancer vs. nonciaace patch-
level classification models for different cancer classes
Stepl: Extract patches from colon histopathology images.
Step2: Generate bags for models using extracted patches.
Step3: Learn models in a multiple instance learning franmkwo
(MCIL/cMCIL).
Step4: Obtain image segmentation and patch clusteringtsineously.

3.1. Review of the MIL Method

We give a brief introduction to the MIL formulation and focas boosting-
based (Mason et al., 2000) MIL approaches (Viola et al., 2@@®benko et al.,
2008), which serve as the building blocks for our proposed IMCI
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In MIL, we are given a training set consistingobags:X™ = {z1,...,z,}.
z; is the:™ bag, andn denotes the number of instances in each hagy; =
{zi,...,2m} wherer;; € X andX = R? (although each bag may have different
number of instances, for clarity of notation, we usédor all the bags here). Each
x; is associated with a labg|] € ) = {—1,1}. Itis assumed that each instance
x;; in the bage; has a corresponding labgl € Y, which in fact is not given as
supervision during the training stage. As mentioned befareag is labeled as
positive if at least one of its: instances is positive and a bag is negative if all its
instances are negative. In the binary case, the assumtiobecexpressed as:

Yi = mjax (yij)> (1)

wheremax is essentially equivalent to an OR operator sincg/fpe Y, max; (v;;) =
The goal of MIL is to learn an instance-level classifier;;) : X — Y.
A bag-level classifiel{ (x;) : X™ — Y could be built with the instance-level
classifier:
H(z;) = max h(x;;). (2)
To accomplish this goal, MIL-Boost (Viola et al., 2005) wasposed by com-
bining the MIL cost functions and the AnyBoost framework (Mat al., 2000).
The general idea of AnyBoost (Mason et al., 2000) is to mingntie loss func-
tion £(h) via gradient descent on thein the function space. The classifielis
written in the form ofh; as:

T
h(zij) = Zatht(l’z‘j), 3)

whereq, weighs the weak learners’ relative importances.

To find the best;, we proceed with two steps: (1) computing the weak clas-
sifier response, (2) selecting the weak classifier from alubdl candidates which
achieves the best discrimination. We considleas a vector with components
h;j = h(z;;). To find the optimal weak classifier in each phase, we compute
—9%E 'which is a vector with components;; = —%. Since we are limited in
the choice ofi;, we train the weak classifiér;, by miJnimizing the training error
weighted byw;; |, using the follow formulah; = argmin,, > ,; 1(h(zi;) # yi)|wi|-

The loss function, a function ovér, defined in the MIL-Boost (Viola et al.,



Table 1: Four softmax approximatiopgv;) ~ max;(v;).

gi(vr) Oy (v1)/Ov; | domain
NOR| 1—T[,(1—w) 1‘19_—11()”1) [0, 1]
GM (v Ql(vl)g—v} [0, o0]
LSE %ln % > exp (roy) % [—00, o0]
ISR | BLof = | (52 | o,

2005; Babenko et al., 2008) is a standard negative log liketirexpressed as:
L(h) == wi(1(y; = 1)log p; + L(y; = —1)log (1 — p;)). (4)
=1

where1(-) is an indicator function. The bag probability = p(y; = 1|z;) is
defined in terms of.. w; is introduced here as the prior weight of tifetraining
sample.

A differentiable approximation of theiax, namelysoftmaxfunction, is then
used. Form variables{v,,...,v,}, the idea is to approximate theax over
{v1,...,v,} by a differentiable functiom,(v;), which is defined as:

al(v) ~ mlax(vl) =0, (5)

Ou(v) i =v") ©
vy Yo Ly =v*)

Note that for the rest of the papet(v;) indicates a functior on all variables),
indexed byi, not merely on one variablg. There are a number of approximations
for g. We summarizeé models used here in Table 1: noisy-or (NOR) (Viola et al.,
2005), generalized mean (GM), log-sum-exponential (LFEnfon and Raedt,
2000), and integrated segmentation and recognition (ISREgl@ et al., 1990;
Viola et al., 2005). The parametercontrols the sharpness and accuracy in the
LSE and GM modelse. g;(v;) — v* asr — oo.

The probability bag:; is defined ap;, which is computed from the maximum
over the probability;; = p(v;; = 1|z;;) of all the instances;;. Using thesoftmax
g to approximatenax, p; is defined as:

pi = max (pij) = 9;(pij) = 9i(c(2hij)), (7)
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whereh;; = h(z;;), ando(v) = m is the sigmoid function. Note that
o(v) € [0,1] and¥Z = o (v)(1 — o(v)).

Then the weightv;; and the derivativej= could be written as:

oL . oL 8pz- 8]?1']‘

= - _ _ 8
Wiy 8hw api (9pl-j 8hw ( )
w;; is obtained by taking three derivatives:
opi LU T
1 —p;
—m. CA\r—1
L= pi NOR: ) g
op | 1=y > (i) (10)
Opij €Xp (Tpij) LSE; ( L—p; )2 ISR
Zj exXp (Tpij) L — pij
pij
ahij - 2pzy(1 pzy)- (11)

Once we obtair;, the weighto; can be found via a line search, which aims to
minimize £(h). Finally, we combine multiple weak learners into a singtersg
classifieri.e. h < h + a;h;. Algorithm 2 illustrates the details of MIL-Boost.
The parametef’ is the number of weak classifiers in AnyBoost (Mason et al.,
2000).

3.2. Multiple Cluster Assumption

Multiple cancer subtypes with different morphological &eristics might
co-exist in a histopathology image. The single model/eldslassifier in the pre-
vious MIL method is not capable of taking the different tyjp@® consideration.
A key component of our work is to to embed clustering into thi Metting to
classify the segmented regions into different cancer sty Although there
are many individual classification, segmentation and ehirsgy approaches in the
medical imaging and computer vision community, none ofehagorithms meet
our requirement since they are designed for doing only onthefthree tasks.
Here we simultaneously perform three tasks in an integssstem under weakly
supervised learning framework.
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Algorithm 2 MIL-Boost
Input: Bags{zi,...,z.}, {v1,. -, un}, T

Output: A
fort=1—Tdo
Compute weightsy;; = — 5= 2. 2

Train weak classifiers; using weightgw;;|

hy = argminy, Zij L(h(@i;) # i) |lwij]

Find o, via line search to minimiz& (h)

oy = argmin, L(h + ahy)

Update strong classifiets< h + a;h;
end for

We integrate the clustering concept into the MIL setting suaning the exis-
tence of hidden variablgl; € ) which denotes whether the instange belongs
to the k™ cluster. If an instance belongs to one Igf clusters, this instance is
considered as a positive instance; if at least one instareéag is labeled as pos-
itive, the bag is considered as positive. This forms the MG&uanption, which
is formulated as:

% = Imax max (ylkj) (12)

Again themax is equivalent to an OR operator whetexx; (y);) = 1 <=
Jk, s.t. yfj =1.

Based on this multiple cluster assumption, next we discusgribposed MCIL
method. The differences among fully supervised learning,,nd MCIL are
illustrated in Figure (3). The goal of MCIL is to discover anglisthe positive
instances intd< groups by learninds instance-level classifiefs’(z;;) : X — Y
for K clusters, given only bag-level supervisign The corresponding bag-level
classifier for thek™ cluster is thenH*(z;) : X™ — ). The overall image-level
classifier is denoted &3 (x;) : X™ — Y:

H(x;) = max H*(z;) = Max max h*(x4;) (13)
J
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Standard

Xi={Xi1, .- Xim}
xi]' EX

hX->y Hy"->y

r - - Training Xi={Xi1, .o Xim } Xi={xi1, ... Xim}
1 1 H
L-dJ input Xij EX Xij EX
| —l Goal h* X -y, H: ym >y h*:X >y, H . y™ >y

Figure 3: Distinct learning goals between (a):Standardestiged learning, (b):MIL, (¢):MCIL
and (d):cMCIL. MCIL and cMCIL could perform image-level skification (z; — {—1,1})),
patch-level segmentatior; — {—1, 1}) and patch-level clustering(; — {y}j, .. ,yﬁ-},yfj €
{—1,1}). cMCIL studies the contextual prior information among thgtances within the frame-
work of MCIL and correctly recognizes noises and small ismlaareas. Red and yellow squares
and regions represent different type of cancer tissues.

3.3. The MCIL Method

In this section, based on the previous derivations, we gigdull formulation
of our MCIL method. The probability; = p(y; = 1|x;) now is computed as the
softmaxof the probabilityp;; = p(y;; = 1|x;;) of all the instances;;; the p;; is
obtained as theoftmaxof pf; = p*(y;; = 1|z;;), which measures the probability
of the instance:;; belonging to thé™ cluster. Thus, using theoftmaxg in place
of themax in egn. (12) we compute the bag probability as:

pi = (i) = 9;(gx(D5;)) (14)
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Table 2: MCILw’C /wl with differentsoftmaxfunctions

wfj/wz‘ Yy = —1 y; = 1
k .
NOR —2pk, g )
~ap )= ()" — (P”)H'l
GM T S k 2 ST
. 2101-]- (1*]1“-) €xXp (Tpi]’) 2pij (171’”‘) €xXp (’r‘pi]-)
LSE l-pi >, ,exp (TEZ) Pi >k OXP (Tpgg)
2X :Pi k Di; 2X 1 pL E pl..
ISR 5 ]Xk X = 17;% ijxk X = 5 ;)?j
9;(9x(pi;)) = 96 (p3;) = gr(9;(p3;)) (15)
pi = gir(o(2h5)), (16)

wherehf, = h*(x;;). Again, the function ofy(p};) can be deduced from Table 1;
it indicates a functiory which takes aljpk indexed byk; similarly, g]k(pzj) could
be understood as a functigrincluding allp indexed byk andj. Verification of
this equation is shown in Remark 1 in the appendlx.

The next step is to computel; with derivative:w;; = hk . Using the chain

)
rule we get:
oL aL dp; Opk,
k= = RS 17
Y T T ORE T Ops ol On, (a7
The form of ; ‘9”1 is dependent on the choice of theftmaxfunction, which can be

deduced from Table 1 by replacingv;) with p; andv; with pfj. Derivativeg—zfi is

opk. .
the same as eqn. (9), agf}’ is expressed as:
i

8pfj
ohy;

= 2pf5(1 = pf). (18)

We further summarize the weighis);/w; in Table 2. Recall thai; is the given
prior weight for thei!" bag.

Note thatp; and £(h) depend on each];. We optimize£(h', ..., h*) using
the coordinate descent method cycling throdglvhich is a non-derivative opti-

mization algorithm (Bertsekas and Bertsekas, 1999). In ehabgwe add a weak
classifier toh* while keeping all other weak classifiers fixed. Details of M@IL

14



are demonstrated in Algorithm 3. The paraméteis the number of cancer sub-
types, and the parametéris the number of weak classifiers in Boosting. Notice
that the outer loop is for each weak classifier while the irlaep is for thek™
strong classifier.

In summary, the overall MCIL strategy can be described asval We in-
troduce the latent variableg;, which denotes the instanag; belonging to the
k™ cluster; we encode the concept of clustering by re-weightire instance-
level weightwfj. If cluster k™" can classify an instance to be positive, thus the
corresponding weights of the instance and bag for othetersiglecrease in re-
weighting. Thus, it forms a competition among differentstérs.

Algorithm 3 MCIL-Boost
Input: Bags{zy,...,z.},{v1,---,un}, K, T
Output: p', ... A%
fort=1—Tdo

fork=1— K do
Compute weightsu}; =

_ oL op; Pl
opi Ol ORE,

Train weak classifiers; using weightgw};
hf = arg miny, Zij 1(h($fj) # yz)’wzkj
Find a; via line search to minimiz&(., h*,.)
af = argmin, £(., h* + ahk )
Update strong classifiets < h* + aFh¥
end for
end for

3.4. Contextual Constraints

Most existing MIL methods are conducted under the assumtiat instances
within a bag are distributed independently, without coesitl the inter-dependences
among instances; this leads to some degree of ambiguity.eanple, an in-
stance considered to be positive in a bag may be an isolatetqranoise. In this
situation, it will lead to incorrect recognition of canc&sues. Rich contextual
information has been proven to play a key role in fully supsse image segmen-
tation and labeling (Tu and Bai, 2010). To further improve algorithm, we
take into consideration such contextual information toaeme the robustness of
the MCIL. For convenience, this extension is called contaxistrained multiple
clustered instance learning (cMCIL). The key to the cMCIL isariulation for
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introducing the neighborhood information as a prior for Bh€IL. Note that the
cMCIL is still implemented within the framework of the MCIL. €hdistinction
between MCIL and cMCIL is illustrated in Figure (3).

We define the new loss function in cMCIL as:

L(h) = La(h) + AL (h), (19)

where L 4(h) is the standard MCIL loss function taking the form as eqn. (4).
Lp(h) imposes a neighborhood constraints (in a way a smoothniess@rer the
instances to reduce the ambiguity during training; it emagas the nearby image
patches to be within the same cluster.

=D wi Y U | iy = pim I, (20)

where) weighs the importance of the current instance and its neighb; is the
weight of thei™" training data (thé™ bag). E; denotes the set of all the neighboring
instance pairs in thé" bag.v;,, is the weight on a pair of instances (patchgeahd
m related to the Euclidean spatial distance (on the imagatddrasi;,,,) between
them. Nearby instances have more contextual influence tiséances that are far
away from each other. In our experiment, we choge= exp(—d;,,), such that
higher weights will be put on closer pairs.

According to eqgn. (19), we rewri h(,_f) as

©j

OL() _ 0Lah) | OLu(h)

8h§"j 8h§j 8h§j
and oL
aB Z QUJm p'Lj pzm) (22)
pz]
(j,m)EE;
we further rewrite the derivative @zﬁfj = _W as:
oL dL 4 Op; Opk. Ly (h)
k A Opj ij B
k= = A . 23
i ahg Cops ot ont, T A o) (23)
sz
8hk

MCIL). 254 takes the same form 6™ in eqn. (9).
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The optimization procedure for cMCIL is similar to MCIL. Withé weight
wfj we can train the weak classifigf by optimizing weighed error to obtain a
strong classifierh” < h* + a;*1L}. The details of cMCIL are similar to those of
MCIL as demonstrated in Algorithm 3 except that the we'@ﬁtis replaced by

eqgn. (23).

4. Experiments

To illustrate the advantages of MCIL, we conduct experimentswo med-
ical image datasets. In the first experiment, without losgegferality, we use
colon tissue microarrays to perform joint classificatioegreentation and clus-
tering. For convenience, tissue microarrays are calledpéshology images. In
the second experiment, cytology images (Lezoray and Ca200f) are used to
further validate the effectiveness of MCIL. All the methodghe following ex-
periments, unless particularly stated, are conductedrithdesame experimental
settings and based on the same features, which are dectai@tbavs.

4.1. Experiment A: Colon Cancer Histopathology Images

Settings For the parameter setting, we set= 20, and7 = 200. As men-
tioned before, the parametecontrols the sharpness and accuracy in the LSE and
GM model. The parametdr decides the number of weak classifiers in boosting.
The parameteK decides the number of cancer classes when performing cluste
ing task. K is set to4 in the colon cancer image experiment because the dataset
contains four kinds of cancer types. For the value of parametised in the loss
function of cMCIL, 0.01 is selected according to an segmentation experimental
result based on a cross validation.

We assume the initial equal weights for the positive and tiieg#aining data.
Under this assumption, the initial weight for the i bag is set as uniform. In
our experiments, we use the GM model as sh&maxfunction, except for one
classification experiment part, in which we use four modetbmparison. The
weak classifier we use is the Gaussian function. All the expental results are
reported with 5-fold cross validation. The number of tragidata and test data
are always the half of the total number of all the data useblerexperiment.

Features Each instance is represented by a feature vector. In thik wer
focus on an integrated learning formulation rather tharfeature design. Also to
demonstrate the generality of our framework, we opt for garfeatures instead
of adopting or creating our own disease specific featureseciSgally, we use
widely adopted features including «*b* Color Histogram, Local Binary Pattern
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(Ojala et al., 2002; Ahonen et al., 2009), and SIFT (Lowe, A0MNote that de-
signing disease specific features is an interesting andecigahg research topic
itself due to the fact that cell appearance of different $yqpiecancers may be very
difference in terms of shape, size and so on. While using ssspecific features
may potentially improve the performance further, we leaverifuture work.

In histopathology images, recent studies use some comnubusaful features
from gray-level co-occurrence matrix (GLCM), Gabor filtergjltiwavelet trans-
forms, and fractal dimension texture features (Huang ared 2609). Therefore,
we also added the similar features.

Datasets Colon histopathology images with four cancer types are used,
cluding Moderately or well differentiated tubular adenmiaoma (MTA), Poorly
differentiated tubular adenocarcinoma (PTA), Mucinousrextarcinoma (MA),
and Signet-ring carcinoma (SRC). These four types are thecnoshon types in
colon cancer. Combined with the Non-cancer images (NC), fagssels of colon
histopathology images are used in the experiments. We asathe abbreviations
for each type in the following sections.

To better reflect the real world situation, we designed oteis in an unbal-
anced way to match the actual distribution of the four tydesaacer. According
to national cancer institute (http://seer.cancer.gdtg,incidence of Moderately
or well differentiated tubular adenocarcinoma account3 @86-80% , Poorly dif-
ferentiated tubular adenocarcinoma accounts for 5%, Mwsradenocarcinoma
accounts for 10%, and Signet-ring carcinoma accounts $artlean 1%. The im-
ages are obtained from the Nano Zoomer 2.0HT digital slieaser produced by
Hamamatsu Photonics with a magnification factor of 40. lalfote obtain 50
non-cancer (NC) images and 53 cancer images. First we domplsdhe images
by 5 times to reduce the computational overhead. Our segti@mtherefore is
conducted on the down-sampled images rather than the akigiages. We then
densely extract patches from each image. The size of each jg&d x 64. The
overlap step size 32 pixels for training andt pixels for the inference. Note that
each patch corresponds to an instance, which is represepeeteature vector.

We use all the images to construct four different subseétsury, multil,
multi2, andmulti3. The constituents of the four subsets are shown in Table 3.
In the first three subsets, each subset contains 60 differgiopathology images.
binary refers to the subset containing only two classes: the NG dasl the
MTA class. It contains 30 non-cancer and 30 cancer image&scan be used to
test the capability of cancer image detectionul/t:1 andmulti2 each includes
three types of cancer images and one type of non-cancer gnagét:3 contains
all four types of images. In the all four subsets, we demaisithe advantage of
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Table 3: Number of images in the subsets.

NC | MTA | PTA| MA | SRC
binary | 30 | 30 0 0 0
multil | 30 | 15 9 0 6
multi2 | 30 | 13 9 8 0
multi3 | 50 | 28 8 8 6

the MIL formulations against the state-of-the-art supsdiimage categorization
approaches. Imulti2, we further show the advantage of MCIL in an integrated
classification/segmentation/clustering framework.

Annotations To ensure the quality of the ground truth annotations, irmage
are carefully studied and labeled by well-trained exp&j=ecifically, each image
is independently annotated by two pathologists; the thath@logist moderates
their discussion until they reach the final agreement on éselt. All images
are labeled as cancer images or non-cancer images. Fuditeerfar the cancer
image, cancer tissues are annotated and their corresgpcaliter subtypes are
identified.

4.1.1. Image-level Classification

In the experiment, we measure the image-level classificdtio being can-
cer or non-cancer images. First, the performance of the MGdthod based on
differentsoftmaxmodels as mentions in Table 1 are compared.

Second, to evaluate the performance of our methods, sewetabds are im-
plemented as baseline for comparison in this experimenceShe source codes
of most algorithms presented in the colon cancer image sisalyerature are
not always available, the image classification baseline ge here is multiple
kernel learning (MKL) (Vedaldi et al., 2009) which obtainsry competitive im-
age classification results and wins the PASCAL Visual Objeas§#s Challenge
2009 (VOC2009) (Everingham et al.). We use their implemeémaind the same
parameters reported in their paper. For the MIL baselinesse MI-SVM (An-
drews et al., 2003), mi-SVM (Andrews et al., 2003), and MILeBb(Viola et al.,
2005). Moreover, we use all the instanegsto train a standard Boosting (Ma-
son et al., 2000) by considering instance-level labelyddrirom bag-level labels
(Wij=vi,i=1,...,n, j=1,...,m).

In total seven methods for colon cancer image classificai@ncompared,
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including cMCIL, MCIL, MKL, MIL-BOOST, Boosting, mi-SVM and MISVM.
Notice that MKL utilizes more discriminative features thahat we use in MIL,
MCIL and cMCIL, including the distribution of edges, dense apérse visual
words, and feature descriptors at different levels of spatiganization.

Moreover, to further validate the methods, special expenits onmulti3 is
conducted. In these experiments, some other featuresiding Hu moment and
Gray-Level Co-occurrence Matrix (GLCM) (Sertel et al., 20@9% added into the
original feature set to demonstrate how the feature seeinfles the classification
result.

Computational complexity The machine (Processor: Intel(R) Core(TM)2
Quad CPU Q9400 @ 2.66GHz 2.67GHz; RAM: 8G; 64 Operating Sysiem)
used to evaluate the computational complexity. The datdMséi2 is used in
the experiment. The feature code is C++ implementation ithae algorithms
except MKL. The MKL code, including features and models, I&TMAB/C im-
plementation front. The mi-SVM and MI-SVM codes are JAVA implementation
from 2. The other codes are C++ implementation written by the asthtable 4
shows time consuming from various algorithms. Noted thabhreans mi-SVM
and Ml means MI-SVM. The numerical unit is minute except MKs&ing hour.
For the computational complexity, it takes several daysaimitan MKL classifier
for a dataset containing 60 images while it only takes abewtsl hours using
an ensemble of MIL. Compared with MIL and MCIL, because MCIL addisop,
the training time of MCIL is more than that of MIL. The time of &BIL is slightly
more than that of MCIL due to the different loss function.

http://www.robots.ox.ac.uk/ ~ vgg/software/MKL/
2http://weka.sourceforge.net/doc.packages/
multilnstanceLearning/weka/classifiers/mi/package-s ummary.htmi
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Figure 4. ROC curves for classification in (a) and (b): (a):GR€urves for foursoftmaxmodels

in MCIL; LSE model and GM model fit the best for the cancer imageognition task. (b):
Comparisons of image (bag)-level classification resulth wtiate-of-the-art methods on the three
datasets: ROC curves for different learning methods; oap@ed methods have the apparent
advantages.
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Table 4: Run time in various algorithms (minute)

cMCIL | MCIL MKL MIL-Boost | Boosting| mi MI
Features 90 90 90 5 90 90
Model 35 32 8 2 15 16
Total 125 122 70hour 95 7 105 | 106
Language | C++ C++ | Matlab/C C++ C++ JAVA | JAVA
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Figure 5: ROC curves for classification emlti3 in (a),(b) and (c): (a): Comparison with state-
of-the-art methods based on the new feature set. (b)(c):padson of MCIL/cMCIL based on
two different feature set. (d): The F-measures for segntientat varying number of images with

pixel-level full supervision.
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Evaluation Receiver operating characteristic (ROC) curve is used tauatal
the performance of classification. The larger the area uth@ecurve is, the better
the corresponding classification method is.

Results The ROC curves for fousoftmaxmodels in MCIL are shown in
Figure (4.a). According to the curves shown in the figures gafely to say that
the LSE model and GM model fit the best for the cancer imagegretion task,
which is the reason why GM model is chosen in all the followexgeriments.

Figure (4.b) shows the ROC curves for different learninghads in the three
datasets. In the datadétary, cMCIL, MCIL and MIL-Boost outperform well
than developed MKL algorithm (Vedaldi et al., 2009) and d&d Boosting(Mason
et al., 2000), which shows the advantage of the MIL formalatio the cancer
image classification task. cMCIL, MCIL and MIL-Boost achievedar perfor-
mance on théinary dataset of one class/cluster; however, when applied to the
datasetsnulitil and multi2, cMCIL and MCIL significantly outperform MIL-
Boost, MKL, and Boosting. This reveals that the multiple chuisty concept
integrated in the MCIL/cMCIL framework is able to successfudeal with the
complex situation in cancer image classification.

Figure (5) further demonstrates the advantages of MCIL/cMftdimework
than other methods. Furthermore, the three results in taesfghow that MCIL/cMCIL
method based on new feature set can hardly outperform weatl the method
based on the old feature set that is very general and smadl ré@$ult demonstrate
that the MCIL/cMCIL method effective to detect cancer imageaggeneral fea-
ture set rather than using special medical features.

Discussion In classification, we show the performance of both MCIL and
cMCIL compared to others. Note that the performance of cMCHm@asure:
0.972) is almost identical to that of MCIL (F-measure: 0.96Bhis is expected
because the contextual models mainly improve patch-legghgntation and have
little effect on classification.

Different cancer types, experiment settings, benchmarigevaluation meth-
ods are reported in the literature. As far as we know, the emakimages used
in (Huang and Lee, 2009; Tabesh et al., 2007; Esgiar et d&2)28e not publicly
accessible® Hence, it is quite difficult to make a direct comparison betwdif-
ferent algorithms. Below we only list their results as refees. In (Huang and

3We have also tried to contact many authors working on medeginentation related to our
topic to validate our method. Unfortunately, they eithef ot answer our email, cannot share the
data with us, or tell us that their method will fail in our task
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Lee, 2009), 205 pathological images of prostate cancer erersen as evaluation
which included 50 of grade 1-2, 72 of grade 3, 31 of grade 4,5hdf grade 5.
The highest correct classification rates based on BayesMN,&d SVM classi-
fiers achieved4.6%, 94.2% and94.6% respectively. In (Tabesh et al., 2007), 367
prostate images (218 cancer and 149 non-cancer) were cttodetect cancer or
non-cancer. The highest accuracy Was%. 268 images were chosen to classify
gleason grading. The numbers of grades 2-5 are 21, 154, 88,ardpectively.
The highest accuracy wad%. In (Esgiar et al., 2002), a total of 44 non-cancer
images and 58 cancer images were selected to detect canoen-cancer. The
sensitivity 0f90%-95% and the specificity 086%-93% were achieved according
to various features.

4.1.2. Image Segmentation

We now turn to an instance-level experiment. We report imctdevel results
in the datasethulti2 that containg0 cancer images argd non-cancer images in
total. Instance-level annotations for cancer images areigeed by three patholo-
gists with the procedure (two pathologists marking up angl more pathologist
mediating the decision) described before.

Unsupervised segmentation techniques cannot be used @ctaimparison
here since they cannot output labels for each segment. Tmeesgation base-
lines are MIL-Boost (Viola et al., 2005) and standard Boos{ihtason et al.,
2000), both taking the image-level labeling as supervisiareover, in order to
compare with the fully supervised approach with pixel-wasmotation, we pro-
vide a pixel-level full supervision method by implementiagtandard Boosting
method that takes the pixel-level labeling as supervisieguire laborious label-
ing work). Experiment on varying numbefs, 5,7, 10) of images of pixel-level
full supervision are conducted.

Evaluation For a quantitative evaluation, the F-measure is used taatal
the segmentation result. Each approach generates a prgbadaip P, for each
bag (image):; and the corresponding ground truth map is named;a3hen we
compute F-measure as follows: PrecisienP,NG;|/|P;|, Recall= | P,NG,;|/|G;|
and F-measure- 25FrecsonRecal

Results and discussionTable 5 shows the F-measure values of four methods,
cMCIL, MCIL, MIL-Boost and standard Boosting. Again, standardoBting is
a supervised learning baseline that utilizes image-leupesrision by treating
all the pixels in the positive and negative bags as positidereegative instances
respectively. The high F-measure values of cMCIL displaygifeat advantage of
contextual constraints over previous MIL-based methods.iMfoduce context
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Table 5: Colon cancer image segmentation results in F-measgdour methods. Note that stan-
dard Boosting(Mason et al., 2000) is trained under the irlegel supervision.

Method | Standard Boosting MIL-Boost | MCIL | cMCIL
F-measure 0.312 0.253 0.601| 0.717

constraints as a prior for multiple instance learning (cMCikhich significantly
reduces the ambiguity in weak supervision (a 20% gain).

Figure (6) shows some segmentation results of test dataordiog to the
test results, standard Boosting with image-level supamigends to detect non-
cancer tissues as cancer tissues since it considers atidfamces in positive bags
as positive instances.

Since our learning process is based on image-level lalbedantrinsic label
(cancer vs. non-cancer) for each patch/pixel is ambigudsig contextual infor-
mation therefore can reduce the ambiguity on the i.i.d.gpehdently identically
distributed) assumption. Compared with MCIL, cMCIL improvegsientation
quality by reducing the intrinsic training ambiguity. Due neighborhood con-
straints, cMCIL is able to reduce noises and identify smalbied areas in cancer
images to achieve cleaner boundaries.

The corresponding F-measure values of the varying numifeirsages of
pixel-level full supervision are shown in Figure (5.d), wihidemonstrates that
cMCIL is able to achieve comparable results (around 0.7) hiltont having de-
tailed pixel-level manual annotations. Although our wgadklipervised learning
method requires more images (30 positive), it eases theehunfl making the
pixel-wise manual annotation. In our case, it often takes 3 hours for our
expert pathologists to reach the agreement on the pixel-gound truth while it
usually costs only ~ 2 minutes to label an image as cancerous or non-cancerous.
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Figure 6: Image Types: from left to right: (a): The originadages. (b)(c)(d)(e)(f): The instance-
level results (pixel-level segmentation and patch-levastering) for standard Boosting + K-
means, pixel-level full supervision, MIL + K-means, MCIL&GBMCIL. (g): The instance-level

ground truth labeled by three pathologists. Different colstand for different types of cancer
tissues. Cancer Types: from top to bottom: MTA, MTA, PTA, N@d NC.
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4.1.3. Patch-level Clustering

With the same test data mentioned in segmentation, we ataeld the clus-
tering results. For patch-level clustering, we build twedlaes: MIL-Boost
(Viola et al., 2005) + K-means and standard Boosting + K-med&asticularly,
we first run MIL-Boost or standard Boosting to perform instatesesl segmenta-
tion and then use K-means to obtdinclusters among positive instances (cancer
tissues). Since we mainly focus on clustering performarmee,twe only include
true positive instances.

Evaluation The purity measure is used as the evaluation metric. Given a
particular clusterS, of sizen,., the purity is defined as the weighted sum of the
individual cluster puritiegurity = S2F_. 2= Pu(S,), wherePu(S,) is the purity

r=1 n

of a cluster, defined aBu(S,) = ni max; n,.. Larger purity values indicate better
clustering results.

Results and discussionThe purities of cMCIL and MCIL are respectively
99.74% and 98.92%, while the purities of MIL-Boost + K-means and standard
Boosting + K-means are onB6.21% and84.37% respectively. This shows that
an integrated learning framework of MCIL is better than sapag the two-steps,
instance-level segmentation and clustering.

We also illustrate the clustering results in Figure (6). Aswn in the figure,
MCIL and cMCIL successfully discriminate cancer classes. diginal MCIL
method divides MTA cancer images into three clusters. Coatpaith MCIL,
the patch-level clustering is less noisy in cMCIL. The PTA @antissues are
mapped to blue; the MTA cancer tissues are mapped to gredowyand red.
Both MIL-Boost + K-means and standard Boosting + K-means divigke tissue
class into several clusters and the results are not consistethe histopathology
images, the purple regions around cancers are lymphocimssome patients,
it is common that lymphocytes occur around the cancer catisseldom appear
around non-cancerous tissues although lymphocytes tihesssare not consid-
ered as cancer tissues. Since a clear definition of all dassill not available,
our method shows the promising potential for automaticeXploring different
classes with weak supervision.
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Figure 7: Image Types: from left to right: (a): The originalldmages. (b)(c)(d)(e): The seg-
mentation results for pixel-level fully supervision, MReost, MCIL and cMCIL. (f): The ground
truth images. The two bottom images are generated backgimages. Cytology Image Classes:
from top to bottom: CELL, CELL, CELL, BG and BG.

4.2. Experiment B: Cytology Images

Datasets Ten cytology images together with their corresponding saga:
tion results (as the ground truth) are obtained from the p@d@zoray and Cardot,
2002). We also generate additional ten background (nepatiages. These im-
ages have the same background texture as the ten cytologyesnut without
cells on them. Details of the method for texture image gditarare presented in
(Portilla and Simoncellt, 2000), in which a universal paetnc model for visual
texture, based on a novel set of pairwise joint statisticalstraints on the coef-
ficients of a multiscale image representation is describbemt. convenience, we
name the cytology image as cell image (CELL) and texture insageackground
image (BG).
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Table 6: Cytology image segmentation results in F-meadiléferent methods.

Method | full supervision| MIL-Boost | MCIL | cMCIL
F-measure 0.766 0.658 0.673 | 0.699

Experiments design To evaluate the pixel-level segmentation, we test these
20 images with 4 different methods, including pixel-levall Supervision, MIL-
Boost, MCIL, and cMCIL. All the four methods correctly classtfye 20 images
into the cell image and background image. Since all nuclirgeto the same
type, the cluster concept that divides different instanots different classes is
rather weak in this case. Therefore, in Experiment B we fotuthe segmentation
task.

Results and discussionThe results are shown in Figure (7). Same as before,
supervised method with the full pixel-level supervisiotiages the best perfor-
mance. By comparing weakly supervised methods in Figuren@)bserve: (1)
some nuclei are missed by MIL-Boost; (2) MCIL removes somersrbot also
brings up noises; and (3) cMCIL further improves the resuftsdalucing the in-
trinsic training ambiguity. The F-measures calculatedifquantitative evaluation
are shown on Table 6, which is consistent to the qualitatiustration in Figure
(7).

The experimental results demonstrate the effectivenesMG@IL in cytol-
ogy image segmentation. MCIL significantly improves segraonh over other
weakly supervised methods and it is able to achieve accu@mparable with a
fully supervised state-of-the-art method.

5. Conclusion

In this paper, we have presented an integrated formulatioittjple clustered
instance learning (MCIL), for classifying, segmenting, ahdstering medical im-
ages along the line of weakly supervised learning. The adgas of MCIL are
evident over the state-of-the-art methods that performritieidual tasks, which
include easing the burden of manual annotation in which anbge-level label
is required and perform image-level classification, pieskl segmentation and
patch-level clustering simultaneously.

In addition, we introduce contextual constraints as a pieorMCIL which
reduces the ambiguity in MIL. MCIL and cMCIL are able to achieeenparable
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results in segmentation with an approach of full pixel-lestgoervision in our ex-
periment. This will inspire future research in applyingfelient families of joint
instance models (conditional random fields(Lafferty et 2001), max-margin
Markov network(Taskar et al., 2003), etc.) to the framewofMIL/MCIL, as
the independence assumption might be loose.

Appendix A. Verification for Remark 1

We verify Remark 1 (eqn. (15);(gx(pf;)) = g;x(pi;) = gx(9;(pf;)) for each
model. Given the number of clusteks and the number of instances in each
bag, we develop derivations for four models respectively:

For the NOR model:

ngj(Pfj) =1- H(l - (1= pr]))

(A1)
=1-[[I#5 =1 -]k = gi@f)
[ gk
For the GM model:
1 1 1 1 1.1
ky\ k\r\= k\r\=\7r\=
gkgj(pij) = (E;(pz) )= (E ;((%Z(M]) 7))
1 ) ’ (A-2)
= (E ' (PZ)T); = gjk(pfj)
7.k
For the LSE model:
1
g9;(piy) = —In Z exp (rp}))
L 1 .
=—In ZeXp rin (= (> exp (i) (A.3)
J
1 1
= o 2 OXP (rpf) = 956 (Pf;)
7,k
For the ISR model:
k95 (Dl) = Z v k/ Z ) (A.4)

1_171
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p?j 1 pfj
p;‘? Zj T_pF /(1 + Zj 1*P§j) pfj

= 4 = (A.5)
1—pk Z 2 pk Z 1 — pk
k D; k l—zj 1755/(1—’_2]' 17;%) .k Dij
k Py
kY _ 2 1?1’? _ 2 5 k
gkgj(pij> = P o gjk(pij) (A.6)
+ 2 = DY 1—1;1-3-

Now we showy;.(pf;) = grg;(p};) for eachsoftmaxmodels.g;i (pf;) = 9% (pig*)
could also be given in the same way. Thus Remark 1 (egn. (16, &e verified.
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