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Abstract

Labeling a histopathology image as having cancerous regions or not is a critical
task in cancer diagnosis; it is also clinically important tosegment the cancer tis-
sues and cluster them into various classes. Existing supervised approaches for
image classification and segmentation require detailed manual annotations for the
cancer pixels, which are time-consuming to obtain. In this paper, we propose
a new learning method, multiple clustered instance learning (MCIL) (along the
line of weakly supervised learning) for histopathology image segmentation. The
proposed MCIL method simultaneously performs image-level classification (can-
cer vs. non-cancer image), medical image segmentation (cancer vs. non-cancer
tissue), and patch-level clustering (different classes).We embed the clustering
concept into the multiple instance learning (MIL) setting and derive a principled
solution to performing the above three tasks in an integrated framework. In ad-
dition, we introduce contextual constraints as a prior for MCIL, which further
reduces the ambiguity in MIL. Experimental results on histopathology colon can-
cer images and cytology images demonstrate the great advantage of MCIL over
the competing methods.
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learning, histopathology image.

1. Introduction

Histopathology image analysis is a vital technology for cancer recognition and
diagnosis (Tabesh et al., 2007; Park et al., 2011; Esgiar et al., 2002; Madabhushi,
2009). High resolution histopathology images provide reliable information dif-
ferentiating abnormal tissues from the normal ones. In thispaper, we use tissue
microarrays (TMAs) which are referred to histopathology images here. Figure (1)
shows a typical histopathology colon cancer image, together with a non-cancer
image. Recent developments in specialized digital microscope scanners make
digitization of histopathology readily accessible. Automatic cancer recognition
from histopathology images thus has become an increasinglyimportant task in
the medical imaging field (Esgiar et al., 2002; Madabhushi, 2009). Some clinical
tasks (Yang et al., 2008) for histopathology image analysisinclude: (1) detecting
the presence of cancer (image classification); (2) segmenting images into cancer
and non-cancer region (medical image segmentation); (3) clustering the tissue re-
gion into various classes. In this paper, we aim to develop anintegrated framework
to perform classification, segmentation, and clustering altogether.

(a) cancer image (b) non-cancer image

Figure 1: Example histopathology colon cancer and non-cancer images: (a) positive bag (cancer
image); (b) negative bag (non-cancer image). Red rectangles: positive instances (cancer tissues).
Green rectangles: negative instances (non-cancer tissues).

Several practical systems for classifying and grading cancer histopathology
images have been recently developed. These methods are mostly focused on the
feature design including fractal features (Huang and Lee, 2009), texture features
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(Kong et al., 2009), object-level features (Boucheron, 2008), and color graphs fea-
tures (Altunbay et al., 2010; Ta et al., 2009). Various classifiers (Bayesian, KNN
and SVM) are also investigated for pathological prostate cancer image analysis
(Huang and Lee, 2009).

From a different angle, there is a rich body of literature on supervised ap-
proaches for image detection and segmentation (Viola and Jones, 2004; Shotton
et al., 2008; Felzenszwalb et al., 2010; Tu and Bai, 2010). However, supervised
approaches require a large amount of high quality annotateddata, which are labor-
intensive and time-consuming to obtain. In addition, thereis intrinsic ambiguity
in the data delineation process. In practice, obtaining thevery detailed annotation
of cancerous regions from a histopathology image could be a challenging task,
even for expert pathologists.

Unsupervised learning methods (Duda et al., 2001; Loeff et al., 2005; Tuyte-
laars et al., 2009), on the other hand, ease the burden of having manual annota-
tions, but often at the cost of inferior results.

In the middle of the spectrum is the weakly supervised learning scenario.
The idea is to use coarsely-grained annotations to aid automatic exploration of
fine-grained information. The weakly supervised learning direction is closely re-
lated to semi-supervised learning in machine learning (Zhu, 2008). One particular
form of weakly supervised learning is multiple instance learning (MIL) (Diet-
terich et al., 1997) in which a training set consists of a number of bags; each
bag includes many instances; the goal is to learn to predict both bag-level and
instance-level labels while only bag-level labels are given in training. In our case,
we aim at automatically learning image models to recognize cancers from weakly
supervised histopathology images. In this scenario, only image-level annotations
are required. It is relatively easier for a pathologist to label a histopathology image
than to delineate detailed cancer regions in each image.

In this paper, we develop an integrated framework to classify histopathology
images as having cancerous regions or not, segment cancer tissues from a cancer
image, and cluster them into different types. This system automatically learns
the models from weakly supervised histopathology images using multiple clus-
tered instance learning (MCIL), derived from MIL. Many previous MIL-based
approaches have achieved encouraging results in the medical domain such as ma-
jor adverse cardiac event (MACE) prediction (Liu et al., 2010), polyp detection
(Dundar et al., 2008; Fung et al., 2006; Lu et al., 2011), pulmonary emboli valida-
tion (Raykar et al., 2008), and pathology slide classification (Dundar et al., 2010).
However, none of the above methods aim to perform medical image segmentation.
They also have not provided an integrated framework for the task of simultaneous
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classification, segmentation, and clustering.
We propose to embed the clustering concept into the MIL setting. The current

literature in MIL assumes single cluster/model/classifierfor the target of interest
(Viola et al., 2005), single cluster within each bag (Babenkoet al., 2008; Zhang
and Zhou, 2009; Zhang et al., 2009), or multiple components of one object (Dolĺar
et al., 2008). Since cancer tissue clustering is not always available, it is desirable
to discover/identify the classes of various cancer tissue types; this results in patch-
level clustering of cancer tissues. The incorporation of clustering concept leads to
an integrated system that is able to simultaneously performimage segmentation,
image-level classification, and patch-level clustering.

In addition, we introduce contextual constraints as a priorfor cMCIL, which
reduces the ambiguity in MIL. Most of the previous MIL methods make the as-
sumption that instances are distributed independently, without considering the cor-
relations among instances. Explicitly modeling the instance interdependencies
(structures) can effectively improve the quality of segmentation. In our experi-
ment, we show that while obtaining comparable results in classification, cMCIL
improves the segmentation significantly (over 20%) compared MCIL. Thus, it is
beneficial to explore the structural information in the histopathology images.

2. Related Work

Related work can be roughly divided into two broad categories: (1) approaches
for histopathology image classification and segmentation,and (2) MIL methods in
machine learning and computer vision. After the discussionabout the previously
work, we show the contributions of our method.

2.1. Existing Approaches for Histopathology Image Classification and Segmen-
tation

Classification There has been rich body of literature in medical image clas-
sification. Existing methods for histopathology image classification however are
mostly focused on the feature design in supervised settings. Color graphs were
used in (Altunbay et al., 2010) to detect and grade colon cancer in histopathol-
ogy images; multiple features including color, texture, and morphologic cues at
the global and histological object levels were adopted in prostate cancer detec-
tion (Tabesh et al., 2007); Boucheron et al. proposed a methodusing object-
based information for histopathology cancer detection (Boucheron, 2008). Some
other work is focused on classifier design: for instance, Doyle et al. developed
a boosted Bayesian multi-resolution (BBMR) system for automatically detecting
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prostate cancer regions on digital biopsy slides, which is anecessary precursor
to automated Gleason grading (Artan et al., 2012). In (Monaco et al., 2010), a
Markov model was proposed for prostate cancer detection in histological images.

Segmentation A number of supervised approaches for medical image seg-
mentation have also been proposed before, for example on histopathology images
(Kong et al., 2011) and vasculature retinal images (Soares et al., 2006). Struc-
tured data has also been taken into consideration in the previous work. (Wang
and Rajapakse, 2006) presented a conditional random fields (CRFs) model to fuse
contextual dependencies in functional magnetic resonanceimaging (fMRI) data to
detecting brain activity. A CRF-based segmentation method was also proposed in
(Artan et al., 2010) for localizing prostate cancer from multi-spectral MR images.

2.2. MIL and Its Applications

Compared with fully supervised methods, multiple instance learning (MIL)
(Dietterich et al., 1997) has its particular advantages in automatically exploit-
ing the fine-grained information and reducing efforts in human annotations. In
the machine learning community, many MIL methods have been developed in
recent years such as Diverse Density (DD) (Maron and Lozano-Pérez, 1997),
Citation-kNN (Wang et al., 2000), EM-DD (Zhang and Goldman, 2001), MI-
Kernels (G̈artner et al., 2002), SVM-based methods (Andrews et al., 2003), and
ensemble algorithms MIL-Boost (Viola et al., 2005).

Although first introduced in the context of drug activity prediction (Dietterich
et al., 1997), the MIL formulation has made significant success in the area of
computer vision, such as visual recognition (Viola et al., 2005; Babenko et al.,
2008; Galleguillos et al., 2008; Dollár et al., 2008), weakly supervised visual cat-
egorization (Vijayanarasimhan and Grauman, 2008), and robust object tracking
(Babenko et al., 2011). Zhang and Zhou (2009) proposed a multiple instance
clustering (MIC) method to learn the clusters as hidden variables to the instances.
Zhang et al. (2009) further formulated the MIC problem underthe maximum mar-
gin clustering framework. MIC however is designed for datasets that have no neg-
ative bags and it assumes each bag containing only one cluster. Babenko et al.
(2008) assumed a hidden variable, pose, to each face (only one) in an image.
In our case, multiple clusters of different cancer types might co-exist within one
bag (histopathology image). In addition, segmentation cannot be performed. In
(Dollár et al., 2008), object detection was achieved by learning individual compo-
nent classifiers and combining these into an overall classifier, which also differs
from our work. Multiple components were learned for a singleobject class. How-
ever, we have multiple instances and multiple classes within each bag in our work.
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The MIL assumption was integrated into multiple-label learning for image/scene
classification in (Zhou and Zhang, 2007; Zha et al., 2008; Jinet al., 2009) and for
weakly supervised semantic segmentation in (Vezhnevets and Buhmann, 2010).
Multi-class labels were given as supervision in their methods; in our method, mul-
tiple clusters are hidden variables to be explored in a weakly supervised manner.

The MIL framework has also been adopted in the medical imaging domain
with the focus mostly on the medical diagnosis (Fung et al., 2007). In (Liu et al.,
2010), an MIL-based method was developed to perform medicalimage classifica-
tion; in (Liang and Bi, 2007), pulmonary embolisms among the candidates were
screened by an MIL-like method; a computer aided diagnosis (CAD) system (Lu
et al., 2011) was developed for polyp detection with the mainfocus on learn-
ing the features, which were then used for multiple instanceregression; an MIL
approach was adopted for cancer classification in histopathology slides (Dundar
et al., 2010). However, these existing MIL approaches were designed for medical
image diagnosis and none of them perform segmentation. Moreover, to the best of
our knowledge, the integrated classification/segmentation/clustering task has not
been addressed, which is the key contribution of this paper.

2.3. Our Contributions

Although several tasks in computer vision and medical domain have been
shown to benefit from the MIL setting, we find that the cancer image classifi-
cation/segmentation/clustering task is a well-suited medical imaging application
for the MIL framework. We propose a new learning method, multiple clustered
instance learning (MCIL), along the line of weakly supervised learning. The pro-
posed MCIL method simultaneously performs image-level classification (cancer
vs. non-cancer image), medical image segmentation (cancervs. non-cancer tis-
sues), and patch-level clustering (different classes). Weembed the clustering con-
cept into the MIL setting and derive a principled solution toperform the above
three tasks in an integrated framework. Furthermore, we demonstrate the impor-
tance of contextual information by varying the weight of contextual model term.
Finally, we try to answer the following question: is time-consuming and expen-
sive pixel-level annotation of cancer images necessary to build a practical working
medical image analysis system, or could the weaker but much cheaper image-level
supervision achieve the same accuracy and robustness?

Earlier conference versions of our approach were presentedin (Xu et al.,
2012b,a). Here, we further illustrate that: (1) the MCIL method could be applied
to analyze image types other than histopathology, such as cytology images, (2)
additional features such as gray-level co-occurrence matrix (GLCM) are added to
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this paper, and (3) a new subset of histopathology images hasbeen created in this
experiment. In this paper, we focus on colon histopathologyimage classification,
segmentation and clustering. However, it is noted that our MCIL formulation is
general and it can be adopted to other image modalities.

3. Methods

We follow the general definition of bags and instances in the multiple instance
learning (MIL) formulation (Dietterich et al., 1997).

In this paper, theith histopathology image is considered as a bagxi; the jth
image patch densely sampled from an image corresponds to an instancexij. A
patch of cancer tissue is treated as a positive instance (yij = 1) and a patch without
any cancer tissues is a negative instance (yij = −1). The ith bag is labeled as
positive (cancer image), namelyyi = 1, if this bag contains at least one positive
instance. Similarly, in histopathology cancer image analysis, a histopathology
image is diagnosed as positive by pathologists as long as a small part of image is
considered as cancerous. Figure (1) shows the definition of positive/negative bags
and positive/negative instances.

An advantage brought by MIL is that if an instance-level classifier is learned,
the image segmentation task then can be directly performed;bag-level (image-
level) classifier can also be obtained.

In the following sections, we first give the overview of the MIL literature,
especially recent gradient decent boosting based MIL approaches; then we in-
troduce the formulation for the proposed method, MCIL, whichintegrates the
clustering concepts into the MIL setting; properties of MCILwith various varia-
tions are provided. In addition, we introduce contextual constraints as a prior for
MCIL, resulting in context-constrained multiple clusteredinstance learning (cM-
CIL). Figure (2) and Algorithm 1 shows the flow diagram of our algorithms. The
inputs include both cancer images and noncancer images. Cancer images are used
to generate positive bags (red circles) and noncancer images are used to gener-
ate negative bags (green circles). Within each bag, each image patch represents
an instance. cMCIL/MCIL is used as a multiple instance learning framework to
perform learning. The learned models generate several classifiers for patch-level
cancer clusters. Red, yellow, blue and purple colors represent different cancer
types while green represents the noncancer patches. The overall image-level clas-
sification (caner vs. non-cancer) can be obtained based on the prediction from the
patch-level classification.
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Figure 2: Flow diagram of our algorithms. The inputs includeboth cancer images and noncancer
images. Cancer images are used to generate positive bags (red circles) and noncancer images are
used to generate negative bags (green circles). Within eachbag, each image patch represents an in-
stance. cMCIL/MCIL is used as a multiple instance learning framework to perform learning. The
learned models generate several classifiers for patch-level cancer clusters. Red, yellow, blue and
purple colors represent different cancer types while greenrepresents the noncancer patches. The
overall image-level classification (caner vs. non-cancer)can be obtained based on the prediction
from the patch-level classification.

Algorithm 1 Algorithm
Input : Colon histopathology images
Output : Image-level classification models for cancer vs. noncancer and patch-
level classification models for different cancer classes

Step1: Extract patches from colon histopathology images.
Step2: Generate bags for models using extracted patches.
Step3: Learn models in a multiple instance learning framework

(MCIL/cMCIL).
Step4: Obtain image segmentation and patch clustering simultaneously.

3.1. Review of the MIL Method
We give a brief introduction to the MIL formulation and focuson boosting-

based (Mason et al., 2000) MIL approaches (Viola et al., 2005; Babenko et al.,
2008), which serve as the building blocks for our proposed MCIL.
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In MIL, we are given a training set consisting ofn bags:Xm = {x1, . . . , xn}.
xi is the ith bag, andm denotes the number of instances in each bag,i.e. xi =
{xi1, . . . , xim}wherexij ∈ X andX = R

d (although each bag may have different
number of instances, for clarity of notation, we usem for all the bags here). Each
xi is associated with a labelyi ∈ Y = {−1, 1}. It is assumed that each instance
xij in the bagxi has a corresponding labelyij ∈ Y, which in fact is not given as
supervision during the training stage. As mentioned before, a bag is labeled as
positive if at least one of itsm instances is positive and a bag is negative if all its
instances are negative. In the binary case, the assumption can be expressed as:

yi = max
j

(yij), (1)

wheremax is essentially equivalent to an OR operator since foryij ∈ Y,maxj (yij) =
1 ⇐⇒ ∃j, s.t.yij = 1.

The goal of MIL is to learn an instance-level classifierh(xij) : X → Y.
A bag-level classifierH(xi) : Xm → Y could be built with the instance-level
classifier:

H(xi) = max
j

h(xij). (2)

To accomplish this goal, MIL-Boost (Viola et al., 2005) was proposed by com-
bining the MIL cost functions and the AnyBoost framework (Mason et al., 2000).
The general idea of AnyBoost (Mason et al., 2000) is to minimize the loss func-
tion L(h) via gradient descent on theh in the function space. The classifierh is
written in the form ofht as:

h(xij) =
T
∑

t=1

αtht(xij), (3)

whereαt weighs the weak learners’ relative importances.
To find the bestht, we proceed with two steps: (1) computing the weak clas-

sifier response, (2) selecting the weak classifier from available candidates which
achieves the best discrimination. We considerh as a vector with components
hij ≡ h(xij). To find the optimal weak classifier in each phase, we compute
−∂L

∂h
, which is a vector with componentswij ≡ −

∂L
∂hij

. Since we are limited in
the choice ofht, we train the weak classifierht by minimizing the training error
weighted by|wij|, using the follow formula:ht = argminh

∑

ij 1(h(xij) 6= yi)|wij|.
The loss function, a function overh, defined in the MIL-Boost (Viola et al.,
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Table 1: Four softmax approximationsgl(vl) ≈ maxl(vl).

gl(vl) ∂gl(vl)/∂vi domain
NOR 1−

∏

l (1− vl)
1−gl(vl)
1−vi

[0, 1]

GM ( 1
m

∑

l v
r
l )

1

r gl(vl)
vr−1

i∑
l v

r
l

[0,∞]

LSE 1
r
ln 1

m

∑

l exp (rvl)
exp (rvi)∑
l exp (rvl)

[−∞,∞]

ISR
∑

l v
′

l

1+
∑

l v
′

l

, v′l =
vl

1−vl
(1−gl(vl)

1−vi
)2 [0, 1]

2005; Babenko et al., 2008) is a standard negative log likelihood expressed as:

L(h) = −
n

∑

i=1

wi(1(yi = 1) log pi + 1(yi = −1) log (1− pi)), (4)

where1(·) is an indicator function. The bag probabilitypi ≡ p(yi = 1|xi) is
defined in terms ofh. wi is introduced here as the prior weight of theith training
sample.

A differentiable approximation of themax, namelysoftmaxfunction, is then
used. Form variables{v1, . . . , vm}, the idea is to approximate themax over
{v1, . . . , vm} by a differentiable functiongl(vl), which is defined as:

gl(vl) ≈ max
l

(vl) = v∗, (5)

∂gl(vl)

∂vl
≈

1(vi = v∗)
∑

l 1(vl = v∗)
. (6)

Note that for the rest of the paper,gl(vl) indicates a functiong on all variablesvl
indexed byl, not merely on one variablevl. There are a number of approximations
for g. We summarize4 models used here in Table 1: noisy-or (NOR) (Viola et al.,
2005), generalized mean (GM), log-sum-exponential (LSE) (Ramon and Raedt,
2000), and integrated segmentation and recognition (ISR) (Keeler et al., 1990;
Viola et al., 2005). The parameterr controls the sharpness and accuracy in the
LSE and GM modelsi.e.gl(vl)→ v∗ asr →∞.

The probability bagxi is defined aspi, which is computed from the maximum
over the probabilitypij ≡ p(yij = 1|xij) of all the instancesxij. Using thesoftmax
g to approximatemax, pi is defined as:

pi = max
j

(pij) = gj(pij) = gj(σ(2hij)), (7)
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wherehij = h(xij), andσ(v) = 1
1+exp (−v)

is the sigmoid function. Note that

σ(v) ∈ [0, 1] and ∂σ
∂v

= σ(v)(1− σ(v)).
Then the weightwij and the derivative∂L

∂hij
could be written as:

wij = −
∂L

∂hij

= −
∂L

∂pi

∂pi
∂pij

∂pij
∂hij

. (8)

wij is obtained by taking three derivatives:

∂L

∂pi
=











−
wi

pi
if y = 1;

wi

1− pi
if y = −1.

(9)

∂pi
∂pij

=



















1− pi
1− pij

NOR; pi
(pij)

r−1

∑

j(pij)
r

GM;

exp (rpij)
∑

j exp (rpij)
LSE; (

1− pi
1− pij

)2 ISR.
(10)

∂pij
∂hij

= 2pij(1− pij). (11)

Once we obtainht, the weightαt can be found via a line search, which aims to
minimizeL(h). Finally, we combine multiple weak learners into a single strong
classifieri.e. h ← h+ αtht. Algorithm 2 illustrates the details of MIL-Boost.
The parameterT is the number of weak classifiers in AnyBoost (Mason et al.,
2000).

3.2. Multiple Cluster Assumption

Multiple cancer subtypes with different morphological characteristics might
co-exist in a histopathology image. The single model/cluster/classifier in the pre-
vious MIL method is not capable of taking the different typesinto consideration.
A key component of our work is to to embed clustering into the MIL setting to
classify the segmented regions into different cancer subtypes. Although there
are many individual classification, segmentation and clustering approaches in the
medical imaging and computer vision community, none of these algorithms meet
our requirement since they are designed for doing only one ofthe three tasks.
Here we simultaneously perform three tasks in an integratedsystem under weakly
supervised learning framework.
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Algorithm 2 MIL-Boost
Input : Bags{x1, . . . , xn}, {y1, . . . , yn}, T
Output : h
for t = 1→ T do

Compute weightswij = −
∂L
∂pi

∂pi
∂pij

∂pij
∂hij

Train weak classifiersht using weights|wij|
ht = argminh

∑

ij 1(h(xij) 6= yi)|wij|
Findαt via line search to minimizeL(h)
αt = argminα L(h+ αht)
Update strong classifiersh← h+ αtht

end for

We integrate the clustering concept into the MIL setting by assuming the exis-
tence of hidden variableykij ∈ Y which denotes whether the instancexij belongs
to thekth cluster. If an instance belongs to one ofK clusters, this instance is
considered as a positive instance; if at least one instance in a bag is labeled as pos-
itive, the bag is considered as positive. This forms the MCIL assumption, which
is formulated as:

yi = max
j

max
k

(ykij). (12)

Again themax is equivalent to an OR operator wheremaxk (y
k
ij) = 1 ⇐⇒

∃k, s.t.ykij = 1.
Based on this multiple cluster assumption, next we discuss the proposed MCIL

method. The differences among fully supervised learning, MIL, and MCIL are
illustrated in Figure (3). The goal of MCIL is to discover and split the positive
instances intoK groups by learningK instance-level classifiershk(xij) : X → Y
for K clusters, given only bag-level supervisionyi. The corresponding bag-level
classifier for thekth cluster is thenHk(xi) : Xm → Y. The overall image-level
classifier is denoted asH(xi) : X

m → Y:

H(xi) = max
k

Hk(xi) = max
k

max
j

hk(xij) (13)
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MIL

MCIL cMCIL

Training

input

Goal

=

= =

Standard

Figure 3: Distinct learning goals between (a):Standard supervised learning, (b):MIL, (c):MCIL
and (d):cMCIL. MCIL and cMCIL could perform image-level classification ((xi → {−1, 1})),
patch-level segmentation (xij → {−1, 1}) and patch-level clustering(xij → {y

1

ij , . . . , y
K
ij }, y

k
ij ∈

{−1, 1}). cMCIL studies the contextual prior information among theinstances within the frame-
work of MCIL and correctly recognizes noises and small isolated areas. Red and yellow squares
and regions represent different type of cancer tissues.

3.3. The MCIL Method

In this section, based on the previous derivations, we give the full formulation
of our MCIL method. The probabilitypi ≡ p(yi = 1|xi) now is computed as the
softmaxof the probabilitypij ≡ p(yij = 1|xij) of all the instancesxij; thepij is
obtained as thesoftmaxof pkij = pk(yij = 1|xij), which measures the probability
of the instancexij belonging to thekth cluster. Thus, using thesoftmaxg in place
of themax in eqn. (12) we compute the bag probability as:

pi = gj(pij) = gj(gk(p
k
ij)) (14)
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Table 2: MCILwk
ij/wi with differentsoftmaxfunctions

wk
ij/wi yi = −1 yi = 1

NOR −2pkij
2pkij(1−pi)

pi

GM − 2pi
1−pi

(pkij)
r−(pkij)

r+1

∑
j,k(p

k
ij)

r 2
(pkij)

r−(pkij)
r+1

∑
j,k(p

k
ij)

r

LSE −
2pkij(1−pkij)

1−pi

exp (rpkij)∑
j,k exp (rpkij)

2pkij(1−pkij)

pi

exp (rpkij)∑
j,k exp (rpkij)

ISR −
2Xk

ijpi∑
j,k Xk

ij

,X k
ij =

pkij

1−pkij

2Xk
ij(1−pi)

∑
j,k Xk

ij

,X k
ij =

pkij

1−pkij

gj(gk(p
k
ij)) = gjk(p

k
ij) = gk(gj(p

k
ij)) (15)

pi = gjk(σ(2h
k
ij)), (16)

wherehk
ij = hk(xij). Again, the function ofgk(pkij) can be deduced from Table 1;

it indicates a functiong which takes allpkij indexed byk; similarly, gjk(pkij) could
be understood as a functiong including allpkij indexed byk andj. Verification of
this equation is shown in Remark 1 in the appendix.

The next step is to computewk
ij with derivative:wk

ij = −
∂L

∂hk
ij

. Using the chain

rule we get:

wk
ij = −

∂L

∂hk
ij

= −
∂L

∂pi

∂pi
∂pkij

∂pkij
∂hk

ij

. (17)

The form of ∂pi
∂pkij

is dependent on the choice of thesoftmaxfunction, which can be

deduced from Table 1 by replacinggl(vl) with pi andvi with pkij. Derivative ∂L
∂pi

is

the same as eqn. (9), and
∂pkij

∂hk
ij

is expressed as:

∂pkij
∂hk

ij

= 2pkij(1− pkij). (18)

We further summarize the weightswk
ij/wi in Table 2. Recall thatwi is the given

prior weight for theith bag.
Note thatpi andL(h) depend on eachhk

ij. We optimizeL(h1, . . . , hk) using
the coordinate descent method cycling throughk, which is a non-derivative opti-
mization algorithm (Bertsekas and Bertsekas, 1999). In each phase we add a weak
classifier tohk while keeping all other weak classifiers fixed. Details of theMCIL
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are demonstrated in Algorithm 3. The parameterK is the number of cancer sub-
types, and the parameterT is the number of weak classifiers in Boosting. Notice
that the outer loop is for each weak classifier while the innerloop is for thekth

strong classifier.
In summary, the overall MCIL strategy can be described as follows. We in-

troduce the latent variablesykij, which denotes the instancexij belonging to the
kth cluster; we encode the concept of clustering by re-weighting the instance-
level weightwk

ij. If cluster kth can classify an instance to be positive, thus the
corresponding weights of the instance and bag for other clusters decrease in re-
weighting. Thus, it forms a competition among different clusters.

Algorithm 3 MCIL-Boost
Input : Bags{x1, . . . , xn}, {y1, . . . , yn}, K, T
Output : h1, . . . , hK

for t = 1→ T do
for k = 1→ K do

Compute weightswk
ij = −

∂L
∂pi

∂pi
∂pkij

∂pkij

∂hk
ij

Train weak classifiershk
t using weights|wk

ij|
hk
t = argminh

∑

ij 1(h(x
k
ij) 6= yi)|w

k
ij|

Findαt via line search to minimizeL(., hk, .)
αk
t = argminα L(.,h

k + αhk
t , .)

Update strong classifiershk ← hk + αk
t h

k
t

end for
end for

3.4. Contextual Constraints

Most existing MIL methods are conducted under the assumption that instances
within a bag are distributed independently, without considering the inter-dependences
among instances; this leads to some degree of ambiguity. Forexample, an in-
stance considered to be positive in a bag may be an isolated point or noise. In this
situation, it will lead to incorrect recognition of cancer tissues. Rich contextual
information has been proven to play a key role in fully supervised image segmen-
tation and labeling (Tu and Bai, 2010). To further improve ouralgorithm, we
take into consideration such contextual information to enhance the robustness of
the MCIL. For convenience, this extension is called context-constrained multiple
clustered instance learning (cMCIL). The key to the cMCIL is a formulation for
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introducing the neighborhood information as a prior for theMCIL. Note that the
cMCIL is still implemented within the framework of the MCIL. The distinction
between MCIL and cMCIL is illustrated in Figure (3).

We define the new loss function in cMCIL as:

L(h) = LA(h) + λLB(h), (19)

whereLA(h) is the standard MCIL loss function taking the form as eqn. (4).
LB(h) imposes a neighborhood constraints (in a way a smoothness prior) over the
instances to reduce the ambiguity during training; it encourages the nearby image
patches to be within the same cluster.

LB(h) =
n

∑

i=1

wi

∑

(j,m)∈Ei

vjm ‖ pij − pim ‖
2, (20)

whereλ weighs the importance of the current instance and its neighbors.wi is the
weight of theith training data (theith bag).Ei denotes the set of all the neighboring
instance pairs in theith bag.vjm is the weight on a pair of instances (patches)j and
m related to the Euclidean spatial distance (on the image, denoted asdjm) between
them. Nearby instances have more contextual influence than instances that are far
away from each other. In our experiment, we chosevjm = exp(−djm), such that
higher weights will be put on closer pairs.

According to eqn. (19), we rewrite∂L(h)
∂hk

ij

as

∂L(h)

∂hk
ij

=
∂LA(h)

∂hk
ij

+ λ
∂LB(h)

∂hk
ij

, (21)

and
∂LB(h)

∂pkij
= wi

∑

(j,m)∈Ei

2vjm(p
k
ij − pkim). (22)

we further rewrite the derivative ofwk
ij = −

∂L

∂hk
ij

as:

wk
ij = −

∂L

∂hk
ij

= −(
∂LA

∂pi

∂pi
∂pkij

∂pkij
∂hk

ij

++λ
∂LB(h)

∂hk
ij

). (23)

The derivatives∂pi
∂pkij

and
∂pkij

∂hk
ij

have been given previously (see the subsection of

MCIL). ∂LA(h)
∂pi

takes the same form of∂L(h)
∂pi

in eqn. (9).
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The optimization procedure for cMCIL is similar to MCIL. With the weight
wk

ij, we can train the weak classifierhk
t by optimizing weighed error to obtain a

strong classifier:hk ← h
k + αt

khk
t . The details of cMCIL are similar to those of

MCIL as demonstrated in Algorithm 3 except that the weightwk
ij is replaced by

eqn. (23).

4. Experiments

To illustrate the advantages of MCIL, we conduct experimentson two med-
ical image datasets. In the first experiment, without loss ofgenerality, we use
colon tissue microarrays to perform joint classification, segmentation and clus-
tering. For convenience, tissue microarrays are called histopathology images. In
the second experiment, cytology images (Lezoray and Cardot,2002) are used to
further validate the effectiveness of MCIL. All the methods in the following ex-
periments, unless particularly stated, are conducted under the same experimental
settings and based on the same features, which are declared as follows.

4.1. Experiment A: Colon Cancer Histopathology Images

Settings For the parameter setting, we setr = 20, andT = 200. As men-
tioned before, the parameterr controls the sharpness and accuracy in the LSE and
GM model. The parameterT decides the number of weak classifiers in boosting.
The parameterK decides the number of cancer classes when performing cluster-
ing task.K is set to4 in the colon cancer image experiment because the dataset
contains four kinds of cancer types. For the value of parameterλ used in the loss
function of cMCIL, 0.01 is selected according to an segmentation experimental
result based on a cross validation.

We assume the initial equal weights for the positive and negative training data.
Under this assumption, the initial weightwi for the ith bag is set as uniform. In
our experiments, we use the GM model as thesoftmaxfunction, except for one
classification experiment part, in which we use four models for comparison. The
weak classifier we use is the Gaussian function. All the experimental results are
reported with 5-fold cross validation. The number of training data and test data
are always the half of the total number of all the data used in the experiment.

Features Each instance is represented by a feature vector. In this work we
focus on an integrated learning formulation rather than thefeature design. Also to
demonstrate the generality of our framework, we opt for general features instead
of adopting or creating our own disease specific features. Specifically, we use
widely adopted features includingL∗a∗b∗ Color Histogram, Local Binary Pattern
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(Ojala et al., 2002; Ahonen et al., 2009), and SIFT (Lowe, 2004). Note that de-
signing disease specific features is an interesting and challenging research topic
itself due to the fact that cell appearance of different types of cancers may be very
difference in terms of shape, size and so on. While using disease specific features
may potentially improve the performance further, we leave it for future work.

In histopathology images, recent studies use some common and useful features
from gray-level co-occurrence matrix (GLCM), Gabor filters,multiwavelet trans-
forms, and fractal dimension texture features (Huang and Lee, 2009). Therefore,
we also added the similar features.

Datasets Colon histopathology images with four cancer types are used,in-
cluding Moderately or well differentiated tubular adenocarcinoma (MTA), Poorly
differentiated tubular adenocarcinoma (PTA), Mucinous adenocarcinoma (MA),
and Signet-ring carcinoma (SRC). These four types are the mostcommon types in
colon cancer. Combined with the Non-cancer images (NC), five classes of colon
histopathology images are used in the experiments. We use the same abbreviations
for each type in the following sections.

To better reflect the real world situation, we designed our dataset in an unbal-
anced way to match the actual distribution of the four types of cancer. According
to national cancer institute (http://seer.cancer.gov/),the incidence of Moderately
or well differentiated tubular adenocarcinoma accounts for 70%-80% , Poorly dif-
ferentiated tubular adenocarcinoma accounts for 5%, Mucinous adenocarcinoma
accounts for 10%, and Signet-ring carcinoma accounts for less than 1%. The im-
ages are obtained from the Nano Zoomer 2.0HT digital slice scanner produced by
Hamamatsu Photonics with a magnification factor of 40. In total, we obtain 50
non-cancer (NC) images and 53 cancer images. First we down-sample the images
by 5 times to reduce the computational overhead. Our segmentation therefore is
conducted on the down-sampled images rather than the original images. We then
densely extract patches from each image. The size of each patch is64 × 64. The
overlap step size is32 pixels for training and4 pixels for the inference. Note that
each patch corresponds to an instance, which is representedby a feature vector.

We use all the images to construct four different subsets:binary, multi1,
multi2, andmulti3. The constituents of the four subsets are shown in Table 3.
In the first three subsets, each subset contains 60 differenthistopathology images.
binary refers to the subset containing only two classes: the NC class and the
MTA class. It contains 30 non-cancer and 30 cancer images, and can be used to
test the capability of cancer image detection.multi1 andmulti2 each includes
three types of cancer images and one type of non-cancer images.multi3 contains
all four types of images. In the all four subsets, we demonstrate the advantage of
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Table 3: Number of images in the subsets.

NC MTA PTA MA SRC
binary 30 30 0 0 0
multi1 30 15 9 0 6
multi2 30 13 9 8 0
multi3 50 28 8 8 6

the MIL formulations against the state-of-the-art supervised image categorization
approaches. Inmulti2, we further show the advantage of MCIL in an integrated
classification/segmentation/clustering framework.

Annotations To ensure the quality of the ground truth annotations, images
are carefully studied and labeled by well-trained experts.Specifically, each image
is independently annotated by two pathologists; the third pathologist moderates
their discussion until they reach the final agreement on the result. All images
are labeled as cancer images or non-cancer images. Furthermore, for the cancer
image, cancer tissues are annotated and their corresponding cancer subtypes are
identified.

4.1.1. Image-level Classification
In the experiment, we measure the image-level classification for being can-

cer or non-cancer images. First, the performance of the MCIL method based on
differentsoftmaxmodels as mentions in Table 1 are compared.

Second, to evaluate the performance of our methods, severalmethods are im-
plemented as baseline for comparison in this experiment. Since the source codes
of most algorithms presented in the colon cancer image analysis literature are
not always available, the image classification baseline we use here is multiple
kernel learning (MKL) (Vedaldi et al., 2009) which obtains very competitive im-
age classification results and wins the PASCAL Visual Object Classes Challenge
2009 (VOC2009) (Everingham et al.). We use their implementation and the same
parameters reported in their paper. For the MIL baselines, we use MI-SVM (An-
drews et al., 2003), mi-SVM (Andrews et al., 2003), and MIL-Boost (Viola et al.,
2005). Moreover, we use all the instancesxij to train a standard Boosting (Ma-
son et al., 2000) by considering instance-level labels derived from bag-level labels
(yij = yi, i = 1, . . . , n, j = 1, . . . ,m).

In total seven methods for colon cancer image classificationare compared,
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including cMCIL, MCIL, MKL, MIL-BOOST, Boosting, mi-SVM and MI-SVM.
Notice that MKL utilizes more discriminative features thanwhat we use in MIL,
MCIL and cMCIL, including the distribution of edges, dense andsparse visual
words, and feature descriptors at different levels of spatial organization.

Moreover, to further validate the methods, special experiments onmulti3 is
conducted. In these experiments, some other features , including Hu moment and
Gray-Level Co-occurrence Matrix (GLCM) (Sertel et al., 2009), are added into the
original feature set to demonstrate how the feature set influences the classification
result.

Computational complexity The machine (Processor: Intel(R) Core(TM)2
Quad CPU Q9400 @ 2.66GHz 2.67GHz; RAM: 8G; 64 Operating System)is
used to evaluate the computational complexity. The data setMulti2 is used in
the experiment. The feature code is C++ implementation in allthese algorithms
except MKL. The MKL code, including features and models, is MATLAB/C im-
plementation from1. The mi-SVM and MI-SVM codes are JAVA implementation
from 2. The other codes are C++ implementation written by the authors. Table 4
shows time consuming from various algorithms. Noted that mimeans mi-SVM
and MI means MI-SVM. The numerical unit is minute except MKL using hour.
For the computational complexity, it takes several days to train an MKL classifier
for a dataset containing 60 images while it only takes about several hours using
an ensemble of MIL. Compared with MIL and MCIL, because MCIL addsa loop,
the training time of MCIL is more than that of MIL. The time of cMCIL is slightly
more than that of MCIL due to the different loss function.

1http://www.robots.ox.ac.uk/ ˜ vgg/software/MKL/
2http://weka.sourceforge.net/doc.packages/

multiInstanceLearning/weka/classifiers/mi/package-s ummary.html
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Figure 4: ROC curves for classification in (a) and (b): (a): ROC curves for foursoftmaxmodels
in MCIL; LSE model and GM model fit the best for the cancer imagerecognition task. (b):
Comparisons of image (bag)-level classification results with state-of-the-art methods on the three
datasets: ROC curves for different learning methods; our proposed methods have the apparent
advantages.
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Table 4: Run time in various algorithms (minute)

cMCIL MCIL MKL MIL-Boost Boosting mi MI
Features 90 90 90 5 90 90
Model 35 32 8 2 15 16
Total 125 122 70hour 95 7 105 106

Language C++ C++ Matlab/C C++ C++ JAVA JAVA
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Figure 5: ROC curves for classification onmulti3 in (a),(b) and (c): (a): Comparison with state-
of-the-art methods based on the new feature set. (b)(c): Comparison of MCIL/cMCIL based on
two different feature set. (d): The F-measures for segmentation at varying number of images with
pixel-level full supervision.
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Evaluation Receiver operating characteristic (ROC) curve is used to evaluate
the performance of classification. The larger the area underthe curve is, the better
the corresponding classification method is.

Results The ROC curves for foursoftmaxmodels in MCIL are shown in
Figure (4.a). According to the curves shown in the figure, it is safely to say that
the LSE model and GM model fit the best for the cancer image recognition task,
which is the reason why GM model is chosen in all the followingexperiments.

Figure (4.b) shows the ROC curves for different learning methods in the three
datasets. In the datasetbinary, cMCIL, MCIL and MIL-Boost outperform well
than developed MKL algorithm (Vedaldi et al., 2009) and standard Boosting(Mason
et al., 2000), which shows the advantage of the MIL formulation to the cancer
image classification task. cMCIL, MCIL and MIL-Boost achieve similar perfor-
mance on thebinary dataset of one class/cluster; however, when applied to the
datasetsmulti1 andmulti2, cMCIL and MCIL significantly outperform MIL-
Boost, MKL, and Boosting. This reveals that the multiple clustering concept
integrated in the MCIL/cMCIL framework is able to successfully deal with the
complex situation in cancer image classification.

Figure (5) further demonstrates the advantages of MCIL/cMCILframework
than other methods. Furthermore, the three results in the figure show that MCIL/cMCIL
method based on new feature set can hardly outperform well than the method
based on the old feature set that is very general and small. This result demonstrate
that the MCIL/cMCIL method effective to detect cancer image using general fea-
ture set rather than using special medical features.

Discussion In classification, we show the performance of both MCIL and
cMCIL compared to others. Note that the performance of cMCIL (F-measure:
0.972) is almost identical to that of MCIL (F-measure: 0.963). This is expected
because the contextual models mainly improve patch-level segmentation and have
little effect on classification.

Different cancer types, experiment settings, benchmarks,and evaluation meth-
ods are reported in the literature. As far as we know, the codeand images used
in (Huang and Lee, 2009; Tabesh et al., 2007; Esgiar et al., 2002) are not publicly
accessible.3 Hence, it is quite difficult to make a direct comparison between dif-
ferent algorithms. Below we only list their results as references. In (Huang and

3We have also tried to contact many authors working on medicalsegmentation related to our
topic to validate our method. Unfortunately, they either did not answer our email, cannot share the
data with us, or tell us that their method will fail in our task.
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Lee, 2009), 205 pathological images of prostate cancer werechosen as evaluation
which included 50 of grade 1-2, 72 of grade 3, 31 of grade 4, and52 of grade 5.
The highest correct classification rates based on Bayesian, KNN and SVM classi-
fiers achieved94.6%, 94.2% and94.6% respectively. In (Tabesh et al., 2007), 367
prostate images (218 cancer and 149 non-cancer) were chosento detect cancer or
non-cancer. The highest accuracy was96.7%. 268 images were chosen to classify
gleason grading. The numbers of grades 2-5 are 21, 154, 86 and7, respectively.
The highest accuracy was81%. In (Esgiar et al., 2002), a total of 44 non-cancer
images and 58 cancer images were selected to detect cancer ornon-cancer. The
sensitivity of90%-95% and the specificity of86%-93% were achieved according
to various features.

4.1.2. Image Segmentation
We now turn to an instance-level experiment. We report instance-level results

in the datasetmulti2 that contains30 cancer images and30 non-cancer images in
total. Instance-level annotations for cancer images are provided by three patholo-
gists with the procedure (two pathologists marking up and one more pathologist
mediating the decision) described before.

Unsupervised segmentation techniques cannot be used as a direct comparison
here since they cannot output labels for each segment. The segmentation base-
lines are MIL-Boost (Viola et al., 2005) and standard Boosting(Mason et al.,
2000), both taking the image-level labeling as supervision. Moreover, in order to
compare with the fully supervised approach with pixel-wiseannotation, we pro-
vide a pixel-level full supervision method by implementinga standard Boosting
method that takes the pixel-level labeling as supervision (require laborious label-
ing work). Experiment on varying numbers(1, 5, 7, 10) of images of pixel-level
full supervision are conducted.

Evaluation For a quantitative evaluation, the F-measure is used to evaluate
the segmentation result. Each approach generates a probability map Pi for each
bag (image)xi and the corresponding ground truth map is named asGi. Then we
compute F-measure as follows: Precision= |Pi∩Gi|/|Pi|, Recall= |Pi∩Gi|/|Gi|
and F-measure= 2×Precision×Recall

Precision+Recall .
Results and discussionTable 5 shows the F-measure values of four methods,

cMCIL, MCIL, MIL-Boost and standard Boosting. Again, standard Boosting is
a supervised learning baseline that utilizes image-level supervision by treating
all the pixels in the positive and negative bags as positive and negative instances
respectively. The high F-measure values of cMCIL display thegreat advantage of
contextual constraints over previous MIL-based methods. We introduce context
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Table 5: Colon cancer image segmentation results in F-measure of four methods. Note that stan-
dard Boosting(Mason et al., 2000) is trained under the image-level supervision.

Method Standard Boosting MIL-Boost MCIL cMCIL
F-measure 0.312 0.253 0.601 0.717

constraints as a prior for multiple instance learning (cMCIL), which significantly
reduces the ambiguity in weak supervision (a 20% gain).

Figure (6) shows some segmentation results of test data. According to the
test results, standard Boosting with image-level supervision tends to detect non-
cancer tissues as cancer tissues since it considers all the instances in positive bags
as positive instances.

Since our learning process is based on image-level labels, the intrinsic label
(cancer vs. non-cancer) for each patch/pixel is ambiguous.Using contextual infor-
mation therefore can reduce the ambiguity on the i.i.d. (independently identically
distributed) assumption. Compared with MCIL, cMCIL improves segmentation
quality by reducing the intrinsic training ambiguity. Due to neighborhood con-
straints, cMCIL is able to reduce noises and identify small isolated areas in cancer
images to achieve cleaner boundaries.

The corresponding F-measure values of the varying numbers of images of
pixel-level full supervision are shown in Figure (5.d), which demonstrates that
cMCIL is able to achieve comparable results (around 0.7) but without having de-
tailed pixel-level manual annotations. Although our weakly supervised learning
method requires more images (30 positive), it eases the burden of making the
pixel-wise manual annotation. In our case, it often takes2 ∼ 3 hours for our
expert pathologists to reach the agreement on the pixel-level ground truth while it
usually costs only1 ∼ 2 minutes to label an image as cancerous or non-cancerous.
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Figure 6: Image Types: from left to right: (a): The original images. (b)(c)(d)(e)(f): The instance-
level results (pixel-level segmentation and patch-level clustering) for standard Boosting + K-
means, pixel-level full supervision, MIL + K-means, MCIL and cMCIL. (g): The instance-level
ground truth labeled by three pathologists. Different colors stand for different types of cancer
tissues. Cancer Types: from top to bottom: MTA, MTA, PTA, NC,and NC.
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4.1.3. Patch-level Clustering
With the same test data mentioned in segmentation, we also obtained the clus-

tering results. For patch-level clustering, we build two baselines: MIL-Boost
(Viola et al., 2005) + K-means and standard Boosting + K-means. Particularly,
we first run MIL-Boost or standard Boosting to perform instance-level segmenta-
tion and then use K-means to obtainK clusters among positive instances (cancer
tissues). Since we mainly focus on clustering performance here, we only include
true positive instances.

Evaluation The purity measure is used as the evaluation metric. Given a
particular clusterSr of sizenr, the purity is defined as the weighted sum of the
individual cluster purities:purity =

∑k

r=1
nr

n
Pu(Sr), wherePu(Sr) is the purity

of a cluster, defined asPu(Sr) =
1
nr

maxi n
i
r. Larger purity values indicate better

clustering results.
Results and discussionThe purities of cMCIL and MCIL are respectively

99.74% and98.92%, while the purities of MIL-Boost + K-means and standard
Boosting + K-means are only86.21% and84.37% respectively. This shows that
an integrated learning framework of MCIL is better than separating the two-steps,
instance-level segmentation and clustering.

We also illustrate the clustering results in Figure (6). As shown in the figure,
MCIL and cMCIL successfully discriminate cancer classes. Theoriginal MCIL
method divides MTA cancer images into three clusters. Compared with MCIL,
the patch-level clustering is less noisy in cMCIL. The PTA cancer tissues are
mapped to blue; the MTA cancer tissues are mapped to green, yellow and red.
Both MIL-Boost + K-means and standard Boosting + K-means divideone tissue
class into several clusters and the results are not consistent. In the histopathology
images, the purple regions around cancers are lymphocytes.For some patients,
it is common that lymphocytes occur around the cancer cells and seldom appear
around non-cancerous tissues although lymphocytes themselves are not consid-
ered as cancer tissues. Since a clear definition of all classes is still not available,
our method shows the promising potential for automaticallyexploring different
classes with weak supervision.
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Figure 7: Image Types: from left to right: (a): The original cell images. (b)(c)(d)(e): The seg-
mentation results for pixel-level fully supervision, MIL-Boost, MCIL and cMCIL. (f): The ground
truth images. The two bottom images are generated background images. Cytology Image Classes:
from top to bottom: CELL, CELL, CELL, BG and BG.

4.2. Experiment B: Cytology Images

Datasets Ten cytology images together with their corresponding segmenta-
tion results (as the ground truth) are obtained from the paper (Lezoray and Cardot,
2002). We also generate additional ten background (negative) images. These im-
ages have the same background texture as the ten cytology images but without
cells on them. Details of the method for texture image generation are presented in
(Portilla and Simoncellt, 2000), in which a universal parametric model for visual
texture, based on a novel set of pairwise joint statistical constraints on the coef-
ficients of a multiscale image representation is described.For convenience, we
name the cytology image as cell image (CELL) and texture imageas background
image (BG).
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Table 6: Cytology image segmentation results in F-measure of different methods.

Method full supervision MIL-Boost MCIL cMCIL
F-measure 0.766 0.658 0.673 0.699

Experiments design To evaluate the pixel-level segmentation, we test these
20 images with 4 different methods, including pixel-level full supervision, MIL-
Boost, MCIL, and cMCIL. All the four methods correctly classifythe 20 images
into the cell image and background image. Since all nuclei belong to the same
type, the cluster concept that divides different instancesinto different classes is
rather weak in this case. Therefore, in Experiment B we focuson the segmentation
task.

Results and discussionThe results are shown in Figure (7). Same as before,
supervised method with the full pixel-level supervision achieves the best perfor-
mance. By comparing weakly supervised methods in Figure (7),we observe: (1)
some nuclei are missed by MIL-Boost; (2) MCIL removes some errors but also
brings up noises; and (3) cMCIL further improves the results by reducing the in-
trinsic training ambiguity. The F-measures calculated fora quantitative evaluation
are shown on Table 6, which is consistent to the qualitative illustration in Figure
(7).

The experimental results demonstrate the effectiveness ofcMCIL in cytol-
ogy image segmentation. MCIL significantly improves segmentation over other
weakly supervised methods and it is able to achieve accuracycomparable with a
fully supervised state-of-the-art method.

5. Conclusion

In this paper, we have presented an integrated formulation,multiple clustered
instance learning (MCIL), for classifying, segmenting, andclustering medical im-
ages along the line of weakly supervised learning. The advantages of MCIL are
evident over the state-of-the-art methods that perform theindividual tasks, which
include easing the burden of manual annotation in which onlyimage-level label
is required and perform image-level classification, pixel-level segmentation and
patch-level clustering simultaneously.

In addition, we introduce contextual constraints as a priorfor MCIL which
reduces the ambiguity in MIL. MCIL and cMCIL are able to achievecomparable
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results in segmentation with an approach of full pixel-level supervision in our ex-
periment. This will inspire future research in applying different families of joint
instance models (conditional random fields(Lafferty et al., 2001), max-margin
Markov network(Taskar et al., 2003), etc.) to the frameworkof MIL/MCIL, as
the independence assumption might be loose.

Appendix A. Verification for Remark 1

We verify Remark 1 (eqn. (15)):gj(gk(pkij)) = gjk(p
k
ij) = gk(gj(p

k
ij)) for each

model. Given the number of clustersK and the number of instancesm in each
bag, we develop derivations for four models respectively:

For the NOR model:
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For the LSE model:
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For the ISR model:
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Now we showgjk(pkij) = gkgj(p
k
ij) for eachsoftmaxmodels.gjk(pkij) = gjgk(pij

k)
could also be given in the same way. Thus Remark 1 (eqn. (15)) could be verified.
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